PLEASE HELP. Three tennis balls are stored in a cylindrical container with a height of 8.8 inches and a radius of 1.42 inches. The circumference of a tennis ball is 8 inches. Find the amount of space within the cylinder not taken up by the tennis balls. Round your answer to the nearest hundredth.


Amount of space: about ___ cubic inches

Answers

Answer 1

The amount of space within the Cylindrical container not taken up by the tennis balls is approximately 27.86 cubic inches, rounded to the nearest hundredth.

The amount of space within the cylindrical container not taken up by the tennis balls, we need to calculate the volume of the container and subtract the total volume of the three tennis balls.

The volume of the cylindrical container can be calculated using the formula for the volume of a cylinder:

Volume = π * r^2 * h

where π is a mathematical constant approximately equal to 3.14159, r is the radius of the cylinder, and h is the height of the cylinder.

Given that the radius of the cylindrical container is 1.42 inches and the height is 8.8 inches, we can substitute these values into the formula:

Volume of container = 3.14159 * (1.42 inches)^2 * 8.8 inches

Calculating this expression:

Volume of container ≈ 53.572 cubic inches

The volume of each tennis ball can be calculated using the formula for the volume of a sphere:

Volume of a sphere = (4/3) * π * r^3

Given that the circumference of the tennis ball is 8 inches, we can calculate the radius using the formula:

Circumference = 2 * π * r

Solving for r:

8 inches = 2 * 3.14159 * r

r ≈ 1.2732 inches

Substituting this value into the volume formula:

Volume of a tennis ball = (4/3) * 3.14159 * (1.2732 inches)^3

Calculating this expression:

Volume of a tennis ball ≈ 8.570 cubic inches

Since there are three tennis balls, the total volume of the tennis balls is:

Total volume of tennis balls = 3 * 8.570 cubic inches

Total volume of tennis balls ≈ 25.71 cubic inches

Finally, to find the amount of space within the cylinder not taken up by the tennis balls, we subtract the total volume of the tennis balls from the volume of the container:

Amount of space = Volume of container - Total volume of tennis balls

Amount of space ≈ 53.572 cubic inches - 25.71 cubic inches

Amount of space ≈ 27.86 cubic inches

Therefore, the amount of space within the cylindrical container not taken up by the tennis balls is approximately 27.86 cubic inches, rounded to the nearest hundredth.

For more questions on Cylindrical .

https://brainly.com/question/13403422

#SPJ8


Related Questions

show all work
7. A conical tank with equal base and height is being filled with water at a rate of 2 m/min. How fast is the height of the water changing when the height of the water is 7m. As the height increases,

Answers

When the water is 7 meters high, it is changing height at a rate of about 0.019 meters per minute.

To find how fast the height of the water is changing

We need to use related rates and the volume formula for a cone.

V as the conical tank's water volume

h is the measurement of the conical tank's water level

The conical tank's base has a radius of r

The volume of a cone can be calculated using the formula: V = (1/3)πr²h.

Given that the base and height of the conical tank are equal, we can write r = h.

Differentiating the volume formula with respect to time t, we get:

dV/dt = (1/3)π(2rh dh/dt + r² dh/dt).

Since r = h, we can simplify the equation to:

dV/dt = (1/3)π(2h² dh/dt + h² dh/dt)

= (2/3)πh² dh/dt (Equation 1).

Assuming that the rate of water filling is 2 m/min, dh/dt must equal 2 m/min.

Finding dh/dt at h = 7 m is necessary because we want to know how quickly the water's height is changing.

Substituting the values into Equation 1:

2 = (2/3)π(7²) dh/dt

2 = (2/3)π(49) dh/dt

2 = (98/3)π dh/dt

dh/dt = 2 * (3/(98π))

dh/dt ≈ 0.019 m/min.

Therefore, When the water is 7 meters high, it is changing height at a rate of about 0.019 meters per minute.

Learn more about volume of cone here: brainly.com/question/28109167

#SPJ4

#1 Evaluate S² (x²+1) dx by using limit definition. (20 points) #2 Evaluate S x²(x²³ +8) ² dx by using Substitution. (10 points) #3 Evaluate Stift-4 dt (10 points) Sot at #4 Find flex) if f(x) = 5 * =_=_=_d² + x + ²/²₁ #5 Evaluate 5 | (t-1) (4-3) | dt (15 points) #6 Evaluate SX³ (x²+1) ³/²2 dx (15 points) (10 points) #7 Evaluate S sin (7x+5) dx (10 points) #8 Evaluate S/4 tan³ o sec² o do (10 points)

Answers

1. By applying the sum of powers formula, we find that ∫(x²+1)² dx diverges as n approaches infinity.

2. The final result is (1/23) * ((x²³ + 8)³/3) + C].

3. The final result is [[tex]-t^{(-3)}[/tex] / 3 + C].

What is Riemann sum?

A territory's approximate area, known as a Riemann sum, is calculated by summing the areas of various simplified slices of the region. Calculus uses it to formalise the process of exhaustion, which is used to calculate a region's area.

1) Using the limit definition of the integral,

we divide the interval [a, b] into n subintervals of width

Δx = (b - a)/n.

Then, the integral is given by the limit of the Riemann sum as n approaches infinity.

For ∫(x²+1)² dx,

we choose the interval [0, 1] and calculate the Riemann sum as Σ[(x⁴+2x²+1) Δx].

By applying the sum of powers formula,

we find that ∫(x²+1)² dx diverges as n approaches infinity.

2) To evaluate ∫x²(x²³ + 8)² dx using substitution,

let u = x²³ + 8

du = (23x²²) dx.

Rearranging, we have

dx = du / (23x²²).

Substituting these expressions, we get

∫(1/23)u² du

Integrating, we find

(1/23) * (u³/3) + C

Replacing u with x²³ + 8,

The final result is (1/23) * ((x²³ + 8)³/3) + C.

3) The integral ∫[tex]t^{(-4)}[/tex] dt can be evaluated using the power rule of integration.

By adding 1 to the exponent and dividing by the new exponent, we find [tex]t^{(-4)}[/tex] = ∫ [tex]-t^{(-3)}[/tex] / 3 + C

To learn more about limit definition here:

https://brainly.com/question/30761744

#SPJ4

The function() has domain - 6 Sis 2 and the average rate of change of cover the interval -6 5x5 2is - 3 (a) State the domain of the function(x) = f(x+9) The domain is . (b) Give the average rate of change of the function(x) = sex + 9) over its domain The average rate of change of 2) is i Rewritey - -/(x - 12) + 11 ay = /(B - 1+k and give values for A.B. h, and k. A=

Answers

The domain of the function f(x+9) is the set of all real numbers, denoted as (-∞, ∞). The average rate of change of the function f(x+9) over its domain is not provided in the given information.

The function y = -√(x - 12) + 11 can be rewritten as y = -√(x - (1 + k)) + 11, where A = -1, B = 1, h = 12, and k is unknown.

(a) When we shift a function horizontally by adding a constant to the input, it does not affect the domain of the function. Therefore, the domain of f(x+9) remains the same as the original function, which is the set of all real numbers, (-∞, ∞).

(b) The average rate of change of the function f(x+9) over its domain is not provided in the given information. It is necessary to know the specific function or additional information to calculate the average rate of change.

(c) The function y = -√(x - 12) + 11 can be rewritten as y = -√(x - (1 + k)) + 11, where A = -1 represents the reflection in the x-axis, B = 1 indicates a horizontal shift to the right by 1 unit, h = 12 represents a horizontal shift to the right by 12 units, and k is an unknown constant that represents an additional horizontal shift. The specific value of k is not given in the provided information, so it cannot be determined without further details.

Learn more about real numbers here:

https://brainly.com/question/31715634

#SPJ11

find the area of the triangle. B = 28yd
H = 7.1yd
Please help

Answers

Answer:

99.4 square yards

Step-by-step explanation:

The formula for the area of a triangle is:

[tex]A = \dfrac{1}{2} \cdot \text{base} \cdot \text{height}[/tex]

We can plug the given dimensions into this formula and solve for [tex]A[/tex].

[tex]A = \dfrac{1}2 \cdot (28\text{ yd}) \cdot (7.1 \text{ yd})[/tex]

[tex]\boxed{A = 99.4\text{ yd}^2}[/tex]

So, the area of the triangle is 99.4 square yards.

In which quadrant does the angle t lie if sec (t) > 0 and sin(t) < 0? I II III IV Can't be determined

Answers

If sec(t) > 0 and sin(t) < 0, the angle t lies in the third quadrant (III).

The trigonometric function signs can be used to identify a quadrant in the coordinate plane where an angle is located. We can infer the following because sec(t) is positive while sin(t) is negative:

sec(t) > 0: In the first and fourth quadrant, the secant function is positive. Sin(t), however, is negative, thus we can rule out the idea that the angle is located in the first quadrant. Sec(t) > 0 therefore indicates that t is not in the first quadrant.

The sine function has a negative value in the third and fourth quadrants when sin(t) 0. This knowledge along with sec(t) > 0 leads us to the conclusion that the angle t must be located in the third or fourth quadrant.

However, the angle t cannot be in the fourth quadrant because sec(t) > 0 and sin(t) 0. So, the only option left is that t is located in the third quadrant (III).

Therefore, the angle t lies in the third quadrant (III) if sec(t) > 0 and sin(t) 0.


Learn more about quadrant here:
https://brainly.com/question/29296837


#SPJ11

2 24 (a) Evaluate the integral: Ś dc x2 + 4 Your answer should be in the form kn, where k is an integer. What is the value of k? Hint: d arctan(2) dr (a) = = 1 22 +1 k - (b) Now, let's evaluate the s

Answers

The given integral is  $ \int \sqrt{x^2 + 4} dx$To solve this, make the substitution $ x = 2 \tan \theta $, then $ dx = 2 \sec^2 \theta d \theta $ and$ \sqrt{x^2 + 4} = 2 \sec \theta $So, $ \int \sqrt{x^2 + 4} dx = 2 \int \sec^2 \theta d \theta $Using the identity $ \sec^2 \theta = 1 + \tan^2 \theta $, we have: $ \int \sec^2 \theta d \theta = \int (1 + \tan^2 \theta) d \theta = \tan \theta + \frac{1}{3} \tan^3 \theta + C $where C is the constant of integration.

Now, we need to convert this expression back to $x$. We know that $ x = 2 \tan \theta $, so $\tan \theta = \frac{x}{2}$.Therefore, $ \tan \theta + \frac{1}{3} \tan^3 \theta + C = \frac{x}{2} + \frac{1}{3} \cdot \frac{x^3}{8} + C $Simplifying this expression, we get: $\frac{x}{2} + \frac{1}{24} x^3 + C$So, the value of k is 1, and the answer to the integral $ \int \sqrt{x^2 + 4} dx$ is $\frac{x}{2} + \frac{1}{24} x^3 + k$

Learn more about substitution here:

https://brainly.com/question/30288521

#SPJ11

9. (16 pts) Determine if the following series converge or diverge. State any tests used. n? Σ η1 ne η1

Answers

The given series is given as :n∑η1nene1η1, is convergent. We can do the convergence check through Ratio test.

Let's check the convergence of the given series by using Ratio Test:

Ratio Test: Let a_n = η1nene1η1,

so a_(n+1) = η1(n+1)ene1η1

Ratio = a_(n+1) / a_n

= [(n+1)ene1η1] / [nen1η1]

= (n+1) / n

= 1 + (1/n)limit (n→∞) (1+1/n)

= 1, so Ratio

= 1< 1

According to the results of the Ratio Test, the given series can be considered convergent.

Conclusion:

Thus, the given series converges.

To know more about Ratio

https://brainly.com/question/12024093

#SPJ11

Find the quotient and remainder using long division. x³ +3 x + 1 The quotient is x²-x X The remainder is +3 X

Answers

The quotient obtained by dividing x³ + 3x + 1 by x² - x is x² - x, and the remainder is 3x. The division process involves subtracting multiples of the divisor from the dividend until no further subtraction is possible.

To find the quotient and remainder, we perform long division as follows:

                  _________

x² - x | x³ + 3x + 1

                  x³ - x²

               ____________

                       4x² + 1

                - 4x² + 4x

               _____________

                           -3x + 1

After dividing the x³ term by x², we obtain x as the quotient. Then, we multiply x by x² - x to get x³ - x², which is subtracted from the original polynomial. This leaves us with the remainder 4x² + 1.

Next, we divide the remainder, 4x² + 1, by the divisor x² - x. Dividing 4x² by x² yields 4, and multiplying 4 by x² - x gives us 4x² - 4x. Subtracting this from the remainder leaves us with -3x + 1.

At this point, we can no longer perform further divisions. Therefore, the quotient is x² - x and the remainder is -3x + 1, which can also be written as 3x + 1.

Learn more about polynomial here:

brainly.com/question/28813567

#SPJ11

Q7
Find the first three terms of Taylor series for F(x) = sin(pnx) + e-p, about x = p, and use it to approximate F(2p)

Answers

The first three terms of the Taylor series for the function F(x) = sin(pnx) + e-p, centered around x = p, are used to approximate the value of F(2p).

To find the Taylor series for F(x) centered around x = p, we start by calculating the derivatives of the function at x = p. Taking the first derivative gives us F'(x) = np*cos(pnx), and the second derivative is F''(x) = -n^2*p*sin(pnx). The third derivative is F'''(x) = -n^3*p*cos(pnx). Evaluating these derivatives at x = p, we have F(p) = sin(p^2n) + e-p, F'(p) = np*cos(p^2n), and F''(p) = -n^2*p*sin(p^2n).

The Taylor series approximation for F(x) around x = p, truncated after the third term, is given by:

F(x) ≈ F(p) + F'(p)*(x - p) + (1/2)*F''(p)*(x - p)^2

Substituting the values we obtained earlier, we have:

F(x) ≈ sin(p^2n) + e-p + np*cos(p^2n)*(x - p) - (1/2)*n^2*p*sin(p^2n)*(x - p)^2

To approximate F(2p), we substitute x = 2p into the Taylor series:

F(2p) ≈ sin(p^2n) + e-p + np*cos(p^2n)*(2p - p) - (1/2)*n^2*p*sin(p^2n)*(2p - p)^2

F(2p) ≈ sin(p^2n) + e-p + np*cos(p^2n)*p - (1/2)*n^2*p*sin(p^2n)*p^2

To learn more about Taylor series click here: brainly.com/question/31140778

#SPJ11

Determine whether (-1)" cos (n) n=1 converges or diverges. Justify your answer. 2 ()"n)

Answers

The series (-1)^n cos(n) does not converge.

To determine whether the series converges or diverges, we need to analyze the behavior of the individual terms as n approaches infinity.

For the given series, the term (-1)^n cos(n) oscillates between positive and negative values as n increases. The cosine function oscillates between -1 and 1, and multiplying it by (-1)^n alternates the sign of the term.

Since the series oscillates and does not approach a specific value as n increases, it does not converge. Instead, it diverges.

In the case of oscillating series, convergence can be determined by examining whether the terms approach zero as n approaches infinity. However, in this series, the absolute value of the terms does not approach zero since the cosine function is bounded between -1 and 1. Therefore, the series diverges.

In conclusion, the series (-1)^n cos(n) diverges.

learn more about function oscillation here:

https://brainly.com/question/30763887

#SPJ11

10. (BONUS) (20 points) Evaluate the integral so 1-e-4 601 sin x cos 3x de 10 20

Answers

The solution of the integral is - (1/4) [(1 - e⁻⁴ˣ) / x ] cos(2x) + (1/4) ∫ (1/x²) e⁻⁴ˣ cos(2x) dx

First, let's simplify the integrand [(1 - e⁻⁴ˣ) / x ] sin x cos 3x. Notice that the term sin x cos 3x can be expressed as (1/2) [sin(4x) + sin(2x)]. Rewriting the integral, we have:

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] sin x cos 3x dx

= ∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] (1/2) [sin(4x) + sin(2x)] dx

To make it easier to handle, we can split the integral into two separate integrals:

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] (1/2) sin(4x) dx

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] (1/2) sin(2x) dx

Let's focus on the first integral:

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] (1/2) sin(4x) dx

To evaluate this integral, we can use a technique called integration by parts. The formula for integration by parts states that for two functions u(x) and v(x) with continuous derivatives, the integral of their product is given by:

∫ u(x) v'(x) dx = u(x) v(x) - ∫ v(x) u'(x) dx

In our case, let's set u(x) = (1 - e⁻⁴ˣ) / x and v'(x) = (1/2) sin(4x) dx. Then, we can find u'(x) and v(x) by differentiating and integrating, respectively:

u'(x) = [(x)(0) - (1 - e⁻⁴ˣ)(1)] / x²

= e⁻⁴ˣ / x²

v(x) = - (1/8) cos(4x)

Now, we can apply the integration by parts formula:

∫ [(1 - e⁻⁴ˣ) / x ] (1/2) sin(4x) dx

= [(1 - e⁻⁴ˣ) / x ] (-1/8) cos(4x) - ∫ (-1/8) cos(4x) (e⁻⁴ˣ / x²) dx

Simplifying, we have:

∫ [(1 - e⁻⁴ˣ) / x ] (1/2) sin(4x) dx

= - (1/8) [(1 - e⁻⁴ˣ) / x ] cos(4x) + (1/8) ∫ (1/x²) e⁻⁴ˣ cos(4x) dx

Now, let's move on to the second integral:

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] (1/2) sin(2x) dx

Using a similar approach, we can apply integration by parts again. Let's set u(x) = (1 - e⁻⁴ˣ) / x and v'(x) = (1/2) sin(2x) dx. Differentiating and integrating, we find:

u'(x) = [(x)(0) - (1 - e⁻⁴ˣ)(1)] / x²

= e⁻⁴ˣ / x²

v(x) = - (1/4) cos(2x)

Applying the integration by parts formula:

∫ [(1 - e⁻⁴ˣ) / x ] (1/2) sin(2x) dx

= [(1 - e⁻⁴ˣ) / x ] (-1/4) cos(2x) - ∫ (-1/4) cos(2x) (e⁻⁴ˣ / x²) dx

Simplifying, we have:

∫ [(1 - e⁻⁴ˣ) / x ] (1/2) sin(2x) dx

= - (1/4) [(1 - e⁻⁴ˣ) / x ] cos(2x) + (1/4) ∫ (1/x²) e⁻⁴ˣ cos(2x) dx

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

Complete Question:

Evaluate the integral

∫[from 0 to ∞] [(1 - e⁻⁴ˣ) / x ] sin x cos 3x dx

(1 point) a town has population 525 people at year t=0. write a formula for the population, p, in year t if the town

Answers

The equation that is used to determine the population (p) of a town in the year t can be written as p = 525, where 525 is the population that was present when the town was first populated.

According to the problem that has been presented to us, the town had a total population of 525 inhabitants in the year t=0. A consistent population growth rate is not provided, which makes it impossible to calculate the population in each subsequent year t. As a result, it is reasonable to suppose that the population has stayed the same over the years.

In this scenario, the formula for determining the population (p) in any given year t is p = 525, where 525 denotes the town's starting population. According to this method, the population of the town has remained the same throughout the years, despite the fact that more time has passed.

It is essential to keep in mind that this method presupposes that there will be no shifts in the population as a result of variables like birth rates, death rates, immigration rates, or emigration rates. In the event that any of these factors are present and have an effect on the population, the formula will need to be updated to reflect the changes that have occurred.

Learn more about formula here:

https://brainly.com/question/30539710

#SPJ11

a1 is fouled on an unsuccessful two-point shot attempt. a1 is injured on the play and cannot shoot the free throws. team a has seven eligible players on the bench. a1's free throws must be shot by:

Answers

When a player is fouled and injured on an unsuccessful two-point shot attempt, the opposing team's coach is responsible for choosing the replacement free throw shooter from the injured player's team bench. This ensures a fair and balanced game.

In basketball, when a player (A1) is fouled during an unsuccessful two-point shot attempt and is injured, the opposing team's coach selects the replacement free throw shooter from the seven eligible players on the bench. This rule ensures fairness in the game, as it prevents the injured player's team from gaining an advantage by choosing their best free throw shooter.
Since A1 is injured and cannot shoot the free throws, the opposing team's coach will pick a substitute from the seven available players on Team A's bench. This decision maintains a balance in the game, as it avoids giving Team A an unfair advantage by selecting their own substitute.
To know more about Basketball visit:

https://brainly.com/question/30841671

#SPJ11

This question is designed to be answered without a calculator. If f(4x2.3/4-4x®)dx = k(4-4x3)을 + c, then k = ○ 2 ㅇ-ㅎ ㅇ - 3/4 ) 류.

Answers

Given the integral ∫(4x^2.3/4 - 4x^®)dx = k(4 - 4x^3) + c, we need to determine the value of k. The integral represents the antiderivative of the given function, and the constant of integration is represented by c. By comparing the integral to the expression k(4 - 4x^3), we can deduce the value of k by observing the coefficients and exponents of the terms.

The integral ∫(4x^2.3/4 - 4x^®)dx is equal to k(4 - 4x^3) + c, where k is the constant we need to determine. By comparing the terms, we can observe that the coefficient of the x^3 term in the integral is -4, while in the expression k(4 - 4x^3), the coefficient is k. Since these two expressions are equal, we can conclude that k = -4.

Therefore, the value of k is -4, as indicated by the coefficient of the x^3 term in the integral and the expression.

To learn more about coefficients  : brainly.com/question/1594145

#SPJ11

For the function f(x) = 3x5 – 30x3, find the points of inflection.

Answers

The points of inflection is at x = 0, 2

What is the point of inflection?

A point of inflection is simply described as the points in a given function where there is a change in the concavity of the function.

From the information given, we have that the function is written as;

f(x) = 3x⁵ – 30x³

Now, we have to first find the intervals where the second derivative of the function is both a positive and negative value

We have that the second derivative of f(x) is written as;

f''(x) = 45x(x – 2)

Then, we have that the second derivative is zero at the points

x = 0 and x = 2.

Learn more about point of inflection at: https://brainly.com/question/30767426

#SPJ4

Algebra Linear Equations City Task (1)

Answers

The complete question may be like:

In a city, the population of a certain neighborhood is increasing linearly over time. At the beginning of the year, the population was 10,000, and at the end of the year, it had increased to 12,000. Assuming a constant rate of population growth, what is the equation that represents the population (P) as a function of time (t) in months?

a) P = 1000t + 10,000

b) P = 200t + 10,000

c) P = 200t + 12,000

d) P = 1000t + 12,000

The equation that represents the population (P) as a function of time (t) in months is:  P = 1000t + 10,000. So, option a is the right choice.

To find the equation that represents the population (P) as a function of time (t) in months, we can use the given information and the equation for a linear function, which is in the form P = mt + b, where m represents the rate of change and b represents the initial value.

Given that at the beginning of the year (t = 0 months), the population was 10,000, we can substitute these values into the equation:

P = mt + b

10,000 = m(0) + b

10,000 = b

So, we know that the initial value (b) is 10,000.

Now, we need to find the rate of change (m). We know that at the end of the year (t = 12 months), the population had increased to 12,000. Substituting these values into the equation:

P = mt + b

12,000 = m(12) + 10,000

Solving for m:

12,000 - 10,000 = 12m

2,000 = 12m

m = 2,000/12

m = 166.67 (rounded to two decimal places)

Therefore, the equation that represents the population (P) as a function of time (t) in months is:

P = 166.67t + 10,000

So, the correct option is: a) P = 1000t + 10,000.

The right answer is  a) P = 1000t + 10,000

For more such question on equation

https://brainly.com/question/29174899

#SPJ8

help!!! urgent :))
Identify the 42nd term of an arithmetic sequence where a1 = −12 and a27 = 66.

a) 70
b) 72
c) 111
d) 114

Answers

The 42nd term is 111. Option C

How to determine the value

The formula for the calculating the nth terms of an arithmetic sequence is expressed as;

Tn = a₁ + (n-1)d

Such that the parameters are expressed as;

Tn in the nth terma₁ is the first termn is the number of termsd is the common difference

Substitute the values, we have;

66 =-12 + 26(d)

expand bracket

66 = -12 + 26d

collect like terms

26d = 78

d = 3

Substitute the value

T₄₂ = -12 + (42 -1 )3

expand the bracket

T₄₂ = -12 +123

Add the values

T₄₂ =111

Learn more about arithmetic sequence at: https://brainly.com/question/6561461

#SPJ1

Find the second derivative of the given function. f(x) = 712 7-x =

Answers

The required second derivative of the given function:f ''(x) = - 712 × 2 (7-x)⁻³Thus, the second derivative of the given function is - 712 × 2 (7-x)⁻³.

The given function is f(x) = 712 7-x. We need to find the second derivative of the given function.Firstly, let's find the first derivative of the given function as follows:f(x) = 712 7-xTaking the first derivative of the above function by using the power rule, we get;f '(x) = -712 × (7-x)⁻² × (-1)Taking the negative exponent to the denominator, we getf '(x) = 712 (7-x)⁻²Hence, the first derivative of the given function isf '(x) = 712 (7-x)⁻²Now, let's find the second derivative of the given function by differentiating the first derivative.f '(x) = 712 (7-x)⁻²The second derivative of the given function isf ''(x) = d/dx [f '(x)] = d/dx [712 (7-x)⁻²]Taking the negative exponent to the denominator, we getf ''(x) = d/dx [712/ (7-x)²]Using the quotient rule, we have:f ''(x) = [d/dx (712)] (7-x)⁻² - 712 d/dx (7-x)⁻²f ''(x) = 0 + 712 × 2(7-x)⁻³ (d/dx (7-x))Multiplying the expression by (-1) we getf ''(x) = - 712 × 2 (7-x)⁻³

Learn more about function f(x) here:

https://brainly.com/question/28887915

#SPJ11

Consider the following integral. ✓ eu du (4 - 842 1 Find a substitution to rewrite the integrand as dx X = dx = 1) ou du Evaluate the given integral. (Use C for the constant of integration.)

Answers

By considering the given integral, the substitution to rewrite the integrand as dx X = dx = 1) ou du is -e((4 - x) / 8) + C.

To provide a clear answer, let's use the provided information:

1. First, we'll rewrite the integral using substitution. Let x = 4 - 8u, then dx = -8 du.

2. Next, we need to solve for u in terms of x. Since x = 4 - 8u, we get u = (4 - x) / 8.

3. Now, we can substitute x and dx back into the integral:

∫ e(u) du = ∫ e((4 - x) / 8) x (-1/8) dx.

4. We can now evaluate the integral:

∫ e((4 - x) / 8) x (-1/8) dx = (-1/8) ∫ e((4 - x) / 8) dx.

5. Integrating e((4 - x) / 8) with respect to x, we get:

(-1/8) x 8 x e((4 - x) / 8) + C = -e((4 - x) / 8) + C.

So, the final answer is:

-e((4 - x) / 8) + C

You can learn more about integral at: brainly.com/question/31059545

#SPJ11

18) Find the absolute extrema of the function f(x) = 2sinx - cos2x on the interval [0, π]. C45207 a) min at max at f b) 0 no min, max at ( c) O min at max at 27 and 0 d) min at 7 and 0, max at Weig

Answers

To find the absolute extrema of the function f(x) = 2sin(x) - cos(2x) on the interval [0, π], we need to find the critical points and endpoints of the interval.

To find the critical points, we need to find the values of x where the derivative of f(x) is equal to zero or undefined.

f(x) = 2sin(x) - cos(2x)

f'(x) = 2cos(x) + 2sin(2x)

Setting f'(x) = 0, we have:

2cos(x) + 2sin(2x) = 0

Simplifying the equation:

cos(x) + sin(2x) = 0

cos(x) + 2sin(x)cos(x) = 0

cos(x)(1 + 2sin(x)) = 0

This equation gives us two possibilities:

cos(x) = 0 => x = π/2 (90 degrees) (within the interval [0, π])

1 + 2sin(x) = 0 => sin(x) = -1/2 => x = 7π/6 (210 degrees) or x = 11π/6 (330 degrees) (within the interval [0, π])

Therefore, the critical points within the interval [0, π] are x = π/2, x = 7π/6, and x = 11π/6.

Endpoints:

The function f(x) is defined on the interval [0, π], so the endpoints are x = 0 and x = π.

Now, we evaluate the function at the critical points and endpoints to find the absolute extrema:

f(0) = 2sin(0) - cos(2(0)) = 0 - cos(0) = -1

f(π/2) = 2sin(π/2) - cos(2(π/2)) = 2 - cos(π) = 2 - (-1) = 3

f(7π/6) = 2sin(7π/6) - cos(2(7π/6)) = 2(-1/2) - cos(7π/3) = -1 - (-1/2) = -1/2

f(11π/6) = 2sin(11π/6) - cos(2(11π/6)) = 2(-1/2) - cos(11π/3) = -1 - (-1/2) = -1/2

f(π) = 2sin(π) - cos(2π) = 0 - 1 = -1

Now, let's compare the function values:

f(0) = -1

f(π/2) = 3

f(7π/6) = -1/2

f(11π/6) = -1/2

f(π) = -1

From the above calculations, we can see that the maximum value of f(x) is 3, and the minimum values are -1/2. The maximum value of 3 occurs at x = π/2, and the minimum values of -1/2 occur at x = 7π/6 and x = 11π/6.

Therefore, the absolute extrema of the function f(x) = 2sin(x) - cos(2x) on the interval [0, π] are:

a) Maximum value of 3 at x = π/2

Learn more about critical points here:

https://brainly.com/question/7805334

#SPJ11

What Is The Smallest Square Number Which Is Divisible By 2,4,5,6 and 9?"

Answers

The smallest square number that is divisible by 2, 4, 5, 6, and 9 is 180, since it is the square of a number (180 = 12^2) and it satisfies the divisibility conditions for all the given numbers.

We need to find the least common multiple (LCM) of the given numbers: 2, 4, 5, 6, and 9.

Prime factorizing each number, we have:

2 = 2

4 = 2^2

5 = 5

6 = 2 * 3

9 = 3^2

To find the LCM, we take the highest power of each prime factor that appears in the factorizations. In this case, the LCM is: 2^2 * 3^2 * 5 = 4 * 9 * 5 = 180.

Thus, the answer is that the smallest square number divisible by 2, 4, 5, 6, and 9 is 180.

Learn more about Smallest Square Number: brainly.com/question/17026011

#SPJ11

Find dy for the equation below. dt 7x3 - 4xy + y4 = 1 Answer Keypad Keyboard Shortcuts dy dt =

Answers

This is the expression for dy/dt in terms of x, y, and dx/dt. Please note that in order to evaluate dy/dt for specific values of x, y, and dx/dt, you will need to substitute the corresponding values into the equation.

To find dy/dt for the equation 7x^3 - 4xy + y^4 = 1, we need to differentiate both sides of the equation with respect to t.

Differentiating the equation implicitly, we have:

d/dt (7x^3 - 4xy + y^4) = d/dt(1)

Using the chain rule, the derivative of each term can be calculated as follows:

d/dt (7x^3) = d(7x^3)/dx * dx/dt = 21x^2 * dx/dt

d/dt (-4xy) = d(-4xy)/dx * dx/dt + d(-4xy)/dy * dy/dt = -4y * dx/dt - 4x * dy/dt

d/dt (y^4) = d(y^4)/dy * dy/dt = 4y^3 * dy/dt

The derivative of a constant is zero, so d/dt (1) = 0.

Putting all the terms together, we get:

21x^2 * dx/dt - 4y * dx/dt - 4x * dy/dt + 4y^3 * dy/dt = 0

Rearranging the terms, we can isolate dy/dt:

dy/dt = (21x^2 * dx/dt - 4y * dx/dt) / (4x - 4y^3)

Learn more about dy/dt  here:

https://brainly.com/question/32619665

#SPJ11

Find the area of each triangle. Round your answers to the nearest tenth.

Answers

The area of each triangle is: 7554.04 m² and 311.26 km².

Here, we have,

from the given figure,

we get,

triangle 1:

a = 104m

b = 226 m

angle Ф= 40 degrees

so, we have,

area = a×b×sinФ/2

        = 104×226×sin40/2

        = 7554.04 m²

triangle 2:

a = 34 km

b = 39 km

angle Ф= 28 degrees

so, we have,

area = a×b×sinФ/2

        = 34×39×sin28/2

        = 311.26 km²

Hence, the area of each triangle is: 7554.04 m² and 311.26 km².

To learn more on Area click:

brainly.com/question/20693059

#SPJ1

A function is of the form y = sin(kx), where x is in units of radians. If the period of the function
is 70 radians, what is the value of k

Answers

The period of a sine function is given by the formula: Period = 2π / |k| where k is the coefficient of x in the function. In this case, we are given that the period is 70 radians.

Plugging this value into the formula, we have: 70 = 2π / |k|

To solve for k, we can rearrange the equation as follows: |k| = 2π / 70

|k| = π / 35

Since k represents the coefficient of x, which determines the rate at which the function oscillates, we are only interested in the positive value of k. Therefore: k = π / 35.  So, the value of k is π / 35.

To Learn more about sine function click here : brainly.com/question/32247762

#SPJ11


answer all please
Consider the following. f(x) = x5 - x3 + 6, -15xs1 (a) Use a graph to find the absolute maximum and minimum values of the function to two maximum 6.19 minimum 5.81 (b) Use calculus to find the exact m

Answers

(a) By graphing the function f(x) = x^5 - x^3 + 6 over a suitable range, we can determine its absolute maximum and minimum values. The graph reveals that the absolute maximum occurs at approximately x = 1.684 with a value of f(1.684) ≈ 6.19, while the absolute minimum occurs at approximately x = -1.684 with a value of f(-1.684) ≈ 5.81.

(b) To find the exact maximum and minimum values of the function f(x) = x^5 - x^3 + 6, we can use calculus. First, we find the critical points by taking the derivative of f(x) with respect to x and setting it equal to zero. Differentiating, we obtain f'(x) = 5x^4 - 3x^2. Setting this equal to zero, we have 5x^4 - 3x^2 = 0. Factoring out x^2, we get x^2(5x^2 - 3) = 0, which gives us two critical points: x = 0 and x = ±√(3/5).

Next, we evaluate the function at the critical points and the endpoints of the given interval. We find that f(0) = 6 and f(±√(3/5)) = 6 - 2(3/5) + 6 = 5.4. Comparing these values, we see that f(0) = 6 is the absolute maximum, and f(±√(3/5)) = 5.4 is the absolute minimum.

The exact maximum value of the function f(x) = x^5 - x^3 + 6 occurs at x = 0 with a value of 6, while the exact minimum value occurs at x = ±√(3/5) with a value of 5.4. These values are obtained by taking the derivative of the function, finding the critical points, and evaluating the function at those points and the endpoints of the given interval.

Learn more about absolute maximum value here: brainly.com/question/31584546

#SPJ11

1 pts The total spent on research and development by the federal government in the U.S. during 1995-2007 can be approximated by S (t) = 57.5 . Int + 31 billion dollars (5 51317) where is the time in years from the start of 1990. What is the total spent in 1998, in billion dollars? (Do not use a dollar sign with your answer below and round value to 1-decimal place). Question 8 1 pts Continuing with the previous question, how fast was the total increasing in 1998, in billion dollars per year? Round answer to 1-decimal place.

Answers

The rate of increase in the total spending on research and development in 1998 is 0 billion dollars per year.

To find the total amount spent on research and development in 1998, we need to substitute the value of t = 1998 - 1990 = 8 into the equation:

S(t) = 57.5 ∫ t + 31 billion dollars (5t³ - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (5(8)³ - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (256 - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (243)

S(8) = 57.5 * (8 + 31) * 243 billion dollars

S(8) ≈ 57.5 * 39 * 243 billion dollars

S(8) ≈ 554,972.5 billion dollars

Rounding to 1 decimal place, the total spent in 1998 is approximately 555.0 billion dollars.

Now, to find how fast the total was increasing in 1998, we need to find the derivative of the function S(t) with respect to t and substitute t = 8:

S'(t) = 57.5 (5t³ - 13)'

S'(8) = 57.5 (5(8)³ - 13)'

S'(8) = 57.5 (256 - 13)'

S'(8) = 57.5 (243)'

S'(8) = 57.5 * 0

S'(8) = 0

Learn more about   development here:

https://brainly.com/question/32180006

#SPJ11

Which of the following sets are closed in ℝ ?
a) The interval (a,b] with a b) [2,3]∩[5,6]
c) The point x=1

Answers

The interval (a, b] is not closed in R while the interval [2,3]∩[5,6] is R and the point x = 1 is closed in R.

In the set of real numbers, R, the set that is closed means that its complement is open.

Now let's find out which of the following sets are closed in R.

(a) The interval (a, b] with a < b is not closed in R, since its complement, (-∞, a] ∪ (b, ∞), is not open in R.

Therefore, (a, b] is not closed in R.

(b) The set [2, 3] ∩ [5, 6] is closed in R since its complement is open in R, that is, (-∞, 2) ∪ (3, 5) ∪ (6, ∞).

(c) The point x = 1 is closed in R since its complement, (-∞, 1) ∪ (1, ∞), is open in R.

Therefore, (b) and (c) are the sets that are closed in R.

To learn more about interval click here https://brainly.com/question/29126055

#SPJ11

f(x) dx = 5 2 f²f(x) dx = -3 Suppose: g(x) dx = -1 [*9(x) dx [*g(x) dx = 2 Determine: [*(4F(X) 4f(x) - 3g(x))dx

Answers

The value of the integral [*(4F(X) 4f(x) - 3g(x))dx is 6.

Given, f(x) dx = 5 and 2 f²f(x) dx = -3, we can solve for f(x) and get f(x) = -1/2. Similarly, we are given g(x) dx = -1 and [*9(x) dx [*g(x) dx = 2, which gives us 9g(x) = -2. Solving for g(x), we get g(x) = -2/9.  

Now, we can substitute the values of f(x) and g(x) in the integral [*(4F(X) 4f(x) - 3g(x))dx to get [*(4F(X) 4(-1/2) - 3(-2/9))dx. Simplifying this, we get [*(4F(X) + 8/3)dx.

Further, using the given integral f(x) dx = 5, we can find F(x) by integrating both sides with respect to x. Thus, F(x) = 5x + C, where C is the constant of integration.

Substituting the value of F(x) in the integral [*(4F(X) + 8/3)dx, we get [*(4(5x + C) + 8/3)dx = [*(20x + 4 + 8/3)dx = [*(20x + 20/3)dx.

Integrating this, we get the value of the integral as 10x^2 + (20/3)x + K, where K is the constant of integration.

Since we don't have any boundary conditions or limits of integration given, we can't find the exact value of K. However, we do know that [*9(x) dx [*g(x) dx = 2, which means the integral [*(4F(X) 4f(x) - 3g(x))dx evaluates to 2.

Therefore, 10x^2 + (20/3)x + K = 2. Solving for K, we get K = -20/3. Substituting this value, we can finally conclude that the value of the integral [*(4F(X) 4f(x) - 3g(x))dx is 6.

Learn more about integral  here.

https://brainly.com/questions/31059545

#SPJ11

Set up the integral that would determine the volume of revolution from revolving the region enclosed by y = x2(3-X) and the x-axis about the y-axis

Answers

The integral that would determine the volume of revolution from revolving the region enclosed by y = x2(3-X) and the x-axis about the y-axis is V = ∫[0,3] (π*y/3) dy.

To set up the integral for the volume of revolution about the y-axis, we will use the disk method. First, we need to express x in terms of y: x = sqrt(y/3).

The volume of a disk is given by V = πr²h, where r is the radius and h is the thickness. In this case, the radius is x, and the thickness is dx.

Now, we can set up the integral for the volume of revolution:

V = ∫[0,3] π*(sqrt(y/3))² dy

Simplify the equation:

V = ∫[0,3] (π*y/3) dy

More on integral: https://brainly.com/question/31744185

#SPJ11

evaluate the given integral by changing to polar coordinates. r (5x − y) da, where r is the region in the first quadrant enclosed by the circle x2 y2 = 4 and the lines x = 0 and y = x

Answers

the value of the given integral using polar coordinates is 2 sqrt(2) - 3/2.

To evaluate the integral ∬ r (5x − y) da using polar coordinates, we need to express the integral in terms of polar variables.

First, let's define the region r in the first quadrant enclosed by the circle x^2 + y^2 = 4, the line x = 0, and the line y = x.

In polar coordinates, we have x = r cosθ and y = r sinθ, where r represents the radius and θ represents the angle.

The circle x^2 + y^2 = 4 can be expressed in polar form as r^2 = 4, or simply r = 2.

The line x = 0 corresponds to θ = π/2 since it lies along the y-axis.

The line y = x can be expressed as r sinθ = r cosθ, which simplifies to θ = π/4.

Now, let's express the given integral in polar form:

∬ r (5x − y) da = ∫∫ r (5r cosθ − r sinθ) r dr dθ

The region of integration for r is from 0 to 2 (the radius of the circle), and for θ, it is from 0 to π/4 (the angle formed by the line y = x).

Now we can evaluate the integral:

∬ r (5x − y) da = ∫[0, π/4] ∫[0, 2] r^2 (5 cosθ − sinθ) dr dθ

Evaluating the inner integral with respect to r, we get:

∫[0, π/4] (5/3 cosθ − 1/2 sinθ) dθ

Now we can evaluate the remaining integral with respect to θ:

∫[0, π/4] (5/3 cosθ − 1/2 sinθ) dθ = [5/3 sinθ + 1/2 cosθ] [0, π/4]

Plugging in the limits of integration, we have:

[5/3 sin(π/4) + 1/2 cos(π/4)] - [5/3 sin(0) + 1/2 cos(0)]

Simplifying the trigonometric terms, we get:

[5/3 (sqrt(2)/2) + 1/2 (sqrt(2)/2)] - [0 + 1/2]

Finally, simplifying further, we obtain the result:

= [5/3 sqrt(2)/2 + sqrt(2)/4] - 1/2

= (10/6 sqrt(2) + 2/4 sqrt(2) - 3/6) - 1/2

= (20/12 sqrt(2) + 4/12 sqrt(2) - 9/12) - 1/2

= (24/12 sqrt(2) - 9/12) - 1/2

= 2 sqrt(2) - 3/2

to know more about variable visit:

brainly.com/question/16906863

#SPJ11

Other Questions
(09.01 LC)What is the relationship between the circumference C of the circle in which the degree measure A of a central angle of a circle intercepts an arclength s of the arc?A)C=360(s)(A)B)C=360 degrees s over AC)C=360 degrees(s+A)D)C = 360A over s Given sec(0) = -4 and tan(0) > 0, draw a sketch of and then determine the value of cos () You may need to refer to the resource sheet. (6 pts) Solve the following equation, which is quadratic in form, on the interval 0 SO principles of management related to the delivery of services are: group of answer choices networking to develop a human service unbrella forming teams and partnerships to provide services case management to facilitate client growth all of the above How much should Alfonso invest today in order to withdraw $16613.46 in exactly 3 7 years from now if interest rate is 2.8 % compounded quarterly? What is the difference between Eastern Cults and Religious Cults? What is the concordance rate of homosexuality in fraternal twins? a. 50% b. 20% c. 60% d. 30% True or False:In a right triangle, if two acute angles are known, then the triangle can be solved.A. False, because the missing side can be found using the Pythagorean Theorem, but the angles cannot be found.B. True, because the missing side can be found using the complementary angle theorem.C. False, because solving a right triangle requires knowing one of the acute angles A or B and a side, or else two sides.D. True, because the missing side can be found using the Pythagorean Theorem and all the angles can be found using trigonometric functions. 9. Derive the formula length of the (2D) graph of the function y = f(x) (a x b), where f: [a, b] R is aC' function.10. Using the result of the previous problem, prove that the line segment is the shortest path among all smooth paths that connect two distinct points in the plane. (Hint: Start by arguing that we may assume that the two points are (0,0) and (a, 0), where a > 0.) let y denote the amount in gallons of gas stocked by a service station at the beginning of a week. suppose that y has a uniform distribution over the interval [10, 000, 20, 000]. suppose the amount x of gas sold during a week has a uniform distribution over the interval [10, 000, y ]. what is the variance of x How many times bigger is 12^8 than 12^5 During the Great Recession, the U.S. aggregate demand curve shifted to the left, in part, because:a. the stock market declined in value by one-third.b. there was a decline in the U.S. population.c. there was an increase in expected income.d. there was an increase in housing prices. True/false; like neurons epithelial cells are irreplaceable once damaged What is least likely to be considered a part of the context that a speaker mustconsider before giving a speech about climate change?OA. The specific concerns of the audienceOB. The amount of research the speaker has doneOC. The knowledge level of the audienceOD. The quality of the speaker's ideasSUBMIT Absolute value of the quantity one fifth times x plus 2 end quantity minus 6 equals two.x = 50 and x = 30x = 30 and x = 50x = 20 and x = 50x = 30 and x = 10 Respond to the following prompt in one to two paragraphs.Choose a sentence or short section from the article embedded in your webtext reading about Irish immigration. Copy and paste the sentence or section into your discussion post. Along with this sentence or section, briefly explain how your choice illustrates the concept of change over time.You should also answer the following questions in your post:How does this article give you a better understanding of the changing perception of Irish immigrants in America?What forces allowed the Irish to be assimilated into U.S. culture despite initial resistance? 2. For the vectors = (-1,2) and 5 = (3,4) determine the following: a) the angle between these two vectors, to the nearest degree. b) the scalar projection of on D. a vial of ketamine is expired and can no longer be used on live animals. what method should be used for proper disposal? A ________ is a legal document granting a person the power to make specific decisions for you in the event that you are incapable.A) letter of instructionB) power of attorneyC) willD) trust What is the duration of the following bond: $1,000 par value, 8%annual coupon, 5 years to maturity, and yield to maturity of5.5%? Which of the following government regulations mandates that almost every company in the U.S. must take specific actions to protect privacy or face fines for failure to comply? (Check all that apply.)A.COSOB.GAPPC.GDPRD.CCPA Steam Workshop Downloader