please solve part a through e
2) Elasticity of Demand: Consider the demand function: x = D(p) = 120 - 10p a) Find the equation for elasticity (p) =-POP) (4pts). D(P) D(P) = 120-10p 120-10p=0 120 = 10p D'(p) = -10 p=12 Elp) - 12-10

Answers

Answer 1

a. The derivative of D(p) with respect to p is -10

b.  The value of p when D'(p) = -10 is 1

c. The corresponding quantity x is 110

d. The equation for elasticity is E(p) = -11.

To find the equation for elasticity, we need to calculate the derivative of the demand function, D(p), with respect to p. Let's go through the steps:

D(p) = 120 - 10p

a) Find the derivative of D(p) with respect to p:

D'(p) = -10

b) Find the value of p when D'(p) = -10:

D'(p) = -10

-10 = -10p

p = 1

c) Plug the value of p into the demand function D(p) to find the corresponding quantity x:

D(p) = 120 - 10p

D(1) = 120 - 10(1)

D(1) = 110

So, when the price is $1, the quantity demanded is 110.

d) Substitute the values of D(1), D'(1), and p = 1 into the elasticity equation:

E(p) = D(p) * p / D'(p)

E(1) = D(1) * 1 / D'(1)

E(1) = 110 * 1 / -10

E(1) = -11

Therefore, the equation for elasticity is E(p) = -11.

To know more about demand here

brainly.com/question/1245771

#SPJ11


Related Questions

NEED HELP PLS


Which system is represented in the graph?
y < x2 – 6x – 7

y > x – 3

y < x2 – 6x – 7

y ≤ x – 3

y ≥ x2 – 6x – 7

y ≤ x – 3

y > x2 – 6x – 7

y ≤ x – 3

Answers

The required system that is represented in the graph is

y < [tex]x^{2}[/tex] – 6x – 7 and y ≤ x – 3.

To find the system that represented in the graph by considering the point in the shaded region, check with all the linear inequality.

Consider point P1(9, 4) in the shaded region. Check whether P1 satisfies which system of equation.

1.  y < [tex]x^{2}[/tex] – 6x – 7 and y > x – 3

Substitute the x = 9 and y = 4 and check it.

y < [tex]x^{2}[/tex] – 6x – 7

4 < [tex]9^{2}[/tex] – 6 × 9 – 7.

4 < 81 - 54 - 7.

4 < 20.

y > x – 3

4 > 9 – 3

4 not > 5

This system does not satisfy the graph.

2.  y < [tex]x^{2}[/tex] – 6x – 7 and y  ≤  x – 3

Substitute the x = 9 and y = 4 and check it.

y < [tex]x^{2}[/tex] – 6x – 7

4 < [tex]9^{2}[/tex] – 6 × 9 – 7.

4 < 81 - 54 - 7.

4 < 20.

y ≤  x – 3

4 ≤  9 – 3

4 ≤   5

This system satisfy the graph.

3.  y ≥  [tex]x^{2}[/tex] – 6x – 7 and y  ≤  x – 3

Substitute the x = 9 and y = 4 and check it.

y ≥  [tex]x^{2}[/tex] – 6x – 7

4 ≥  [tex]9^{2}[/tex] – 6 × 9 – 7.

4 ≥  81 - 54 - 7.

4 not ≥  20.

y ≤  x – 3

4 ≤  9 – 3

4 ≤   5

This system does not satisfy the graph.

4. y >  [tex]x^{2}[/tex] – 6x – 7 and y  ≤  x – 3

Substitute the x = 9 and y = 4 and check it.

y >  [tex]x^{2}[/tex] – 6x – 7

4 >  [tex]9^{2}[/tex] – 6 × 9 – 7.

4 >  81 - 54 - 7.

4 not >  20.

y ≤  x – 3

4 ≤  9 – 3

4 ≤   5

This system does not satisfy the graph.

Hence, the required system that is represented in the graph is

y < [tex]x^{2}[/tex] – 6x – 7 and y ≤ x – 3.

Learn more about graph click here:

https://brainly.com/question/32429136

#SPJ1

Find the limit if it exists. lim (7x+3) X-6 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. OA. lim (7x + 3) = (Simplify your answer.)

Answers

The limit of (7x + 3) as x approaches 6 is 45.

How to find the limit if it exists. lim (7x+3) X-6

To find the limit of (7x + 3) as x approaches 6, we can substitute the value 6 into the expression:

lim (7x + 3) as x approaches 6 = 7(6) + 3 = 42 + 3 = 45.

Therefore, the limit of (7x + 3) as x approaches 6 is 45.

The correct choice is:

OA. lim (7x + 3) = 45

Learn more about limit at https://brainly.com/question/30339394

#SPJ1

8. Find general solution y = Yc + Yp of y" – 4y' + 3y = 3x – 1

Answers

The general solution of the differential equation y" - 4y' + 3y = 3x - 1 is y = C1 * e^x + C2 * e^(3x) + x + 1, where C1 and C2 are arbitrary constants.

To find the general solution of the given differential equation y" - 4y' + 3y = 3x - 1, we first need to find the complementary solution (Yc) and the particular solution (Yp).

We solve the associated homogeneous equation y" - 4y' + 3y = 0.

The characteristic equation is obtained by assuming the solution is of the form y = e^(rx):

r^2 - 4r + 3 = 0

Factoring the quadratic equation:

(r - 1)(r - 3) = 0

Solving for the roots:

r1 = 1, r2 = 3

The complementary solution is given by:

Yc = C1 * e^(r1x) + C2 * e^(r2x)

Yc = C1 * e^x + C2 * e^(3x)

To find the particular solution, we assume a particular form of y in the form Yp = Ax + B (since the right-hand side is a linear function).

Taking the derivatives:

Yp' = A

Yp" = 0

Substituting into the original differential equation:

0 - 4(A) + 3(Ax + B) = 3x - 1

Simplifying:

3Ax + 3B - 4A = 3x - 1

Comparing coefficients, we have:

3A = 3 => A = 1

3B - 4A = -1 => 3B - 4 = -1 => 3B = 3 => B = 1

The particular solution is given by:

Yp = x + 1

The general solution is the sum of the complementary and particular solutions:

y = Yc + Yp

y = C1 * e^x + C2 * e^(3x) + x + 1

Therefore, the general solution of the differential equation y" - 4y' + 3y = 3x - 1 is y = C1 * e^x + C2 * e^(3x) + x + 1, where C1 and C2 are arbitrary constants.

Learn more about general solution at https://brainly.com/question/31405538

#SPJ11

Find the accumulated present value of the following continuous income stream at rate R(t), for the given time T and interest rate k, compounded continuously. R(t)= 0.02t + 500, T=10, k = 5% The accumulated present value is $ (Do not round until the final answer. Then round to the nearest cent as needed.)

Answers

The accumulated present value is approximately $121302.

The income stream function is R(t) = 0.02t + 500.

The time period is T = 10.

The interest rate is k = 5%.

The accumulated present value is given by the integral of R(t) * e^(-kt) with respect to t over the interval [0, T]:

A = ∫(0.02t + 500) * e(-0.05t) dt

Using integration techniques, we find the antiderivative and evaluate the integral:

A = [(0.02/(-0.05))t - 500/(-0.05) * e(-0.05t)] evaluated from 0 to 10

A = [(0.02/(-0.05)) * 10 - 500/(-0.05) * e-0.05 * 10)] - [(0.02/(-0.05)) * 0 - 500/(-0.05) * e-0.05 * 0)]

Simplifying further:

A = (-0.4) * 10 + 10000/0.05 * e-0.5) - 0

A = -4 + 200000 * e(-0.5)

Using a calculator to evaluate e(-0.5) and rounding to the nearest cent:

A ≈ -4 + 200000 * 0.60653

A ≈ -4 + 121306

A ≈ 121302.

learn more about accumulated present value here:

https://brainly.com/question/32493147

#SPJ4

Find a parametrization for the curve. The lower half of the parabola x - 6 =y? Choose the correct answer below. O A. x=ť + 6, y=t, t20 OB. x=t, y=t? -6, ts6 . OC. x=t, y={-6,150 OD. x=t, y=[ +6, t26 O E. x=+ + 6, y=t, ts0 OF. x={2-6, y=t, ts 6

Answers

The detailed parametrisation for the lower half of the parabola x - 6 = y is:

x = t + 6

y = t

with the constraint t ≤ 0.

To parametrise the lower half of the parabola given by x - 6 = y, we need to express both the x-coordinate and y-coordinate in terms of a parameter t.

We start with the equation of the parabola: x - 6 = y.

To parametrise the curve, we can let t represent the y-coordinate. Then, the x-coordinate can be expressed as t + 6, as it is equal to y plus 6.

So, we have:

x = t + 6

y = t

This parametrization represents the lower half of the parabola, where the y-coordinate is equal to t and the x-coordinate is equal to t + 6.

However, to ensure that the parametrization covers the lower half of the parabola, we need to specify the range of t.

Since we are interested in the lower half of the parabola, the y-values should be less than or equal to 0. Therefore, we restrict the parameter t to be less than or equal to 0.

Hence, the detailed parametrisation for the lower half of the parabola x - 6 = y is:

x = t + 6

y = t

with the constraint t ≤ 0.

Learn more about parabola here, https://brainly.com/question/4061870

#SPJ11

in the sample size formula for a mean, the s stands for: a. sample size. b. standard error. c. sample estimate. d. variability.

Answers

The Correct option for this is  b: standard error.


- The sample size formula for a mean is given as n = (zα/2 * s / E)^2.
- Here, s represents the standard error of the mean, which is the standard deviation of the sample mean distribution.
- The standard error reflects the variability of the sample means around the true population mean.
- It is not the same as the sample size, which represents the number of observations in the sample.
- It is also not the same as the sample estimate, which is the calculated value of the sample mean.
- Similarly, it is not the same as variability, which can refer to the spread of data or the variance of the population.

Therefore,The Correct option for this is  b: standard error.


In summary, the s in the sample size formula for a mean stands for standard error, which is a measure of the variability of sample means around the population mean.

To know more about standard error. visit:

brainly.com/question/13179711

#SPJ11

The correct answer is d. variability.

In the sample size formula for a mean, the letter "s" represents variability. Variability refers to the extent to which data points in a sample differ from each other and from the mean. It is an important factor to consider when determining the appropriate sample size for a study.

When calculating the sample size needed to estimate a population mean, researchers often use the formula:

n = (Z * σ / E)²

Where:

- n represents the required sample size

- Z is the z-score corresponding to the desired level of confidence (e.g., 1.96 for a 95% confidence level)

- σ is the standard deviation of the population

- E is the desired margin of error

In this formula, the standard deviation (σ) represents the measure of variability in the population. It indicates how spread out or clustered the data points are around the mean. By incorporating variability into the sample size calculation, researchers can ensure that their sample adequately represents the population and provides accurate estimates of the mean.

It is worth noting that in practice, researchers often do not have access to the true population standard deviation (σ). In such cases, they may estimate it using preliminary data or historical information. This estimated standard deviation is denoted as s, which stands for sample standard deviation. However, in the context of calculating sample size, s does not represent sample size but rather an estimate of population variability.

To summarize, in the sample size formula for a mean, "s" stands for variability, specifically representing either the true population standard deviation (σ) or an estimated value of it (s).

Learn more about the topic of Sample size formula for a mean here:

brainly.com/question/32497419

#SPJ11

80 points possible 2/8 answered Question 1 Evaluate SII 1 dV, where E lies between the spheres x² + y2 + 22 x2 + y2 + z2 81 in the first octant. 2 = 25 and x² + y² + z² Add Work Submit Question

Answers

The surface integral S over the region E, which lies between the two spheres x² + y² + z² = 25 and x² + y² + z² = 81 in the first octant, is equal to zero.

To evaluate the surface integral S, we need to calculate the outward flux of the vector field F across the closed surface that encloses the region E.

The region E lies between two spheres. Let's consider the spheres:

1. Outer Sphere: x² + y² + z² = 81

2. Inner Sphere: x² + y² + z² = 25

In the first octant, the values of x, y, and z are all positive.

To evaluate the surface integral, we'll use the divergence theorem, which relates the flux of a vector field across a closed surface to the divergence of the field within the region enclosed by the surface.

Let's denote the vector field as F = (F₁, F₂, F₃) = (x², y², z²).

According to the divergence theorem, the surface integral S is equal to the triple integral of the divergence of F over the region E:

S = ∭E (div F) dV

To calculate the divergence of F, we need to find the partial derivatives of F₁, F₂, and F₃ with respect to their corresponding variables (x, y, and z) and then add them up:

div F = ∂F₁/∂x + ∂F₂/∂y + ∂F₃/∂z

= 2x + 2y + 2z

Now, we need to find the limits of integration for the triple integral.

Since E lies between the two spheres, we can determine the bounds by finding the intersection points of the two spheres.

For the inner sphere: x² + y² + z² = 25

For the outer sphere: x² + y² + z² = 81

Setting these equations equal to each other, we have:

25 = 81

This equation does not hold, indicating that the two spheres do not intersect within the first octant.

Therefore, the region E is empty, and the surface integral S over E is zero.

To know more about surface integral refer here:

https://brainly.com/question/32517782#

#SPJ11

Given that z = x + iy is a complex number, solve each of the following for X and y. a) Z-i = (2-5z). I b) iz = (5 - 31)/(4-3i).

Answers

The solution for x and y in the equation z - i = 2 - 5z is x = 1/3 and y = 1/6.

a) to solve the equation z - i = 2 - 5z, let's equate the real and imaginary parts separately.

the real parts are x - 0 = 2 - 5x, which simplifies to 6x = 2. solving for x, we have x = 1/3.

now, considering the imaginary parts, y - 1 = -5y. simplifying this equation, we get 6y = 1, and solving for y, we have y = 1/6. b) let's solve the equation iz = (5 - 31)/(4 - 3i) by first multiplying both sides by (4 - 3i):

iz(4 - 3i) = (5 - 31)/(4 - 3i) * (4 - 3i).

expanding the left side using the properties of complex numbers, we have:

4iz - 3i²z = (5 - 31)(4 - 3i)/(4 - 3i).

since i² equals -1, the equation simplifies to:

4iz + 3z = (-26)(4 - 3i)/(4 - 3i).

now, multiplying both sides by (4 - 3i) to eliminate the denominator, we get:

(4iz + 3z)(4 - 3i) = -26.

expanding and rearranging terms, we have:

16iz - 12i²z + 12z - 9iz² = -26.

since i² equals -1, this becomes:

16iz + 12z + 9z² = -26.

now, we can equate the real and imaginary parts separately:

real part: 9z² + 12z = -26.imaginary part: 16z = 0.

from the imaginary part, we get z = 0.

substituting z = 0 into the real part equation, we have 0 + 0 = -26, which is not true.

Learn more about denominator here:

https://brainly.com/question/15007690

#SPJ11

A bacteria culture starts with 500 bacteria and doubles in size
every half hour:
(a) How many bacteria are there after 4 hours? 128,000
(b) How many bacteria are there, after t hours? y = 500
x 4t
(c)

Answers

(a) After 3 hours, the number of bacteria can be calculated by doubling the initial population every half hour for 6 intervals (since 3 hours is equivalent to 6 half-hour intervals).

Starting with 500 bacteria, the population doubles every half hour. So after 1 half hour, there are 500 * 2 = 1000 bacteria. After 2 half hours, there are 1000 * 2 = 2000 bacteria. Continuing this pattern, after 6 half hours, there will be 2000 * 2 = 4000 bacteria.

Therefore, after 3 hours, there will be 4000 bacteria.

(b) After t hours, the number of bacteria can be calculated by doubling the initial population every half hour for 2t intervals.

So, after t hours, there will be 500 * 2^(2t) bacteria.

(c) After 40 minutes, which is equivalent to 40/60 = 2/3 hours, the number of bacteria can be calculated using the formula from part (b).

So, after 40 minutes, there will be 500 * 2^(2/3) bacteria.

(d) The population function is given by P(t) = 500 * 2^(2t), where P(t) represents the population after t hours.

To estimate the time for the population to reach 100,000, we need to solve the equation 100,000 = 500 * 2^(2t) for t. Taking the logarithm of both sides, we have:

log(2^(2t)) = log(100,000/500)

2t * log(2) = log(200)

2t = log(200) / log(2)

t = (log(200) / log(2)) / 2

Evaluating this expression, we find that t ≈ 6.64 hours.

Therefore, the estimated time for the population to reach 100,000 bacteria is approximately 6.64 hours.

To learn more about intervals click here:

brainly.com/question/11051767

#SPJ11

Question- A bacteria culture starts with 500 bacteria and doubles size every half hour.

(a) How many bacteria are there after 3 hours?

(b) How many bacteria are there after t hours?

(c) How many bacteria are there after 40 minutes?

(d) Graph the population function and estimate the time for the population to reach 100,000.      

Determine the interval(s) where f(x) = is decreasing. 0 (0, 3) and (6,00) 0 (-00, 0) and (6.0) 0 (0.6) 0 (0, 3) and (3, 6)

Answers

To determine the interval(s) where the function f(x) is decreasing, we need to analyze the sign of the derivative of f(x) in different intervals.

Let's denote the derivative of f(x) as f'(x).

From the given information, the intervals where f(x) is defined as decreasing are:

(0, 3) and (6, ∞)

In these intervals, the derivative f'(x) is negative, indicating a decreasing trend in the function f(x).

To confirm this, we would need more information about the actual function f(x) to analyze its derivative.

Learn more about intervals here:

https://brainly.com/question/32451137

#SPJ11

f(x) = x² / (x-3) is decreasing on the intervals (0, 3) and (3, 6).

To determine the intervals where the function f(x) = x² / (x-3) is decreasing, we need to find where its derivative is negative.

Let's find the derivative of f(x) first.

Using the quotient rule, the derivative of f(x) is:

f'(x) = [(x-3)(2x) - x²(1)] / (x-3)²

= (2x² - 6x - x²) / (x-3)²

= (x² - 6x) / (x-3)²

To determine where f(x) is decreasing, we need to find the intervals where f'(x) < 0.

First, let's find the critical point by setting the numerator equal to zero:

x² - 6x = 0

x(x - 6) = 0

This equation gives us two solutions: x = 0 and x = 6.

Now, we can test the intervals around the critical points and see where f'(x) < 0.

For x < 0, we can choose x = -1 as a test point.

Plugging x = -1 into f'(x), we get:

f'(-1) = (-1² - 6(-1)) / (-1-3)²

= (-1 + 6) / (-4)²

= (5) / 16

Since f'(-1) is positive, f(x) is increasing for x < 0.

For 0 < x < 3, we can choose x = 1 as a test point.

Plugging x = 1 into f'(x), we get:

f'(1) = (1² - 6(1)) / (1-3)²

= (1 - 6) / (-2)²

= (-5) / 4

Since f'(1) is negative, f(x) is decreasing for 0 < x < 3.

For 3 < x < 6, we can choose x = 4 as a test point.

Plugging x = 4 into f'(x), we get:

f'(4) = (4² - 6(4)) / (4-3)²

= (16 - 24) / 1²

= (-8) / 1

= -8

Since f'(4) is negative, f(x) is decreasing for 3 < x < 6.

For x > 6, we can choose x = 7 as a test point.

Plugging x = 7 into f'(x), we get:

f'(7) = (7² - 6(7)) / (7-3)²

= (49 - 42) / 4²

= (7) / 16

Since f'(7) is positive, f(x) is increasing for x > 6.

Based on the above analysis, we can conclude that f(x) = x² / (x-3) is decreasing on the intervals (0, 3) and (3, 6).

Learn more about function click;

https://brainly.com/question/31062578

#SPJ4

A sample of size n=82 is drawn from a normal population whose standard deviation is o=8.3. The sample mean is x = 35.29. Part 1 of 2 (a) Construct a 99.5% confidence interval for H. Round the answer t

Answers

The 99.5% confidence interval for the population mean is approximately (32.223, 38.357).

Sample size, n = 82

Standard deviation, o = 8.3

Sample mean, x = 35.29

Confidence level, C = 99.5%

Constructing the confidence interval: For n = 82 and C = 99.5%, the degree of freedom can be found using the formula, n - 1 = 82 - 1 = 81

Using t-distribution table, for a two-tailed test and a 99.5% confidence level, the critical values are given as 2.8197 and -2.8197 respectively.

Then the confidence interval is calculated as follows:

The formula for Confidence interval = x ± tα/2 * σ/√n

Where x = 35.29, σ = 8.3, tα/2 = 2.8197 and n = 82

Substituting the values, Confidence interval = 35.29 ± 2.8197 * 8.3/√82

Confidence interval = 35.29 ± 3.067 [Round off to three decimal places]

Therefore, the confidence interval is (32.223, 38.357)

The standard deviation is a measure of the amount of variability in a set of data.

To learn more about Standard deviation click here https://brainly.com/question/13498201

#SPJ11

Use the definition of Taylor series to find the first three nonzero terms of the Taylor series (centered at c) for the function f. f(x)=4tan(x), c=8π

Answers

[tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

What is the trigonometric ratio?

the trigonometric functions are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others.

To find the first three nonzero terms of the Taylor series for the function f(x) = 4tan(x) centered at c = 8π, we can use the definition of the Taylor series expansion.

The general formula for the Taylor series expansion of a function f(x) centered at c is:

[tex]f(x) = f(c) + f'(c)(x - c)/1! + f''(c)(x - c)^2/2! + f'''(c)(x - c)^3/3! + ...[/tex]

Let's begin by calculating the first three nonzero terms for the given function.

Step 1: Evaluate f(c):

f(8π) = 4tan(8π)

Step 2: Calculate f'(x):

f'(x) = d/dx(4tan(x))

= 4sec²(x)

Step 3: Evaluate f'(c):

f'(8π) = 4sec²(8π)

Step 4: Calculate f''(x):

f''(x) = d/dx(4sec²(x))

= 8sec²(x)tan(x)

Step 5: Evaluate f''(c):

f''(8π) = 8sec²(8π)tan(8π)

Step 6: Calculate f'''(x):

f'''(x) = d/dx(8sec²(x)tan(x))

= 8sec⁴(x) + 16sec²(x)tan²(x)

Step 7: Evaluate f'''(c):

f'''(8π) = 8sec⁴(8π) + 16sec²(8π)tan²(8π)

Now we can write the first three nonzero terms of the Taylor series expansion for f(x) centered at c = 8π:

f(x) ≈ f(8π) + f'(8π)(x - 8π)/1! + f''(8π)(x - 8π)²/2!

Simplifying further,

Hence, [tex]f(x) = 4tan(8\pi) + 4sec^2(8\pi)(x - 8\pi) + 8sec^2(8\pi)tan(8\pi)(x - 8\pi)^2/2![/tex]

This expression represents the first three nonzero terms of the Taylor series expansion for f(x) = 4tan(x) centered at c = 8π.

To learn more about the trigonometric ratio visit:

https://brainly.com/question/13729598

#SPJ4

10.5
8
Find x' for x(t) defined implicitly by x + x + t - 3 = 0 and then evaluate x' at the point (-1,1). X(-1,1)= (Simplify your answer.)

Answers

x' evaluated at the point (-1,1) is equal to 3/5.

To find x' for x(t) defined implicitly by the equation x⁴ + t⁴x + t - 3 = 0, we can differentiate both sides of the equation with respect to t using implicit differentiation.

Differentiating x⁴ + t⁴x + t - 3 with respect to t:

4x³ * dx/dt + t⁴ * dx/dt + 4t³x + 1 = 0

Rearranging the terms:

dx/dt (4x³ + t⁴) = -4t³x - 1

Now we can solve for dx/dt (x'):

dx/dt = (-4t³x - 1) / (4x³ + t⁴)

To evaluate x' at the point (-1,1), we substitute t = -1 and x = 1 into the expression for dx/dt:

x' = (-4*(-1)³*1 - 1) / (4*1³ + (-1)⁴)

x' = (4 - 1) / (4 + 1)

x' = 3 / 5

Therefore, x' evaluated at the point (-1,1) is equal to 3/5.

Learn more about Derivative here

https://brainly.com/question/29020856

#SPJ4

Given question is incomplete, the complete question is below

Find x' for x(t) defined implicitly by x⁴ + t⁴x + t - 3 = 0 and then evaluate x' at the point (-1,1). X'(-1,1)= (Simplify your answer.)

T Find the slope of the tangent line to polar curve r = 3 sin 0 at the point (16)

Answers

Substituting this value of θ into the derivative dr/dθ = 3 cos θ, we obtain the slope of the tangent line at the point (16) as the value of dr/dθ evaluated at θ = arcsin(16/3).

The slope of the tangent line to the polar curve r = 3 sin θ at the point (16) can be found by taking the derivative of the polar curve equation with respect to θ and evaluating it at the given point. The derivative gives the rate of change of r with respect to θ, and evaluating it at the specific value of θ yields the slope of the tangent line.

The polar curve is given by r = 3 sin θ, where r represents the radial distance from the origin and θ represents the polar angle. To find the slope of the tangent line at the point (16), we need to determine the derivative of the polar curve equation with respect to θ. Taking the derivative of both sides of the equation, we have dr/dθ = 3 cos θ.

To find the slope of the tangent line at the specific point (16), we need to evaluate the derivative at the corresponding value of θ. Given the point (16), we can determine the value of θ by using the equation r = 3 sin θ. Substituting r = 16 into the equation, we have 16 = 3 sin θ. Solving for sin θ, we find θ = arcsin(16/3).

Finally, substituting this value of θ into the derivative dr/dθ = 3 cos θ, we obtain the slope of the tangent line at the point (16) as the value of dr/dθ evaluated at θ = arcsin(16/3).

To learn more about tangent line, refer:-

https://brainly.com/question/23416900

#SPJ11

Find all points of inflection of f (x) = ln(1 + x2) = 0 (-1, In2), (1, In2) O (-1/sqrt(2), In(3/2)), (1/sqrt(2), In(3/2)) O (0,0) O (1, In2) None of these

Answers

To find the points of inflection of the function[tex]f(x) = ln(1 + x^2),[/tex]we need to find the values of x where the concavity changes.

First, we find the second derivative of f(x):

[tex]f''(x) = 2x / (1 + x^2)^2[/tex]

Next, we set the second derivative equal to zero and solve for x:

[tex]2x / (1 + x^2)^2 = 0[/tex]

Since the numerator can never be zero, the only possibility is when the denominator is zero:

[tex]1 + x^2 = 0[/tex]

This equation has no real solutions since x^2 is always non-negative. Therefore, there are no points of inflection for the function [tex]f(x) = ln(1 + x^2).[/tex]

Hence, the correct answer is "None of these."

learn more about:- inflection here

https://brainly.com/question/29017999

#SPJ11

a hemispherical tank of radius 2 feet is positioned so that its base is circular. how much work (in ft-lb) is required to fill the tank with water through a hole in the base when the water source is at the base? (the weight-density of water is 62.4 pounds per cubic foot. round your answer to two decimal places.) ft-lb

Answers

Therefore, approximately 32953.61 ft-lb of work is required to fill the tank with water through the hole in the base.

To find the work required to fill the tank with water, we need to calculate the potential energy of the water.

The potential energy is given by the equation PE = mgh, where m is the mass of the water, g is the acceleration due to gravity, and h is the height the water is raised to.

In this case, the height h is the radius of the tank, which is 2 feet. The mass of the water can be calculated using the volume of a hemisphere formula V = (2/3)πr^3, where r is the radius of the tank.

The volume V of the hemisphere is V = (2/3)π(2^3) = (2/3)π(8) = (16/3)π cubic feet.

The mass m of the water is m = V * density = (16/3)π * 62.4 = (998.4/3)π pounds.

The potential energy PE = mgh = (998.4/3)π * 2 * 32.2 ft-lb.

Calculating this expression, we get PE ≈ 32953.61 ft-lb.

To know more about tank,

https://brainly.com/question/15739896

#SPJ11

Alternating Series, Absolute vs. Conditional Convergence 1. Test the series for convergence or divergence. 1 (2) Σ(-1)*. √n³+1 n=1 (-1)-1 (b) In (n + 4) n=1 8 (e) (-1) 3n-1 2n + 1 n=1 2. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. (-1)+1 (a) √n n=1 (b) Σ (1)nª n=1 (c) sin(4n) 4n (1) Σ(-1), n=1 2 3n + 1

Answers

The series are divergent, absolutely convergent, conditionally convergent respectively.

(a) This series is divergent. This follows from the fact that the limit of the terms of this series is zero, while the sum of the terms does not converge to a particular value.

(b) This series is absolutely convergent. This follows from the fact that the series satisfies the criteria for absolute convergence, namely that the terms are decreasing in absolute value.

(c) This series is conditionally convergent. This follows from the fact that the terms of this series are alternating in sign, thus the series may or may not converge depending on the sign of the summation of the terms.

To know more about series refer here:

https://brainly.com/question/29678719#

#SPJ11

Suppose that the density function of a continuous random variable is given by f(x)=c(e-2X-e-3x) for non-negative x, and 0 elsewhere a) Determine c b) Compute P(X>1) c) Calculate P(X<0.5|X<1.0)

Answers

(a) The value of c is determined to be 0.5. (b) The probability that X is greater than 1 is approximately 0.269. (c) The probability that X is less than 0.5 given that X is less than 1.0 is approximately 0.368.

(a) To find the value of c, we integrate the given density function over its entire range and set it equal to 1. The integral of f(x) from 0 to infinity should equal 1:

∫[0,∞] c(e^(-2x) - e^(-3x)) dx = 1.

Evaluating this integral gives us:

[-0.5e^(-2x) + (1/3)e^(-3x)] from 0 to ∞ = 1.

As x approaches infinity, both terms in the brackets go to 0, so we are left with:

0 - (-0.5) = 1,

0.5 = 1.

Therefore, the value of c is 0.5.

(b) To compute P(X > 1), we integrate the density function from 1 to infinity:

P(X > 1) = ∫[1,∞] 0.5(e^(-2x) - e^(-3x)) dx.

Evaluating this integral gives us approximately 0.269.

Therefore, the probability that X is greater than 1 is approximately 0.269.

(c) To calculate P(X < 0.5 | X < 1.0), we need to find the conditional probability that X is less than 0.5 given that it is already known to be less than 1.0. This can be found using the conditional probability formula:

P(X < 0.5 | X < 1.0) = P(X < 0.5 and X < 1.0) / P(X < 1.0).

The probability that X is less than 0.5 and X is less than 1.0 is the same as the probability that X is less than 0.5 alone, as X cannot be less than both 0.5 and 1.0 simultaneously. Therefore, P(X < 0.5 | X < 1.0) = P(X < 0.5).

Integrating the density function from 0 to 0.5 gives us approximately 0.368.

Therefore, the probability that X is less than 0.5 given that X is less than 1.0 is approximately 0.368.

Learn more about conditional probability here:

https://brainly.com/question/10567654

#SPJ11

8c r own depotted wytoccount of 600 Wowww.tomonidantle hele were per The princes no Chown to the nearest do sreded) Suppose that money is deposited daily into a savings account at an annual rate of $900. If the accognt pays 4% interest compounded continuously, estimate the balance in the account at the end of 4 years, The approximate balance in the account is $ (Round to the nearest dollar as needed.) Get more help Clear all Check answer

Answers

The approximate balance in the account at the end of 4 years is $704.

To estimate the balance in the account at the end of 4 years, we can use the formula for continuous compound interest:

A = P * e^(rt)

Where:

A = the final balance in the account

P = the initial deposit or principal amount

r = the interest rate (expressed as a decimal)

t = the time period in years

e = the base of the natural logarithm (approximately 2.71828)

In this case, the initial deposit is $600, the interest rate is 4% (0.04 as a decimal), and the time period is 4 years.

Plugging the values into the formula:

A = 600 * e^(0.04 * 4)

Calculating:

A = 600 * e^(0.16)

A ≈ 600 * 1.1735

A ≈ 704.1

Rounding to the nearest dollar, the approximate balance in the account at the end of 4 years is $704.

Learn more about balance at https://brainly.com/question/32445760

#SPJ11


please help me this is urgent
score: 1.5 3720 answered Question 5 < Aspherical snowball is melting in such a way that its radius is decreasing at a rate of 0.3 cm/min. At what rate is the volume of the snowball decreasing when the

Answers

When the radius is 16 cm, the volume of the snowball is decreasing at a rate of approximately -804.25π cm³/min.

To find the rate at which the volume of the snowball is decreasing, we need to differentiate the volume formula with respect to time.

The volume of a sphere can be given by the formula:

V = (4/3)πr³

where V is the volume and r is the radius.

To find the rate at which the volume is decreasing with respect to time (dV/dt), we differentiate the formula with respect to time:

dV/dt = d/dt [(4/3)πr³]

Using the chain rule, we can differentiate the formula:

dV/dt = (4/3)π * d/dt (r³)

The derivative of r³ with respect to t is:

d/dt (r³) = 3r² * dr/dt

Substituting this back into the previous equation:

dV/dt = (4/3)π * 3r² * dr/dt

Given that dr/dt = -0.1 cm/min (since the radius is decreasing at a rate of 0.1 cm/min), we can substitute this value into the equation:

dV/dt = (4/3)π * 3r² * (-0.1)

Simplifying further:

dV/dt = -0.4πr²

Now, we can substitute the radius value of 16 cm into the equation:

dV/dt = -0.4π(16²)

Calculating with respect to volume:

dV/dt ≈ -804.25π cm³/min

Therefore, when the radius is 16 cm, the volume of the snowball is decreasing at a rate of approximately -804.25π cm³/min.

To know more about volume check the below link:

https://brainly.com/question/1972490

#SPJ4

(1 point) Suppose that you can calculate the derivative of a function using the formula f'(o) = 3f(x) + 1: If the output value of the function at x = 2 is 1 estimate the value of the function at 2.005

Answers

Based on the given information and the derivative formula, the estimated value of the function at x = 2.005 is approximately 1.02.

Using the given derivative formula, f'(x) = 3f(x) + 1, we can estimate the value of the function at x = 2.005.

Let's assume the value of the function at x = 2 is f(2) = 1. We can use this information to estimate the value of the function at x = 2.005.

Approximating the derivative at x = 2 using the given formula:

f'(2) = 3f(2) + 1 = 3(1) + 1 = 4

Now, we can use this derivative approximation to estimate the value of the function at x = 2.005. We'll use a small interval around x = 2 to approximate the change in the function:

Δx = 2.005 - 2 = 0.005

Approximating the change in the function:

Δf ≈ f'(2) * Δx = 4 * 0.005 = 0.02

Adding the change to the initial value:

f(2.005) ≈ f(2) + Δf = 1 + 0.02 = 1.02

To know more about  derivative click on below link:

https://brainly.com/question/29144258#

#SPJ11

during a sale, a clothing store sold each shirt at a price of $15 and each sweater at a price of $25. did the store sell more sweaters than shirts during the sale?

Answers

Based on the information provided, it is impossible to determine whether the store sold more sweaters than shirts during the sale. We do not know how many of each item was sold.
During the sale, the clothing store sold shirts for $15 each and sweaters for $25 each. To determine whether the store sold more sweaters than shirts, additional information such as the total number of items sold or the total revenue generated from each type of clothing is needed. Without this information, it is not possible to definitively say whether the store sold more sweaters or shirts during the sale. However, we can assume that the store made more profit from the sale of sweaters, as each sweater was sold at a higher price than each shirt. It is also possible that the store sold equal amounts of sweaters and shirts, but generated more revenue from the sale of sweaters. Ultimately, more information would be needed to make a definitive statement about which item sold more during the sale.

To learn more about total revenue, visit:

https://brainly.com/question/22909043

#SPJ11

Create proofs involving limits which may include the delta-epsilon precise definition of a limit, the definition of continuity, the Squeeze Theorem, the Mean Value Theorem, Rolle's Theorem, or the Intermediate Value Theorem." Use Rolle's Theorem and/or the Mean Value Theorem to prove that the function. f(x) = 2x + sinx has no more than one real root (i.e., x-intercept). Note: I am not asking you to find the real root. I am asking you for a formal proof, using one of these theorems, that there cannot be more than one real root. You will need to use a Proof by Contradiction. Here's a video you may find helpful:

Answers

To prove that the function f(x) = 2x + sin(x) has no more than one real root (x-intercept), we can use a proof by contradiction and apply the Mean Value Theorem.

Assume, for the sake of contradiction, that the function f(x) has two distinct real roots, say a and b, where a ≠ b. This means that f(a) = f(b) = 0, indicating that the function intersects the x-axis at both points a and b.

By the Mean Value Theorem, since f(x) is continuous on the interval [a, b] and differentiable on the interval (a, b), there exists at least one c in the open interval (a, b) such that:

f'(c) = (f(b) - f(a))/(b - a)

Since f(a) = f(b) = 0, the equation becomes:

f'(c) = 0/(b - a) = 0

Now, let's consider the derivative of f(x):

f'(x) = 2 + cos(x)

Since cos(x) lies between -1 and 1 for all real values of x, it follows that f'(x) cannot be equal to zero for any real value of x. Therefore, there is no value of c in the open interval (a, b) for which f'(c) = 0.

This contradicts our initial assumption and proves that the function f(x) = 2x + sin(x) cannot have more than one real root. Hence, it has at most one x-intercept.

In summary, using a proof by contradiction and the Mean Value Theorem, we have shown that the function f(x) = 2x + sin(x) has no more than one real root (x-intercept).

To learn more about Mean Value Theorem click here: brainly.com/question/29145312

#SPJ11\

Let
ak = 3k + 4 and bk = (k − 1)3 + 2k + 5
for every integer
k ≥ 0.
What are the first five terms defined by
ak?
a0
=
a1
=
a2
=
a3
=
a4
=
What are the first five terms defined by
bk?
b0
=
b1
=
b2
=
b3
=
b4
=
Do the first five terms of these two sequences have any terms in common?
Yes. Only the first term in both sequences are identical.Yes. Only the first two terms in both sequences are identical. Yes. Only the first three terms in both sequences are identical.Yes. Only the first four terms in both sequences are identical.Yes. The first five terms of both sequences are identical.No. These two sequences have no terms in common.

Answers

The first five terms defined by ak are:

a0 = 4

a1 = 7

a2 = 10

a3 = 13

a4 = 16

The first five terms defined by bk are:

b0 = 5

b1 = 8

b2 = 13

b3 = 20

b4 = 29

Among the first five terms of these two sequences, only the first term, a0, and the second term, a1, are identical. So Yes, only the first two terms in both sequences are identical.

We can calculate the terms of the sequences by substituting the given values of k into the expressions for ak and bk. By evaluating the expressions for the first five values of k, we obtain the corresponding terms for each sequence.

Upon comparing the terms of the two sequences, we observe that only the first two terms, a0 and a1, are the same. The remaining terms, starting from the third term onward, differ between the sequences. Therefore, the first five terms of these two sequences have only the first two common terms .

To know more about  sequences click on below link:

https://brainly.com/question/30262438#

#SPJ11

"AABC is acute-angled.
(a) Explain why there is a square PQRS with P on AB, Q and R on BC, and S on AC. (The intention here is that you explain in words why such a square must exist rather than
by using algebra.)
(b) If AB = 35, AC = 56 and BC = 19, determine the side length of square PQRS. It may
be helpful to know that the area of AABC is 490sqrt3."

Answers

In an acute-angled triangle AABC, it can be explained that there exists a square PQRS with P on AB, Q and R on BC, and S on AC. The side length of square PQRS is 28√3.

In an acute-angled triangle AABC, the angles at A, B, and C are all less than 90 degrees. Consider the side AB. Since AABC is acute-angled, the height of the triangle from C to AB will intersect AB inside the triangle. Let's denote this point as P. Similarly, we can find points Q and R on BC and S on AC, respectively, such that a square PQRS can be formed within the triangle.

To determine the side length of square PQRS, we can use the given lengths of AB, AC, and BC. The area of triangle AABC is provided as 490√3. The area of a triangle can be calculated using the formula: Area = 1/2 * base * height. Since the area is given, we can equate it to 1/2 * AB * CS, where CS is the height of the triangle from C to AB. By substituting the given values, we get 490√3 = 1/2 * 35 * CS. Solving this equation, we find CS = 28√3.

Now, we know that CS is the side length of square PQRS. Therefore, the side length of square PQRS is 28√3.

Learn more about acute angle here:

https://brainly.com/question/16775975

#SPJ11

determine the intervals on which the graph of =()y=f(x) is concave up or concave down, and find the points of inflection.

Answers

the graph of f(x) = x^3 - 3x^2 - 9x + 5 is concave down on the interval (-∞, 1), concave up on the interval (1, +∞), and has a point of inflection at x = 1.

To determine the intervals on which the graph of a function is concave up or concave down, we need to analyze the second derivative of the function. The concavity of a function can change at points where the second derivative changes sign.

Here's the step-by-step process to find the intervals of concavity and points of inflection:

Find the first derivative of the function, f'(x).

Find the second derivative of the function, f''(x).

Set f''(x) equal to zero and solve for x. The solutions give you the potential points of inflection.

Determine the intervals between the points found in step 3 and evaluate the sign of f''(x) in each interval. If f''(x) > 0, the graph is concave up; if f''(x) < 0, the graph is concave down.

Check the concavity at the points of inflection found in step 3 by evaluating the sign of f''(x) on either side of each point.

Let's go through an example to illustrate this process:

Example: Consider the function f(x) = x^3 - 3x^2 - 9x + 5.

Find the first derivative, f'(x):

f'(x) = 3x^2 - 6x - 9.

Find the second derivative, f''(x):

f''(x) = 6x - 6.

Set f''(x) equal to zero and solve for x:

6x - 6 = 0.

Solving for x, we get x = 1.

Therefore, the potential point of inflection is x = 1.

Determine the intervals and signs of f''(x):

Choose test points in each interval and evaluate f''(x).

Interval 1: (-∞, 1)

Choose x = 0 (test point):

f''(0) = 6(0) - 6 = -6.

Since f''(0) < 0, the graph is concave down in this interval.

Interval 2: (1, +∞)

Choose x = 2 (test point):

f''(2) = 6(2) - 6 = 6.

Since f''(2) > 0, the graph is concave up in this interval.

Check the concavity at the point of inflection:

Evaluate f''(x) on either side of x = 1.

Choose x = 0 (left side of x = 1):

f''(0) = -6.

Since f''(0) < 0, the graph is concave down on the left side of x = 1.

Choose x = 2 (right side of x = 1):

f''(2) = 6.

Since f''(2) > 0, the graph is concave up on the right side of x = 1.

To know more about graph visit:

brainly.com/question/17267403

#SPJ11

What is the surface area?

Answers

The Volume of Trapezoidal prism is 192 cm³.

We have the dimension of Trapezoidal prism as

a= 7 cm, c= 9 cm

height= 3 cm

side length, l= 8 cm

Now, using the formula Volume of Trapezoidal prism

= 1/2 (sum of bases) x height x side length

= 1/2 (7+ 9) x 3 x 8

= 1/2 x 16 x 24

= 8 x 24

= 192 cm³

Thus, the Volume of Trapezoidal prism is 192 cm³.

Learn more about Volume here:

https://brainly.com/question/28058531

#SPJ1




(1 point) Consider the following initial value problem: y" + 4y √8t, 0≤t

Answers

The given initial value problem is a second-order linear ordinary differential equation with variable coefficients. The equation is y" + 4y √8t = 0, where y represents an unknown function of t. To solve this equation, we can apply various techniques such as separation of variables, variation of parameters, or power series methods, depending on the specific characteristics of the equation.

The given initial value problem, y" + 4y √8t = 0, represents a second-order linear ordinary differential equation with variable coefficients. This means that the coefficients in the equation depend on the independent variable t. Solving such equations often requires specialized techniques.

Depending on the specific characteristics of the equation, different methods can be used to solve it. One common approach is to apply the method of separation of variables, where the equation is rearranged to express y" and y as separate functions and then solved by integrating both sides. Another method is the variation of parameters, which involves assuming a particular form for the solution and determining the unknown coefficients by substituting the assumed solution into the original equation.

In some cases, if the equation has a specific form, power series methods can be employed. This method involves expressing the solution as a series of powers of t and determining the coefficients through a recursive process.

The choice of method depends on the specific characteristics of the equation, such as its linearity, homogeneity, and the nature of the coefficients. Analyzing these characteristics can help determine the most appropriate technique for solving the given initial value problem.

To learn more about power series methods click here : brainly.com/question/13012727

#SPJ11

An oil tank is being drained. The volume, V, in liters, of oil
remaining in the tank after time, t, in minutes, is represented by
the function V(t) = 60(25 - t)?, 0 =t≤25.
a) Determine the average

Answers

To determine the average rate of change of the volume of oil remaining in the tank over a specific time interval, we need to calculate the slope of the function within that interval.

The average rate of change represents the average rate at which the volume is changing with respect to time.

In this case, the function representing the volume of oil remaining in the tank is given by V(t) = 60(25 - t).

To find the average rate of change over a time interval, we'll need two points on the function within that interval.

Let's consider two arbitrary points on the function: (t₁, V(t₁)) and (t₂, V(t₂)). The average rate of change is given by the formula:

Average rate of change = (V(t₂) - V(t₁)) / (t₂ - t₁)

For the given function V(t) = 60(25 - t), let's consider the interval from t = 0 to t = 25, as specified in the problem.

Taking t₁ = 0 and t₂ = 25, we can calculate the average rate of change as follows:

V(t₁) = V(0) = 60(25 - 0) = 60(25) = 1500 liters

V(t₂) = V(25) = 60(25 - 25) = 60(0) = 0 liters

Average rate of change = (V(t₂) - V(t₁)) / (t₂ - t₁)

= (0 - 1500) / (25 - 0)

= -1500 / 25

= -60 liters per minute

Therefore, the average rate of change of the volume of oil remaining in the tank over the interval from t = 0 to t = 25 minutes is -60 liters per minute.

To learn more about average rate visit:

brainly.com/question/13235160

#SPJ11

Sketch and find the area of the region enclosed by the curves r = y +l and x +y =) Dicas Woo 1 words Text Predictions

Answers

The area of the region enclosed by the curves r = y + 1 and x + y = 1 is [tex]1/2\sqrt{2}[/tex] square units.

Given the polar equation r = y + 1 and the cartesian equation x + y = 1, we have to sketch and find the area of the region enclosed by the curves.

Step 1: Sketch the curvesTo sketch the curves, we will convert the given Cartesian equation into polar coordinates.r = [tex]\sqrt{(x^2+y^2)r}  = \sqrt{(y%2+(1-y)^2)r}  = \sqrt{(y²+y²-2y+1)r} = \sqrt{(2y²-2y+1)r} = y + 1/\sqrt{2}[/tex]

The polar equation r = y + 1 is a straight line passing through the origin and making an angle of 45° with the positive x-axis.The Cartesian equation x + y = 1 is a straight line passing through (1,0) and (0,1).

It passes through the origin and makes an angle of 45° with the positive x-axis. Hence, the two curves intersect at 45° in the first quadrant as shown in the figure below.

Step 2: Find the area of the enclosed regionTo find the area of the enclosed region, we will integrate over y in the interval [0,1].The curve y = r - 1, gives the lower bound for y, and y = 1 - x, gives the upper bound for y.

So, we have to integrate the expression [tex]1/2(r^2 - (r-1)^2) dθ[/tex] from 0 to[tex]\pi /4[/tex]. Area = [tex]2∫[0,π/4]1/2(r² - (r-1)²) dθ= 2∫[0,π/4]1/2(2r-1) dr= 2[(r²-r)/√2] [0,1/√2]= 1/2√2[/tex] square units

Therefore, the area of the region enclosed by the curves r = y + 1 and x + y = 1 is [tex]1/2\sqrt{2}[/tex]square units.

Learn more about area here:

https://brainly.com/question/30816589


#SPJ11

Other Questions
Without using a calculator, find the limit. Make sure you show each step. x+5x-24 lim x-3x-8x+15 5) Use the 3 aspects of the definition of continuity to show whether or not the function is continuous at the given parameter. Show how you apply all 3 aspects. Make sure to state whether or not the function is continuous 1) f(a) exists 2) lim/(x) exists Definition of Continuity: 1-0 3) f(a) - lim/(x x3 (x-31-1: x>3 The Wave Speed On A String Is 155 M/S When The Tension Is 68.0 N . Part A What Tension Will Give A Speed Of 181 M/S ? a car's engine is turning the crankshaft at 5200 rev/min . part a what is the rotational speed ? which three statements best describes strategic market research A pilot is planning his flight to an airport which is 400km southeast of his starting location. His plane flies at 250km/h but a wind of 20km/h is blowing from 30 West of South. What heading should he choose for the plane? What is his resultant velocity? forecasts are most useful when the __________ will look radically different from the __________.A. past; futureB. future; pastC. present; futureD. present; pastE. future; present Designing a SiloAs an employee of the architectural firm of Brown and Farmer, you have been asked to design a silo to stand adjacent to an existing barn on the campus of the local community college. You are charged with finding the dimensions of the least expensive silo that meets the following specifications.The silo will be made in the form of a right circular cylinder surmounted by a hemi-spherical dome.It will stand on a circular concrete base that has a radius 1 foot larger than that of the cylinder.The dome is to be made of galvanized sheet metal, the cylinder of pest-resistant lumber.The cylindrical portion of the silo must hold 1000 cubic feet of grain.Estimates for material and construction costs are as indicated in the diagram below.The ultimate proportions of the silo will be determined by your computations. In order to provide the needed capacity, a relatively short silo would need to be fairly wide. A taller silo, on the other hand, could be rather narrow and still hold the necessary amount of grain. Thus there is an inverse relationship between r, the radius, and h, the height of the cylinder.Part ASuppose the cylinder has a radius of r. What would be the surface area of the hemi-spherical dome? The construction cost for the metal dome is estimated at $30 per square foot. Write an expression for the estimated cost of the dome.Surface area of dome = ____________________Cost of dome = ____________________ Comfort Corporation manufactures two models of office chairs, a standard and a deluxe model. The following activity and cost information has been compiled Number of Number of Product Number of Setups 18 Components Direct Labor Hours Standard 6 265 Deluxe 29 12 200 Overhead costs $61,100 $64,800 Assume a traditional costing system applies the overhead costs based on direct labor bours What is the total amount of overhead costs assigned to the standard model? The Test for Divergence for infinite series (also called the "n-th term test for divergence of a series") says that: lim an 70 an diverges 00 ns1 Notice that this test tells us nothing about an Let {a_n} be a sequence of real numbers defined as a_1 = 1 and a_n+1 = 1/2 a_n + 1 for each n N. Use induction to show that a_n lessthanorequalto 2. hi please answer this chemistry question and show work 1. 3 important questions about economic systems2. factors of production3. role of the government (not free market) For what value of x is the rational expression below equal to zero?x-9(x-4)(x+4)OA. -4B.C.-9D. 9SUBMIT .On the production line, all employees must have a quality level of 99 percent or higher. Which of the following elements of control is this?a. Comparisonb. Strategicc. Financiald. Standarde. Measure distinguish between electronic and printed media Is Undine( fairy tale Undine) an innocent girl of angelic goodness? why (not) please answer in 700 words. at the point (1,0). 0).* 17. Suppose xey = x - y. Find b) 1 a) o c) e d) 2 e) None of the above Find the divergence of the vector field F = < yx4, xz, zy? > . 2 Please help me What determines if an ocean current is warm or cold- short answer THIS IS SCIENCE PLEASE HELP ME I GIVE BRAINYLIST Which of the following are components of the compensation package for production workers at your company's plants?a. Annual base salary, teamwork bonuses, fringe benefits, and stock optionsb. Weekly salary, fringe benefits, year-end bonuses tied to the number of non-defective pairs produced, and overtime payc. Hourly wages, fringe benefits, and overtime payd. Base wages, incentive payments per non defective pair produced, and overtime paye. Annual base pay, piecework incentives per pair produced, perfect attendance bonuses at best practices training programs, stock options, fringe benefits, and overtime pay