Please write an original answer not copy-pasted, Thanks!
Prove using proof by contradiction that: (A −B) ∩(B −A) = ∅.

Answers

Answer 1

We have proven that (A-B)∩(B-A)=∅ by using proof by contradiction.

Given that: (A-B)∩(B-A)=∅

The proof by contradiction is a technique in mathematical logic that verifies that a statement is correct by demonstrating that assuming the statement is false leads to an unreasonable or contradictory outcome.

That is, suppose the opposite of the claim that needs to be proved is true, then we must show that it leads to a contradiction.

Let's suppose that x is an element of

(A - B)∩(B - A).

Then x∈(A - B) and x∈(B - A).

Therefore, x∈A and x∉B and x∈B and x∉A, which is impossible.

Hence, we can see that our supposition is incorrect and that

(A-B)∩(B-A)=∅ is true.

Proof by contradiction: Assume that there exists a non-empty set, (A-B)∩(B-A).

This means that there is at least one element, x, in both A-B and B-A, or equivalently, in both A and not B and in both B and not A.

Now, if x is in A, it cannot be in B (because it is in A-B).

But we already know that x is in B, and if x is in B, it cannot be in A (because it is in B-A).

This is a contradiction, and therefore the assumption that

(A-B)∩(B-A) is non-empty must be false.

Hence, (A-B)∩(B-A) = ∅.

Know more about the proof by contradiction.

https://brainly.com/question/30459584

#SPJ11


Related Questions

Find the remainder when 170^1801 is divided by 19.
a. 13
b. None of the mentioned.
c. 18
d. 15
e. 17

Answers

Option B. None of the mentioned is the remainder when 170^1801 is divided by 19.

How to find the remainder

According to Euler's Theorem, 170¹⁸ = 1 (mod 19).

Next, note that 1801 = 100*18 + 1. Therefore, we can write:

170¹⁸⁰¹ = (170¹⁸)¹⁰⁰ * 170

= 1¹⁰⁰ * 170

= 170 (mod 19).

Therefore, the remainder when170¹⁸⁰¹ is divided by 19 is the same as the remainder when 170 is divided by 19.

170 mod 19 = 2 (since 19*9=171, which is just over 170).

So, the remainder when 170¹⁸⁰¹ is divided by 19 is 2, which is not among the provided options.

Hence, the correct answer is:

b. None of the mentioned.

Read more on division here:https://brainly.com/question/25289437

#SPJ4

Question 1 (2 points) Expand and simplify the following as a mixed radical form. (√5 + 1) (2-√3)

Answers

The given expression, (√5 + 1)(2 - √3) is equal to 2√5 - √15 - √3 + 2.

Given √5+1 as a mixed radical form, we get,(√5+1) = (√5+1)

Now, (√5+1)(2-√3) can be expanded

using the distributive property of multiplication.

                       √5(2) + √5(-√3) + 1(2) + 1(-√3)

                              = 2√5 - √15 + 2 - √3

Thus, the answer is 2√5 - √15 - √3 + 2 in a mixed radical form.

We can use the distributive property of multiplication to simplify the given expression.

                     (√5 + 1)(2 - √3)= √5(2) + √5(-√3) + 1(2) + 1(-√3)

                                                 = 2√5 - √15 + 2 - √3

Therefore, the given expression, (√5 + 1)(2 - √3) is equal to 2√5 - √15 - √3 + 2.

Learn more about distributive property of multiplication.

brainly.com/question/18423629

#SPJ11

Consider the following linear transformation of R³: T(x1, x2, x3) =(-7x₁7x2 + x3,7 x1 +7.x2x3, 56 x1 +56x2-8-x3). (A) Which of the following is a basis for the kernel of T? O(No answer given) O{(7,0,49), (-1, 1, 0), (0, 1, 1)} O {(-1,1,-8)} O {(0,0,0)) O {(-1,0, -7), (-1, 1,0)} [6marks] (B) Which of the following is a basis for the image of T? O(No answer given) O {(2,0, 14), (1,-1,0)) O {(1, 0, 0), (0, 1, 0), (0, 0, 1)) O ((-1, 1,8)) O ((1,0,7), (-1, 1, 0), (0, 1, 1)) [6marks]

Answers

Answer:the correct answers are:

(A) Basis for the kernel of T: {(-1, 1, -8)}

(B) Basis for the image of T: {(1, -1, 0), (0, 1, 1)}

Step-by-step explanation:

To find the basis for the kernel of the linear transformation T, we need to find the vectors that get mapped to the zero vector (0, 0, 0) under T.

The kernel of T is the set of vectors x = (x₁, x₂, x₃) such that T(x) = (0, 0, 0).

Let's set up the equations:

-7x₁ + 7x₂ + x₃ = 0

7x₁ + 7x₂x₃ = 0

56x₁ + 56x₂ - 8 - x₃ = 0

We can solve this system of equations to find the kernel.

By solving the system of equations, we find that x₁ = -1, x₂ = 1, and x₃ = -8 satisfies the equations.

Therefore, a basis for the kernel of T is {(-1, 1, -8)}.

For the image of T, we need to find the vectors that are obtained by applying T to all possible input vectors.

To do this, we can substitute different values of (x₁, x₂, x₃) and observe the resulting vectors under T.

By substituting various values, we find that the vectors in the image of T can be represented as a linear combination of the vectors (1, -1, 0) and (0, 1, 1).

Therefore, a basis for the image of T is {(1, -1, 0), (0, 1, 1)}.

So, the correct answers are:

(A) Basis for the kernel of T: {(-1, 1, -8)}

(B) Basis for the image of T: {(1, -1, 0), (0, 1, 1)}

The basis for the kernel of the linear transformation T is {(0,0,0)}. The basis for the image of T is {(2,0,14), (1,-1,0)}. By examining the given linear transformation T, we can find that the vectors (2,0,14) and (1,-1,0) are linearly independent and can be obtained as outputs of T for certain inputs.

The kernel of a linear transformation consists of all the vectors in the domain that get mapped to the zero vector in the codomain. In this case, we need to find vectors (x1, x2, x3) such that T(x1, x2, x3) = (0,0,0). By substituting these values into the given transformation equation, we can solve for the kernel basis.

For the given linear transformation T, it can be observed that the only vector that satisfies T(x1, x2, x3) = (0,0,0) is (0,0,0) itself. Therefore, the basis for the kernel of T is {(0,0,0)}.

On the other hand, the image of a linear transformation consists of all the vectors in the codomain that can be obtained by applying the transformation to vectors in the domain. To find the basis for the image, we need to determine which vectors in the codomain can be obtained by applying T to different vectors in the domain.

By examining the given linear transformation T, we can find that the vectors (2,0,14) and (1,-1,0) are linearly independent and can be obtained as outputs of T for certain inputs. Therefore, these vectors form a basis for the image of T.

In summary, the basis for the kernel of T is {(0,0,0)}, and the basis for the image of T is {(2,0,14), (1,-1,0)}.

Learn more about linearly independent here:

https://brainly.com/question/12902801

#SPJ11

Katie invests money in two bank accounts: one paying 3% and the other paying 11% simple interest per year. Katie invests twice as much money in the lower-yielding account because it is less risky. If the annual interest is $6,035, how much did Katie invest at each rate? Amount invested at 3% interest is $ Amount invested at 11% interest is $

Answers

Amount

invested at 3% interest is $24,140.Amount invested at 11% interest is $48,280.

Let the amount invested at 3% be x, then the amount invested at 11% will be 2x (since she invests twice as much in the lower-yielding account).

Given that the annual interest is $6,035.

The interest from the amount

invested

at 3% is 0.03x and the interest from the amount invested at 11% is 0.11(2x) = 0.22x.

Therefore, we have:0.03x + 0.22x = 6035

Combine like terms to get:0.25x = 6035

Divide both sides by 0.25 to solve for

x:x = 6035/0.25

= $24,140

This means that Katie invested $24,140 at 3% interest.

She invested twice as much (2x) at 11% interest, which is:$24,140 * 2

= $48,280

Therefore, the amount invested at 11% interest is $48,280.

Hence,Amount invested at 3% interest is $24,140.Amount invested at 11%

interest

is $48,280.

To know more about

amount

visit:-

https://brainly.com/question/25720319

#SPJ11

dy
2. The equation - y = x2, where y(0) = 0
dx
a. is homogenous and nonlinear, and has infinite solutions. b. is nonhomogeneous and linear, and has a unique solution. c. is homogenous and nonlinear, and has a unique solution.
d. is nonhomogeneous and nonlinear, and has a unique solution.
e. is homogenous and linear, and has infinite solutions.

Answers

option C - "is homogeneous and nonlinear and has a unique solution" is the correct answer.

The given differential equation is  [tex]- y = x² dy/dx[/tex]

where y(0) = 0.

Let us find its general solution:

We have, [tex]- y = x² (dy/dx)[/tex]

dy/dx = - y/x²

On separating the variables, we get, [tex]dy/y = - dx/x²[/tex]

Integrate both sides, [tex]∫ dy/y = - ∫ dx/x² Log y[/tex]

= 1/x + c

Where c is the constant of integration

y = e¹ˣ * eᶜ

Here, y(0) = 0

Thus, 0 = e⁰ * eᶜ c

= 0

Hence, the particular solution of the given differential equation is y = e¹ˣ

This differential equation is homogeneous and nonlinear, and has a unique solution as we have a specific initial condition (y(0) = 0).

Therefore, option C - "is homogeneous and nonlinear and has a unique solution" is the correct answer.

To learn more about homogeneous visit;

https://brainly.com/question/31427476

#SPJ11

the height of a rocket is modeled by the equation h=-(t-8)^2+65 here h is height in meters and t is the time in seconds. what is the max height, what height is it launched from, how long is the rocket above 40m

Answers

The rocket is above 40 meters for 13 - 3 = 10 seconds.

How to solve for the height of the rocket

Launch height: The rocket is launched at t=0. So, if we substitute t=0 into the equation, we can find the initial height:

h = - (0 - 8)^2 + 65 = -64 + 65 = 1 meter.

Time above 40 meters: To find the time interval when the rocket is above 40 meters, we set h = 40 and solve for t:

40 = - (t - 8)^2 + 65

Simplify to: (t - 8)^2 = 65 - 40 = 25

Take the square root: t - 8 = ±5

Solve for t: t = 8 ± 5

So, the rocket is above 40 meters between t = 8 - 5 = 3 seconds and t = 8 + 5 = 13 seconds.

So, the rocket is above 40 meters for 13 - 3 = 10 seconds.

Read more on height of a rocket  herehttps://brainly.com/question/29574092

#SPJ1

2. M and N 1.5. KP 1.25 MR 0.75 NR Prove that AKPM ||| ARNM. ​

Answers

Thus, we can say that AKPM and ARNM are parallel.

Given, M and N 1.5, KP 1.25, MR 0.75, and NRNow, we have to prove that AKPM ||| ARNM. Let's look at the given figure:Figure 1We need to prove AKPM ||| ARNM. If we prove this, then we can say that AKPM and ARNM are parallel. This is only possible if the corresponding angles of these two triangles are equal. That is, we need to prove that ∠KAP = ∠NAR and ∠MPA = ∠MNR. Let's consider the first condition:

To prove ∠KAP = ∠NAR, we need to prove that ∠KAP + ∠PAM = ∠NAR + ∠ARN or ∠KAP + ∠PAM + ∠ARN = ∠NARIf we see triangle AKN, we have: ∠KAN + ∠AKN + ∠AKP = 180°or ∠KAN + ∠AKP = 180° - ∠AKN ...(i)Similarly, we can write for triangle ANR, we have ∠NAR + ∠ARN = 180° - ∠NRALet's

add these two equations:i.e., ∠KAN + ∠AKP + ∠NAR + ∠ARN = 360° - (∠AKN + ∠NRA)As ∠KAN + ∠NAR = 180° (because KN ||| AR),∠AKP + ∠ARN = 180° - ∠AKN - ∠NRA (using equation

(i))On adding these two equations, we get:∠KAP + ∠PAM + ∠NAR + ∠ARN = 360° - (∠AKN + ∠NRA)Thus, we get ∠KAP + ∠PAM + ∠NAR + ∠ARN = 360° - (∠KPA + ∠ARN)or ∠KAP + ∠PAM + ∠NAR = 180° - ∠KPA or ∠KAP + ∠PAM = 180° - ∠KPA - ∠NAR ..

(ii)In triangle KPM, we have ∠MPK + ∠KPM + ∠MKP = 180°or ∠MPA + ∠KPA + ∠AKP + ∠PAM = 180°or ∠MPA + ∠KAP + ∠PAM = 180° - ∠AKP ...

(iii)Let's look at the second condition:To prove ∠MPA = ∠MNR, we need to prove that ∠MPA + ∠PAK = ∠MNR + ∠NRK or ∠MPA + ∠PAK + ∠NRK = ∠MNRIn triangle MNR, we have ∠NRK + ∠NRK + ∠MNR = 180°or ∠NRK + ∠MNR = 180° - ∠NRK ...(iv)In triangle MPA, we have ∠MPA + ∠PAK + ∠KPA = 180°or ∠MPA + ∠PAK = 180° - ∠KPA ...(v)Adding equations (iv) and (v), we get:∠MPA + ∠PAK + ∠NRK + ∠MNR = 360° - (∠KPA + ∠NRK)

Now, we know that ∠KPA + ∠NRK = 180° (because KN ||| AR)Thus, we get:∠MPA + ∠PAK + ∠NRK + ∠MNR = 180°This can be rewritten as:∠MPA + ∠PAK + ∠NRM = 180° ...(vi)From equations

(ii) and (vi), we can say that:∠KAP + ∠PAM = ∠NRM + ∠PAKIf we observe, this is the condition to prove that AKPM ||| ARNM (corresponding angles of both triangles are equal).

For such more question on angles

https://brainly.com/question/28394984

#SPJ8

Let V be the vector space of all real-valued functions defined on the interval (-0, 0), and S be the subset of V consisting of those functions satisfying f(-x)=-f(x), for all x in (-0,0). ។ a) Express S in set notation. b) determine (prove) whether S is a subspace of V?

Answers

The set S can be expressed as S = {f ∈ V | f(-x) = -f(x), for all x ∈ (-0, 0)}.

Is S a subspace of V?

The set S, consisting of all real-valued functions defined on the interval (-0, 0) such that f(-x) = -f(x) for all x in (-0, 0), can be expressed as S = {f ∈ V | f(-x) = -f(x), for all x ∈ (-0, 0)}. To determine whether S is a subspace of V, we need to check if it satisfies the conditions of closure under addition, closure under scalar multiplication, and contains the zero vector.

Closure under addition means that if f and g are two functions in S, then their sum f + g must also be in S. To prove this, let's consider two functions f and g in S. We have:

(f + g)(-x) = f(-x) + g(-x)     [by the definition of addition]

           = -f(x) + (-g(x))    [since f and g are in S]

           = -(f(x) + g(x))    [by the properties of real numbers]

Therefore, (f + g)(-x) = -(f + g)(x), which implies that f + g is in S. Hence, S is closed under addition.

Closure under scalar multiplication means that if f is a function in S and c is a scalar, then the scalar multiple cf must also be in S. Let's consider a function f in S and a scalar c. We have:

(cf)(-x) = c(f(-x))       [by the definition of scalar multiplication]

        = c(-f(x))      [since f is in S]

        = -(cf)(x)      [by the properties of real numbers]

Therefore, (cf)(-x) = -(cf)(x), which implies that cf is in S. Hence, S is closed under scalar multiplication.

Lastly, to show that S contains the zero vector, we need to find a function in S such that f(-x) = -f(x) for all x in (-0, 0). The function f(x) = 0 satisfies this condition because f(-x) = 0 = -0 = -f(x) for all x in (-0, 0). Therefore, the zero function is in S.Since S satisfies all three conditions for a subspace, namely closure under addition, closure under scalar multiplication, and containing the zero vector, we can conclude that S is indeed a subspace of V.

Learn more about set

brainly.com/question/30705181

#SPJ11

How many lists of length 3 can be made from the symbols A, B, C, D, E, F, G if repetition is not allowed.

Answers

When we choose 3 objects from 7 without repetition, it is a case of permutation. Thus, to find the number of lists of length 3 that can be made from the symbols A, B, C, D, E, F, G if repetition is not allowed, we need to use the permutation formula.

For choosing r objects from n objects without repetition, the number of permutations is given by:P(n, r) = n! / (n-r)!Where n = 7 (as there are 7 symbols) and r = 3 (as we need to choose 3 symbols).

Therefore,P(7, 3) = 7! / (7-3)! = 7! / 4! = (7 × 6 × 5) / (3 × 2 × 1) = 35 × 6 = 210There are 210 possible lists of length 3 that can be made from the symbols A, B, C, D, E, F, G if repetition is not allowed.

to know more about repetition visit:

https://brainly.com/question/30851286

#SPJ11

Counting Principles Score 7/80 20/20 weet Scent try 1 of 4pts. See Decor sonry below ry, a player pros Hombers to 1104. afferent choices on the we Wonder citate There 494,481 to the lattery Question to do? Stron :: E R т. Y O S D F G H J к L X с V B N M . 36 mand CE

Answers

There are 3.72 × 10²⁵ different possible outcomes. If a player selects options from the given set, we need to calculate the number of possible different outcomes. It is a permutation problem

We are given that the player has different choices on the Wonder citate.

There are 494,481 to the lattery.

If a player selects options from the given set, we need to calculate the number of possible different outcomes.

It is a permutation problem, and we need to apply the formula for permutation to solve this problem.

Formula for permutation NPn= n!

Where n is the total number of items and Pn is the total number of possible arrangements.

Using the given values, we can apply the formula to get the number of possible outcomes:

Since we are given a set of 36 characters, we can find the number of possible arrangements for 36 items:

nP36= 36!

nP36= 371993326789901217467999448150835200000000

nP36= 3.72 × 10²⁵

Using this formula, we get the number of possible arrangements to be 3.72 × 10²⁵.

Therefore, the long answer is that there are 3.72 × 10²⁵ different possible outcomes.

To know more about possible outcomes visit :-

https://brainly.com/question/14690016

#SPJ11

1 - 4 17 -7 If A=[ - ] and AB =[-¹7 -23] 4 3 3 25 b₁ determine the first and second columns of B. Let b₁ be column 1 of B and b₂ be column 2 of B.

Answers

Given that, A = [ 1 - 4 ; 17 - 7] and AB = [-¹7 -23 ; 4 3 ; 3 25]B = [ b₁  b₂ ], the first and second columns of B are [ - 1  1 ] and [ - 6  2 ] respectively.

Calculate the inverse of the matrix A to find B. Multiply A inverse with AB to get B. Calculation of the inverse of A

We will find the inverse of A using the following formula; A inverse = 1 / determinant of A × adjoint of A

To calculate the determinant of A, we will use the following formula; | A | = ( a₁₁ × a₂₂ ) - ( a₁₂ × a₂₁ )| A | = ( 1 × - 7 ) - ( - 4 × 17 )| A | = - 7 + 68| A | = 61

Now, we will find the adjoint of A; Adjoint of A = [ (cofactor of a₁₁)  (cofactor of a₁₂) ; (cofactor of a₂₁)  (cofactor of a₂₂) ]Cofactor of a₁₁ = -7Cofactor of a₁₂ = 4Cofactor of a₂₁ = -17Cofactor of a₂₂ = 1

Therefore, Adjoint of A = [ - 7 4 ; - 17 1]Now, we will find the inverse of A using the above formula; A inverse = 1 / determinant of A × adjoint of A= 1 / 61 [ - 7 4 ; - 17 1]= [ - 7 / 61  4 / 61 ; - 17 / 61  1 / 61 ]

Calculation of B To calculate B, we will multiply A inverse with AB.B = A inverse × AB⇒ [ b₁  b₂ ] = [ - 7 / 61  4 / 61 ; - 17 / 61  1 / 61 ] × [ - ¹7 -23 ; 4 3 ; 3 25]⇒ [ b₁  b₂ ] = [ - 1 - 6 ; 1 2 ]

Therefore, the first and second columns of B are [ - 1  1 ] and [ - 6  2 ] respectively.

More on columns: https://brainly.com/question/31053916

#SPJ11

step by step
2. Find all values of c, if any that satisfies the conclusion of the Mean Value Theorem for the function f(x)=x²+x-4on the interval [-1,2]. I

Answers

To find the values of c that satisfy the conclusion of the Mean Value Theorem for the function f(x) = x² + x - 4 on the interval [-1, 2], we need to check if the function satisfies the two conditions of the Mean Value Theorem:

Continuity: The function f(x) = x² + x - 4 is a polynomial and, therefore, continuous on the interval [-1, 2].

Differentiability: The function f(x) = x² + x - 4 is a polynomial and, therefore, differentiable on the interval (-1, 2).

Since the function satisfies both conditions, we can apply the Mean Value Theorem, which states that there exists at least one value c in the interval (-1, 2) such that the derivative of the function evaluated at c is equal to the average rate of change of the function over the interval [-1, 2].

The average rate of change of the function over the interval [-1, 2] is given by:

f'(c) = (f(2) - f(-1)) / (2 - (-1)).

Let's calculate f'(c) and simplify the equation:

f'(x) = d/dx (x² + x - 4) = 2x + 1.

f'(c) = 2c + 1.

Setting f'(c) equal to the average rate of change:

2c + 1 = (f(2) - f(-1)) / 3.

Now, we need to evaluate f(2) and f(-1):

f(2) = 2² + 2 - 4 = 4 + 2 - 4 = 2,

f(-1) = (-1)² + (-1) - 4 = 1 - 1 - 4 = -4.

Substituting these values into the equation:

2c + 1 = (2 - (-4)) / 3.

2c + 1 = 6 / 3.

2c + 1 = 2.

2c = 2 - 1.

2c = 1.

c = 1/2.

Therefore, the only value of c that satisfies the conclusion of the Mean Value Theorem for the function f(x) = x² + x - 4 on the interval [-1, 2] is c = 1/2.

To learn more about polynomial : brainly.com/question/11536910

#SPJ11

Find the volume of the rectangular prism. 4 cm 3 cm 2 cm​

Answers

The volume of the rectangular prism is 24 cm³

Calculating the volume of a rectangular prism

From the question, we are to calculate the volume of the rectangular prism with the given measurements

The given measurements are 4 cm, 3 cm, and 2 cm.

The volume of a rectangular prism can be calculated by using the formula,

Volume = Length × Width × Height

From the given information,

Let length = 4 cm

width = 3 cm

and height = 2 cm

Thus,

The volume of the rectangular prism is

Volume = 4 cm × 3 cm × 2 cm

Volume = 24 cm³

Hence, the volume is 24 cm³

Learn more on Calculating volume of a prism here: https://brainly.com/question/12676327

#SPJ1

An oak tree grows about 2 feet per year. Use dimensional analysis to find this growth rate in centimeters (cm) per day. Round to the nearest hundredth. Show your work. Include units in your work and result.

Answers

The growth rate of an oak tree in centimeters per day is 0.17 cm/day.

To convert the growth rate of an oak tree from feet per year to centimeters per day, we can use dimensional analysis to convert the units accordingly.

Growth rate of oak tree = 2 feet/year

We can set up the following conversion factors:

1 foot = 30.48 centimeters (since 1 foot is equal to 30.48 centimeters)

1 year = 365 days (approximate value)

We'll start with the given growth rate in feet per year and convert it to centimeters per day:

(2 feet/year) x (30.48 centimeters/foot) x (1 year/365 days)

Let's calculate the result:

= (2 feet/year) x (30.48 centimeters/foot) x (1 year/365 days)

= (2 x 30.48 / 365) (centimeters/day)

= 0.16739726027 centimeters/day

Rounding to the nearest hundredth, the growth rate of the oak tree in centimeters per day is approximately 0.17 cm/day.

Therefore, the growth rate of the oak tree is approximately 0.17 cm/day.

To learn more about growth rate: https://brainly.com/question/25849702

#SPJ11

Which of the following functions has the longest period? O f(x) = 2 sin(0.5x) - 11 = Of(x) = 8 cos(2x) - 4 = O f(x)= 7 cos(x) + 13 O f(x) = 6 sin(3x) + 20 (1 point) The productivity of a person at work on a scale of 0 to 10) is modelled by a cosine function: 5 cos + 5, where tis in hours. If the person starts work at t= 0, 2t being 8:00 a.m., at what times is the worker the least productive? IT 10 a.m., 12 noon, and 2 p.m. 10 a.m. and 2 p.m. 11 a.m. and 3 p.m. 12 noon

Answers

Hence, the worker is least productive at 10 a.m. and 2 p.m.

We have four functions as given below:O f(x) = 2 sin(0.5x) - 11 = Of(x) = 8 cos(2x) - 4 = O f(x)= 7 cos(x) + 13 O f(x) = 6 sin(3x) + 20

To determine which of the above functions has the longest period, we will use the formula to calculate the period of a function:

Period (T) = 2π / b1) O f(x) = 2 sin(0.5x) - 11

In this function, b = 0.5

Period (T) = 2π / b = 2π / 0.5 = 4π2) O f(x) = 8 cos(2x) - 4

In this function, b = 2

Period (T) = 2π / b

= 2π / 2

= π3) O f(x)

= 7 cos(x) + 13

In this function, b = 1

Period (T) = 2π / b

= 2π / 1

= 2π4) O f(x)

= 6 sin(3x) + 20

In this function, b = 3

Period (T) = 2π / b

= 2π / 3

The function with the longest period is O f(x) = 2 sin(0.5x) - 11.

The productivity of a person at work on a scale of 0 to 10 is modeled by a cosine function: 5 cos + 5, where t is in hours. If the person starts work at t = 0, 2t being 8:00 a.m.

The cosine function for this productivity is given by:

P (t) = 5 cos(πt) + 5At t = 0, the worker starts his job, and 2t is 8:00 a.m.

T = 2π / b

= 2π / π

= 2

We can see that the worker is unproductive every 2 hours. We can determine the hours that he/she is least productive by adding 2 to the starting time (0) and multiplying the result by the period

(2).We get 0 + 2(2)

= 4 and 4 + 2(2)

= 8.

To know more about scale visit:

https://brainly.com/question/28465126

#SPJ11








Find a particular solution to the differential equation using the Method of Undetermined Coefficients. x"(t)- 10x'(t) + 25x(t) = 3te5 A solution is x (0)=0

Answers

The particular solution to the differential equation using the Method of Undetermined Coefficients is -3D + Bt + 4D[tex]e^5t[/tex]

The differential equation provided is,x’’(t) - 10x’(t) + 25x(t) = [tex]3te^5[/tex]

For the particular solution, we can assume thatx(t) = (A + Bt + C[tex]e^5t[/tex]) + (D[tex]e^5t[/tex]) ….. (1)

Where the first bracket represents the complementary function, and the second bracket represents the particular solution. We can assume the particular solution as (A + Bt + C[tex]e^5t[/tex]) because it has a polynomial of degree 1.

We have considered an exponential function in the second bracket because the right-hand side of the given differential equation has an exponential function with the same exponent 5.

Differentiating (1) we get,

x’(t) = B + 5C[tex]e^5t[/tex]+ 5D[tex]e^5t[/tex] ….. (2

)x’’(t) = 25C[tex]e^5t[/tex] + 25D[tex]e^5t[/tex]….. (3)

Substituting the values from (1), (2), and (3) in the given differential equation,

x’’(t) - 10x’(t) + 25x(t)

= 3te^5[25C[tex]e^5t[/tex] + 25D[tex]e^5t[/tex]] - 10[B + 5Ce^5t + 5D[tex]e^5t[/tex]] + 25[A + Bt + C[tex]e^5t[/tex]]

= 3t[tex]e^5[/tex]

We can further simplify the above equation to get

[25A – 10B + 3t[tex]e^5[/tex]] + [25C – 50D]e^5 = 0

Comparing the coefficients of e^5t, we get the following,

25C – 50D = 0

⇒ 5C – 10D = 0

⇒ C = 2D25A – 10B

= 3

⇒ 5A – 2B = 3/5

Substituting the value of C in equation (1), we get

x(t) = A + Bt + 2D[tex]e^5t[/tex]+ D[tex]e^5t[/tex]

Multiplying the equation by [tex]e^-5t[/tex], we get

[tex]e^-5t[/tex] x(t) = [tex]e^-5t[/tex] (A + Bt + 3D)

Using the initial condition x(0) = 0 in the above equation, we get

0 = A + 3D

⇒ A = -3D

Substituting the values of A and C in the equation (1), we get the following particular solution,

x(t) = -3D + Bt + 3D[tex]e^5t[/tex] + D[tex]e^5t[/tex]

= -3D + Bt + 4D[tex]e^5t[/tex]

Since we don't know the value of A, B, or D, we cannot determine the value of the particular solution.

The values of A, B, or D can be determined using the initial conditions of the differential equation, which are not given in the question.

Know more about the exponential function

https://brainly.com/question/2456547

#SPJ11

From experience, the expected grade in the final Probability exam is 60 points.
1. Using Markov's inequality, what can you say about the probability that a student's grade is greater than 75?
2. IF it is known that σ = 10 using Chebyshev's inequality approximates the probability that the note is between 70 and 80 ?

Answers

Using Markov's inequality, we can say that the probability that a student's grade is greater than 75 is at most 60/75 or 0.8. This means that at least 80% of the students should score above 60 points. Markov's inequality gives an upper bound on the probability of a random variable taking a large value. It can be used for any non-negative random variable.

Here, the grade of a student is a non-negative random variable that takes values between 0 and 100.2. Chebyshev's inequality states that for any random variable, the probability that the value of the random variable deviates from the mean by more than k standard deviations is at most 1/k^2. Using this, we can say that the probability that the note is between 70 and 80 is at least 1 - 1/2^2 or 0.75. We can see that this is a weaker bound than the one obtained using the normal distribution, which would have given a probability of 0.9545.

To know more about inequality visit :-

https://brainly.com/question/20383699

#SPJ11

differential equations
show complete and full work with
nice hand writing
Find a particular solution to the differential equation using the method of Undetermined Coefficients x"(t) - 16x (1) +64X(t)=te R. A solution is xp (0) =

Answers

The particular solution is given by

[tex]xp(t) = (t/64)e^(Rt) + (1/256)te^(Rt)[/tex] when xp(0) = 0

Given differential equation:

[tex]xp(t) = (t/64)e^(Rt) + (1/256)te^(Rt)[/tex]

We need to find the particular solution using the method of Undetermined Coefficients.

The Method of Undetermined Coefficients, also known as the method of trial and error, is a technique used to guess a particular solution to a non-homogeneous linear second-order differential equation. The method involves making an informed guess about the form of the particular solution and then using the derivatives of that guess to determine the coefficients.

To solve the above differential equation, we assume the particular solution in the form of polynomial equation of first order:

x(t) = At + B

Substituting this particular solution in the differential equation:

[tex]x''(t) - 16x'(t) + 64x(t) = te^(Rt)[/tex]

Differentiating the assumed particular solution: x'(t) = A  and x''(t) = 0

Substituting these values in the differential equation:

[tex]0 - 16(A) + 64(At + B) = te^(Rt)[/tex]

On comparing coefficients of t on both sides, we get the value of A.

[tex]64A = te^(Rt)A = (t/64)e^(Rt)[/tex]

On comparing constant terms on both sides, we get the value of B.

-16A + 64B = 0

B = (1/4)

[tex]A = (1/256)te^(Rt)[/tex]

Thus the particular solution of the given differential equation is:

xp(t) = At + B

[tex]xp(t) = (t/64)e^(Rt) + (1/256)te^(Rt)[/tex]

Now, xp(0) = B

= (1/256)*0

= 0

Know more about the particular solution

https://brainly.com/question/31479320

#SPJ11

A metropolitan police classifies crimes committed in the city as either "violent" or "non-violent". An investigation has been ordered to find out whether the type of crime depends on the age of the person who committed the crime. A sample of 100 crimes was selected at random from its files. The results are in the table: Age Type of crime under 25 25 to 50 over 50 violent 15 30 10 non-violent 5 30 10 (a) State the null and alternate hypotheses. (b) Does it appear that there is any relationship between the age of a criminal and the nature of the crime, at the 5% level of significance, using the critical value method? (c) List the assumptions associated with this procedure.

Answers

(a) Null hypothesis: The type of crime does not depend on the age of the person who committed the crime.

Alternate hypothesis: The type of crime depends on the age of the person who committed the crime.

(b) To determine if there is a relationship between the age of a criminal and the nature of the crime at the 5% level of significance, we can use the critical value method.

First, we need to calculate the expected values for each cell under the assumption of independence between age and type of crime. We can calculate the expected values using the row and column totals:

Expected value = (row total * column total) / sample size

Expected values for the table are as follows:

graphql

Copy code

       Age       | Type of Crime

                 |   Violent  | Non-violent |   Total

CSS

Copy code

under 25    |      10       |     10        |     20

25 to 50    |      20       |     20        |     40

over 50     |      10       |     10        |     20

mathematical

Copy code

Total          |      40       |     40        |     80

Next, we can calculate the chi-square statistic using the formula:

chi-square = ∑ ((observed value - expected value)^2) / expected value

Using the observed and expected values from the table, we can calculate the chi-square statistic:

chi-square = ((15-10)^2)/10 + ((30-20)^2)/20 + ((10-10)^2)/10 + ((5-10)^2)/10 + ((30-20)^2)/20 + ((10-10)^2)/10 = 1.5 + 2.5 + 0 + 2.5 + 2.5 + 0 = 9

To determine if there is a relationship between the age of a criminal and the nature of the crime, we need to compare the chi-square statistic to the critical value from the chi-square distribution table. The degrees of freedom for this test is (number of rows - 1) * (number of columns - 1) = (3-1) * (2-1) = 2.

Using a significance level of 5% and 2 degrees of freedom, the critical value is approximately 5.991.

Since the chi-square statistic (9) is greater than the critical value (5.991), we reject the null hypothesis. This suggests that there is a relationship between the age of a criminal and the nature of the crime.

(c) Assumptions associated with this procedure:

The data used for the analysis is a random sample from the population of crimes in the city.

The observations are independent of each other.

The expected values in each cell of the contingency table are not too small (typically, they should be at least 5).

The chi-square test assumes that the variables being analyzed are categorical and the data is frequency-based.

Learn more about metropolitan police at https://brainly.com/question/29037265

#SPJ11

Find all possible Jordan forms for a matrix whose characteristic polynomial is (x + 2)²(x - 5)³.

Answers

The characteristic polynomial of the matrix is given as (x + 2)²(x - 5)³. To find all possible Jordan forms, we need to determine the possible sizes of Jordan blocks corresponding to each eigenvalue.

The given characteristic polynomial, (x + 2)²(x - 5)³, indicates that the matrix has two distinct eigenvalues: -2 and 5. For each eigenvalue, we determine the possible sizes of Jordan blocks.

1. Eigenvalue -2:

Since the multiplicity of -2 is 2, the possible sizes of Jordan blocks for this eigenvalue are 2x2 and 1x1.

2. Eigenvalue 5:

Since the multiplicity of 5 is 3, the possible sizes of Jordan blocks for this eigenvalue are 3x3, 2x2, and 1x1.

Combining the possible sizes of Jordan blocks for each eigenvalue, we can construct all possible Jordan forms. Here are the potential Jordan forms based on the eigenvalues and their multiplicities:

1. (2x2) block for -2, (3x3) block for 5

2. (2x2) block for -2, (2x2) block for 5, (1x1) block for 5

3. (1x1) block for -2, (3x3) block for 5

4. (1x1) block for -2, (2x2) block for 5, (1x1) block for 5

5. (1x1) block for -2, (2x2) block for 5, (2x2) block for 5

These are all the possible Jordan forms for a matrix whose characteristic polynomial is (x + 2)²(x - 5)³. Each Jordan form corresponds to a different arrangement of Jordan blocks, which determines the matrix's structure and behavior.

To learn more about eigenvalues click here: brainly.com/question/13144436

#SPJ11

6. What principal invested at 13% compounded continuously for 6 years will yield $9000? Round the answer to two decimal places.

Answers

The principal invested at 13% compounded continuously for 6 years that will yield $9000 is approximately $4,645.85.

To calculate the principal, we can use the continuous compounding formula:

A = P * [tex]e^{(rt)[/tex]

Where:

A = Final amount ($9000)

P = Principal

e = Euler's number (approximately 2.71828)

r = Interest rate (13% or 0.13)

t = Time in years (6)

Substituting the given values into the formula, we have:

9000 = P * [tex]e^{(0.13 * 6)[/tex]

To solve for P, we can isolate it by dividing both sides of the equation by [tex]e^{(0.13 * 6)[/tex]:

P = 9000 / [tex]e^{(0.13 * 6)[/tex]

Using a calculator, we find that [tex]e^{(0.13 * 6)[/tex] = [tex]2.71828^{(0.78)[/tex] = 2.17448.

Therefore, the principal invested at 13% compounded continuously for 6 years that will yield $9000 is approximately $4,645.85.

Learn more about Compounding

brainly.com/question/19458442

#SPJ11

Use the sample data and confidence level oven A research institute pollasked respondents if they folt vulnerable to identity theft in the poll, n=1019 and x 600 who said "yos. Use a 95% confidence level. a) Find the best point estimate of the population proportion p

Answers

The point estimate of the population proportion is: p = 600 / 1019 ≈ 0.588

How toFind the best point estimate of the population proportion p

The best point estimate of the population proportion, denoted as p, can be calculated by dividing the number of respondents who answered "yes" (x) by the total number of respondents (n):

p = x / n

In this case, the number of respondents who said "yes" is 600, and the total number of respondents is 1019.

Therefore, the point estimate of the population proportion is: p = 600 / 1019 ≈ 0.588

Learn more about estimate at https://brainly.com/question/107747

#SPJ4

The American Safety Council has allocated $500,000 for projects designed to prevent auto- mobile accidents. Four proposals were submitted: (a) TV advertisements, (b) teenage safety education, (c) improved airbags, and (d) enforcement of driving laws. The projects are ex- pected to result in the reduction of both fatalities and property damage, as shown in the table to the right. The council has decided that no single project will be awarded more than $250,000. They also wish to award at least $50,000 for teenage education. Finally, they want to award at least $1 for improved airbags for each dollar awarded for TV advertisements. The federal government, for internal analysis purposes, has assessed the average value of a human life as being $400,000.

Answers

The American Safety Council has a budget of $500,000 to allocate to four proposals aimed at preventing automobile accidents. The proposals include TV advertisements, teenage safety education, improved airbags, and enforcement of driving laws.

The council has set certain criteria for the allocation: no single project can receive more than $250,000, at least $50,000 must be awarded for teenage education, and the funding for improved airbags should be at least equal to that for TV advertisements. Additionally, the federal government values a human life at $400,000 for analysis purposes.

The American Safety Council has a total budget of $500,000, which needs to be distributed among four proposals. To ensure fairness and effectiveness, certain allocation criteria have been set. No single project can receive more than $250,000, ensuring a balanced distribution of resources. At least $50,000 must be awarded for teenage education, reflecting the importance of educating young drivers. Furthermore, for each dollar awarded for TV advertisements, at least $1 must be allocated for improved airbags, emphasizing the significance of safety equipment. The federal government's valuation of a human life at $400,000 serves as a benchmark for assessing the potential impact of the projects on reducing fatalities and property damage.

to learn more about  automobile accidents click here; brainly.com/question/21436633

#SPJ11

In a beauty contest the scores awarded by eight judges weew

5.9 6.7 6.8 6.5 6.7 8.2 6.1 6.3

Using the eight scores determine

The mean ii. The median iii the mode
iv.. the variance of the scores

v. The standard deviation

Answers

The results are:

i. Mean = 6.775

ii. Median = 6.6

iii. Mode = No mode

iv. Variance ≈ 0.44936875

v. Standard Deviation ≈ 0.6697

To analyze the given scores awarded by the eight judges, let's calculate the requested measures:

Scores: 5.9, 6.7, 6.8, 6.5, 6.7, 8.2, 6.1, 6.3

i. Mean: The mean is the average of the scores. To calculate it, we sum all the scores and divide by the number of scores:

Mean = (5.9 + 6.7 + 6.8 + 6.5 + 6.7 + 8.2 + 6.1 + 6.3) / 8 = 54.2 / 8 = 6.775

ii. Median: The median is the middle value when the scores are arranged in ascending order. First, let's sort the scores:

Sorted scores: 5.9, 6.1, 6.3, 6.5, 6.7, 6.7, 6.8, 8.2

Since we have an even number of scores, the median is the average of the two middle values: (6.5 + 6.7) / 2 = 6.6

iii. Mode: The mode is the score(s) that appears most frequently. In this case, there is no score that appears more than once, so there is no mode.

iv. Variance: The variance measures the spread or dispersion of the scores. To calculate it, we need to find the squared difference between each score and the mean, sum them up, and divide by the number of scores minus one:

Variance = [(5.9 - 6.775)^2 + (6.1 - 6.775)^2 + (6.3 - 6.775)^2 + (6.5 - 6.775)^2 + (6.7 - 6.775)^2 + (6.7 - 6.775)^2 + (6.8 - 6.775)^2 + (8.2 - 6.775)^2] / (8 - 1)

= [0.592225 + 0.552025 + 0.471225 + 0.454225 + 0.000225 + 0.000225 + 0.005625 + 2.070025] / 7

= 3.145575 / 7

= 0.44936875

v. Standard Deviation: The standard deviation is the square root of the variance. Taking the square root of the variance calculated above, we get:

Standard Deviation = √0.44936875 ≈ 0.6697

Learn more about the mean, mode, and median on:

brainly.com/question/14532771

#SPJ11

MUX implements which of the following logic? a) NAND-XOR. b) XOR-NOT. c) OR-AND. d) AND-OR.

Answers

The MUX (multiplexer) logic implements option (d) AND-OR. A multiplexer is a combinational logic circuit that selects one of several input signals and forwards it to a single output based on a select signal.

The outputs of the AND gates are then fed into an OR gate, which produces the final output. This configuration allows the MUX to select and pass through a specific input signal based on the select signal, performing the AND-OR logic operation. A multiplexer has two sets of inputs: the data inputs and the select inputs. The data inputs represent the different signals that can be selected, while the select inputs determine which signal is chosen.

AND-OR MUX, each data input is connected to an AND gate, along with the select inputs. The outputs of the AND gates are then connected to an OR gate, which produces the final output. The select inputs control which AND gate is enabled, allowing the corresponding data input to propagate through the circuit and contribute to the final output. This implementation enables the MUX to perform the AND-OR logic function.

Learn more about logic circuit click here:

brainly.com/question/31827945

#SPJ11

10. What is the solution of the initial value problem x' = [1 −5] -3 x, x(0) = ? H cost 2 sin t (a) e-t sin t -t (b) cost + 4 sin t sin t (c) cost + 2 sint sin t cost + 2 sint (d) sin t cost + 4 sin t (e) sin t e -2t e e-2t

Answers

The solution of the given initial value problem is e-2t[cos t + 2 sin t].

Given that the initial value problem isx' = [1 -5] -3 xand x(0) = ?We know that if A is a matrix and X is the solution of x' = Ax, thenX = eAtX(0)

Where eAt is the matrix exponential given bye

Summary: The initial value problem is x' = [1 -5] -3 x, x(0) = ?. The matrix can be written as [1 -5] = PDP-1, where P is the matrix of eigenvectors and D is the matrix of eigenvalues. Then, eAt = PeDtP-1= 1 / 3 [2 1; -1 1][e-2t 0; 0 e-2t][1 1; 1 -2]. Finally, the solution of the initial value problem is e-2t[cos t + 2 sin

Learn more about matrix click here:

https://brainly.com/question/2456804

#SPJ11

"calculus practice problems
Find the area under the graph of f over the interval [3,9]. {2x+7, for x≤7 f(x) = {56 - 5/2 x, for x>7 The area is ..... (Type an integer or a simplified fraction.)"

Answers

The area under the graph of f over the interval [3,9] is 149



To find the area under the graph of the function f over the interval [3,9], we need to split the interval into two parts: [3,7] and (7,9]. In the first part, the function is given by f(x) = 2x + 7, and in the second part, it is given by f(x) = 56 - (5/2)x.

First, let's calculate the area under the graph of f(x) = 2x + 7 over the interval [3,7]. We can find the definite integral of 2x + 7 with respect to x:

∫[3 to 7] (2x + 7) dx = [x^2 + 7x] evaluated from 3 to 7.

Substituting the upper and lower limits into the integral, we get:

[(7^2 + 7(7)) - (3^2 + 7(3))] = (49 + 49) - (9 + 21) = 98 - 30 = 68.

Next, let's calculate the area under the graph of f(x) = 56 - (5/2)x over the interval (7,9]. We can find the definite integral of 56 - (5/2)x with respect to x:

∫[7 to 9] (56 - (5/2)x) dx = [56x - (5/4)x^2] evaluated from 7 to 9.

Substituting the upper and lower limits into the integral, we get:

[(56(9) - (5/4)(9^2)) - (56(7) - (5/4)(7^2))] = (504 - 202.5) - (392 - 171.5) = 301.5 - 220.5 = 81.

Finally, to find the total area under the graph of f over the interval [3,9], we sum up the areas from both parts:

Total area = Area from [3 to 7] + Area from (7 to 9] = 68 + 81 = 149.

Therefore, the area under the graph of f over the interval [3,9] is 149.


To learn more about definite integral click here: brainly.com/question/29685762

#SPJ11

Find and classify all of stationary points of ø (x,y) = 2xy_x+4y

Answers

To find the stationary points of the function ø(x, y) = 2xy - 4y, we need to find the points where the partial derivatives with respect to x and y are equal to zero.

Taking the partial derivative with respect to x:

∂ø/∂x = 2y

Setting ∂ø/∂x = 0, we have:

2y = 0

y = 0

Taking the partial derivative with respect to y:

∂ø/∂y = 2x - 4

Setting ∂ø/∂y = 0, we have:

2x - 4 = 0

2x = 4

x = 2/2

x = 2

So, the stationary point is (x, y) = (2, 0).

To classify the stationary point, we need to analyze the second partial derivatives of the function ø(x, y) at the point (2, 0).

Taking the second partial derivatives:

∂²ø/∂x² = 0 (constant)

∂²ø/∂y² = 0 (constant)

∂²ø/∂x∂y = 2

Since both second partial derivatives are zero, the classification of the

stationary point (2, 0) cannot be determined using the second derivative test.

Therefore, the stationary point (2, 0) is classified as a critical point, and further analysis is needed to determine if it is a local maximum, local minimum, or a saddle point. This can be done by considering the behavior of the function in the surrounding region of the point or by using other methods such as the first derivative test.

Visit here to learn more about stationary points:

brainly.com/question/30344387

#SPJ11

The hypotheses for this problem are: H0: μ = 47 H1: μ > 47 a) Find the test statistic. Round answer to 4 decimal places. Answer: b) Find the p-value. Round answer to 4 decimal places. Answer: c) What is the correct decision? Accept H0 Do not reject H1 Reject H1 Reject H0 Do not reject H0 d) What is the correct summary? There is not enough evidence to support the claim that the mean workweek for employees at start-up companies work more than 47 hours. There is enough evidence to support the claim that the mean workweek for employees at start-up companies work more than 47 hours.

Answers

The test statistic and p-value cannot be determined without the sample data. Thus, we cannot provide a specific answer for parts (a) and (b). Without the test statistic and p-value, we cannot make a correct decision regarding accepting or rejecting the null hypothesis (H0) or the alternative hypothesis (H1).

Consequently The specific values for the test statistic, p-value, and decision would depend on the analysis of the sample data using the appropriate statistical test, such as a t-test or z-test.

a) The test statistic for this problem would depend on the sample data and the type of test being conducted. Without the sample data, it is not possible to determine the exact test statistic required to make a decision.

b) Similarly, the p-value would depend on the sample data and the type of test being conducted. Without the sample data, it is not possible to calculate the p-value.

c) Without the test statistic and the p-value, it is not possible to make a correct decision regarding accepting or rejecting the null hypothesis (H0) or the alternative hypothesis (H1).

d) Based on the information provided, we cannot determine the correct summary as it relies on the test statistic, p-value, and decision made based on the data.

Learn more about hypothesis  : brainly.com/question/31319397

#SPJ11

State the domain in interval notation for the function h(x) = 2x^3/∑x-5. Show your work.

Answers

The domain of the function h(x) = 2x³/∑x-5, in interval notation, is (-∞, 5) U (5, +∞)

The domain of the function h(x) = 2x³/∑x-5, we need to identify any restrictions on the values of x that would make the denominator equal to zero.

In this case, the denominator is ∑x - 5. For the function to be defined, we cannot divide by zero. Therefore, we need to find the values of x for which ∑x - 5 = 0.

∑x - 5 = 0 x - 5 = 0 (since ∑x represents the sum of all x values) x = 5

So, x cannot be equal to 5 in order to avoid division by zero.

Therefore, the domain of the function h(x) = 2x³/∑x-5, in interval notation, is (-∞, 5) U (5, +∞).

To know more about domain click here :

https://brainly.com/question/29145252

#SPJ4

Other Questions
how do you factor and graphf(x) = 2x^7+11x^6+18x^5-24x^3-15x^2+4x+4Please explain your process of using synthetic division consider the following convergent series. complete parts a through c below. k=1[infinity] 3 k3; n=2 Find the critical value f needs to construct a confidence interval of the given level with the given sample site Round the answer to at set the decimal places Level 98%, sample sue 21. Critical value- 5 Save For Le Check 6. The International Accounting Standards Board has proposed changes to IFRS pension accounting including all of the following excepta. elimination of smoothing via the corridor approach.b. different presentation of pension costs in the income statement.c. requiring recognition of actuarial gains and losses over the expected service lives of employees.d. a new category of pensions for accounting purpose "contribution-based promises." Let g(x) x+V5 Make a table of the values of g at the points x = -22.-224,- 2.236, and so on through successive decimal approximations of - 5 Estimato Support your conclusion in part (a) by graphing g near c 75 and using Zoom and Trace to estimate y values on the graph as x--15 Find lim (x) algebraically X-5 5 b. C. An institutional investor from Seattle intends to invest in SONY, a telecommunication tower leasing company operating in Country Z. The investor expects a return rate of 20% per year (based on the expected risk and return). SONY always pays dividends to its shareholders. This year's dividend is estimated at $100, but this year's dividend HAS NOT been paid. Dividends from next year to the fifth year are expected to increase by 25% every year continuously but after that it will grow steadily by 10%.Instructions :a) Please calculate the intrinsic value of SONY.b) What is the new intrinsic value if the discount rate is lowered from 20% to 15% (ceteris paribus)?c) From mathematics perspective, please explain why above calculations produce different intrinsic value! after the deflation of the balloon of a client's sengstaken-blakemore tube, the nurse would monitor the client closely for which priority esophageal complication? If marginal utility is negative, we can infer that: a) Total utility is falling. b) The law of diminishing marginal utility does not hold. c) Total utility is also negative. d) The product is an inferior good. e) Total utility is increasing by smaller and smaller amounts. what is the international environmental treaties designed toaddress the problem of environmental crime worldwide? list and describe indicators/behaviors of emotional intelligencefrom the following EI domains ;Self management and Socialawareness.Concider how we can observe leadership competenciesrelated to emot Demand for wine bottles at one of Vinos warehouses is normally distributed with average 1000010000 and standard deviation 33333333. The firm keeps a safety inventory of 20002000 units. What is the service level of the warehouse?a.0.800.80b.0.600.60c.0.780.78d.0.73 For each of the following pairs of polymers, plot and label schematic stress-strain curves on the same graph [i.e., make separate illustrations for parts (i), (ii), and (i)]. (i) Isotactic and linear polypropylene having a weight-average molecular weight of 120,000 g/mol; atactic and linear polypropylene having a weight-average molecular weight of 100,000 g/mol (ii) Branched poly(vinyl chloride) having a degree of polymerization of 2000; heavily crosslinked poly(vinyl chloride) having a degree of polymerization of 2000 Poly(styrene-butadiene) random copolymer having a number-average molecular (ii) weight of 100,000 g/mol and 10% of the available sites crosslinked and tested at 20C: poly(styrene-butadiene) random copolymer having a number-average molecular weight of 120,000 g/mol and 15% of the available sites crosslinked and tested at -85C. Hint: poly(styrene-lutadiene) copolymers may exhibit elastomeric behavior. Let X be normally distributed with the variance Var=3. We sample X and determine the 95% confidence interval for the mean . How large should be the sample size n > to ensure that p is estimated within 0.5 or less? orientation, 3. (6 points) Find the flux of (6,7, z) = (+2+yxy, -(2x2 + y)) across the surface o, the face of the tetrahedron in the first octant bounded by x + y + z = 1 and the coordinate planes. with positive orientation 4. (6 points) Find the flux of F(x, y, z) = (x,y, ) across the surface a which is the surface of the solid Use matrices to solve the following simultaneous equation: 3x-4y=17, 4x+4y=4 x=and y= (Simplify your answers.) the nurse is reviewing orders written for a patient with a new spinal cord injury. which order does the nurse question? Problem 1. Two envelopes, each containing a check, are placed in front of you. You are to choose one of the envelopes at random, open it, and see the amount on the check. At this point, either you can accept that amount or exchange it for the check in the unopened envelope. What should you do? Is it possible to devise a strategy that does better than just accepting the first envelope? Let A and B, A Which of the following is not true for the FOQ Gradual Replenishment Model?Group of answer choicesAnnual demand is constant.No shortage in order quantities is allowed.Delivery lead time is independent of the order quantity and equals zero.Order quantity for each order is constant.Demand rate is always less than production rate. use technology to compute each probability and choose a graph with the corresponding shaded region. suppose is a normal random variable with given mean and variance. Stars sold goods for $93 to a charge customer. The customer returned for credit $20 worth of goods. Terms of the sale were 2/10, n/30. If the customer pays the amount owed within the discount period, what is the amount the customer should pay?a. $91.14b. $93.00c. $63.00d. $71.54