Answer:
Force,friction,inertia and momentum
Explanation:
The speed that the marble is moving at can be determined by the amount of force used when pushed or pulled and what kind of surface it's on.Momentum is also a factor because of the mass of the marbles.
What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant speed?
Answer:
0 J
Explanation:
Work equals force times distance, but the force is zero because the crate being dragged will have zero acceleration. Force equals mass times acceleration and since acceleration is zero, force has to equal zero as well. Since the force is zero, the work required also has to be zero.
A copper wire has a mass of 29.33 mg/cm and has a length of 2.5 cm.
Find the weight of the copper wire.
How much mechanical work is required to catch a 14.715N ball traveling at a velocity of 37.5m/s?
To catch a 14.715N ball traveling at a velocity of 37.5m/s, required mechanical work is 1056.10 joule.
What is work?Physics' definition of work makes clear how it is related to energy: anytime work is performed, energy is transferred.
In a scientific sense, a work requires the application of a force and a displacement in the force's direction. Given this, we can state that
Work is the product of the component of the force acting in the displacement's direction and its magnitude.
Weight of the ball = 14.715 N.
Mass of the ball = 14.715 N ÷ (9.8 m/s²) = 1.502 kg.
Velocity of the ball = 37.5 m/s
Kinetic energy of the ball = 1/2 × 1.502 × 37.5² Joule = 1056.10 Joule.
Hence, to catch a 14.715N ball traveling at a velocity of 37.5m/s, required work is 1056.10 joule.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
Disk A, with a mass of 2.0 kg and a radius of 70 cm , rotates clockwise about a frictionless vertical axle at 50 rev/s . Disk B, also 2.0 kg but with a radius of 50 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 50 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together. After the collision, what is their common angular speed (in rev/s) and in which direction do they rotate?
Answer:
w = - 197.5 rad / s
The negative sign indicates that the rotations are clockwise
Explanation:
To solve this exercise, let's use the concept of conservation of the angular number.
We create a system formed by the two discs, in this case the forces last the shock are internal
initial instant .. just before shock
L₀ = I₀ w₀ + I₁ w₁
instnte final. Right after crash
L_f = (I₀ + I1) w
angular momentum is conserved
I₀ w₀ + I₁ w₁ = (I₀ + I₁) w
w = I₀ w₀ + I₁ w₁ / Io + I1
The moment of inertia of a disk with an axis passing through its thermometric center
I₀ = ½ m² r₀²
I₁ = ½ m₁ r₁²
we substitute
I₀ = ½ 2.0 0.70²
I₀ = 0.49 kg m
I₁ = ½ 2.0 0.5²
I₁ = 0.25
₁
let's reduce the magnitudes the SI system
w₀ = -50 rev / (2pi rad / 1rev) = -314.15 rad / s
w₁ = 70 rev (2pi rad / 1rev) = 439.82 rad / s
we will assume that the counterclockwise turns are positive
w = -0.49 314.15 + 0.25 439.82 / (0.49 + 0.25)
w = (- 4.696 + 1.0995) 102) / 0.74
w = -197.75 + 0.25
w = - 197.5 rad / s
The negative sign indicates that the rotations are clockwise
question is included in the picture!!! PUT REAL ANSWERS OR I WILL REPORT YOU
Answer:
Explanation:
this is like rubbing a balloon on your head to make your hair stand up. Do that to the can. The balloon is filled , ofc, and then just rub the balloon on the can. This will charge the can with static electricity. :P
A rod that is 96.0 cm long is made of glass that has an index of refraction equal to 1.60. The rod has its ends ground to convex spherical surfaces that have radii equal to 8.00 cm and 19.1 cm. An object is in air on the long axis of the rod 19.9 cm from the end that has the 19.1-cm radius.
(a) Find the image distance due to refraction at the 19.1-cm radius surface.
(b) Find the position of the final image due to refraction at both surfaces.
(c) Is the final image real or virtual?
Which is true regarding a child standing up for their own rights?
Answer:
hey mate......looks like the question is incomplete
You serve a basketball with a mass of 5 kg. If the ball leaves your hand at 30 m/s what is
the kinetic energy?
A) 150 joules
B) 2,250 joules
C) 75 joules
Which action can knowing the "Three Rs lead a person to do?
A) resolving conflicts
B) helping one's family create a disaster plan
C)staying safe in a natural disaster
D)protecting the environment
Answer:
d
Explanation:
The rollercoaster is near the
bottom of the hill after the first big
drop. Which best describes the
potential and kinetic energy?
A. It has mostly kinetic energy.
B. It has mostly potential energy.
C. The kinetic energy is decreasing.
D. The potential energy is about 50%
and increasing.
Answer:
A. It has mostly kinetic energy
Explanation:
Kinetic energy refers to movement. Potential energy refers to height. In this case, the big drop just got over. So, when the coaster is at the bottom, it has more kinetic than potential energy . Potential energy is still present but kinetic is more at the bottom.
What is the difference between a positively and negatively charged object?
Answer:
Positively charged objects have electrons; they simply possess more protons than electrons. Negatively charged objects have protons; it's just their number of electrons is greater than their number of protons.
The difference between a positively charged object and a negatively charged object is the number of protons and electrons. The imbalance in charge results into formation of charged objects.
What are Charged objects?
Charged objects have an imbalance of charge that is either more negative electrons than the positive protons or more positive protons than the negative electrons in the object. The neutral objects are those species which have a balance of charge with equal number of protons and electrons.
A positively charged object is formed when an atom has more protons than electrons. And, a negatively charged object is formed when an atom has more electrons than protons. As, electrons have a negative charge and protons have a positive charge.
Learn more about Charged objects here:
https://brainly.com/question/535279
#SPJ6
Select all the correct answers.
Which statements about our solar system are false?
Our solar system is made up of the Sun and other objects that orbit the Sun.
The Sun is the only star in our solar system.
Dwarf planets have several other bodies in their path orbiting the Sun just as they do.
The Kuiper Belt is between Uranus and Neptune.
A large number of irregularly shaped comets are located in a vast ring between the orbits of Mars and Jupiter.
D and E are false.
A, B, and C are true.
Answer:
- Our solar system is made up of the Sun and other objects that orbit the Sun.
- The Sun is the only star in our solar system.
- Dwarf planets have several other bodies in their path orbiting the Sun just as they do.
Explanation:
plato
A roller coaster works by being hoisted to the top of the highest peak on the track and then released. As the roller coaster car moves along the track the energy gets converted back and forth between kinetic and gravitational potential energy. The entire time the roller coaster car is in motion air friction and friction in the wheels act to oppose the motion of the car. At which point during the ride is the total mechanical energy of the roller coaster car the greatest?
a. At the bottom of the first dip in the track when the car is moving the fastest.
b. When the car is exactly at half its original height half way through the ride.
c. At the top of the highest peak as the very start of the ride.
d. At the end of the ride as the car nears the station.
Answer:
a. At the bottom of the first dip in the track when the car is moving the fastest.
Explanation:
P.S - The exact question is -
The correct option is - a. At the bottom of the first dip in the track when the car is moving the fastest.
Reason -
From the diagram , we can see that the total mechanical energy of the roller coaster car is greatest At the bottom of the first dip in the track when the car is moving the fastest.
You are holding a finishing sander with your right hand. THe sander has a flywheel which spins counterclockwise as seen from behind the handle. You are sanding a wall in front of you. as you turn the sander towards the right, you feel a tendency in the sander to...
a. pull away from you
b. turn towards the left
c. turn downward
d. turn upward
e. push toward you
Answer:
c. turn downward
Explanation:
From the information given:
To find the tendency of the sander;
We need to apply the right-hand rule torque; whereby we consider the direction of the flywheel, the direction at which the torque is acting, and the movement of the sander toward the right.
Since the flywheel of the sander is in counterclockwise movement, hence the torque direction will be outward placing on the wall. However, provided that the movement of the sander is toward the right, then there exists an opposite force that turns downward which showcases the tendency in the sander is downward.
MY NOTES A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched 0.3 m beyond its natural length. The spring is stretched 0.6 m beyond its natural length and then released. Find the position of the mass at any time t. (Assume that movement to the right is the positive x-direction and the spring is attached to a wall at the left end.)
Plz answer asap I need all of the answer
Answer:
Turned up side down
Explanation:
PLEASE HELP! I'LL GIVE BRAINLEST
Answer:
Weight = 8.162 Newton.
Explanation:
Given the following data;
Mass = 2.2 kg
Acceleration due to gravity = 3.71 N/kg
To find the weight of the textbook;
Weight = mass * acceleration due to gravity
Weight = 2.2 * 3.71
Weight = 8.162 N
Therefore, the weight of the science textbook in mars is 8.162 Newton.
A moving man is lifting a box up an inclined plane. Halfway up he sets the box down and rests. Which of the following explains why the box does not slide back down the inclined plane?
a. The force of friction balances the force of gravity.
b. The force of gravity does not affect inclined planes.
c. The force of friction does not affect inclined planes.
d. The force of friction is less than the force of gravity.
Answer: A or B
Explanation: I’m guessing that they even each other out depending on the incline, gravity will help keeping it in place
35 POINTSS!!! PLSSSS HELLPPP!!!
Work is the transfer of power from one object to another.
Please select the best answer from the choices provided
T
F
Answer:
T
beacuse:
Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).
ʕ•ᴥ•ʔhi how are you ?
Answer:
I’m not okay . Me and my bf are bickering once again
can someone please help me !!!!
Answer:
it's A subduction, deep water trench
A wave has a frequency of 2 Hz. Find its period
assuming weightless pulleys and 100% efficiency, what is the minimum input force required to lift a 120 N weight using a single fixed pulley?
A. 21 N
B. 61 N
C. 121 N
D. 241 N
(20 points) You are at the center of a boat and have been rowing the boat for a long time. You weigh only 80 kg and your 120 kg buddy Bubba has been riding at the front of your 60 kg, 4 m long boat. You come to a stop in the water and then switch places. A) What is the center of mass before you switch places
Answer:
Explanation:
From the given information:
Let the first weight be [tex]m_ 1[/tex] = 80 kg
The weight of the buddy be [tex]m_2[/tex] = 120 kg
The weight of Bubba be [tex]m_3[/tex] = 60 kg
Also, since you and Budda are a distance of 4m to each other, then the length to which both meet buddy will be:
[tex]x_1 = x_3 = \dfrac{4}{2} \\ \\ = 2[/tex]
The length of the boat be [tex]x_2[/tex] = 4 m
∴
We can find the center of mass of the system by using the formula:
[tex]X_{CM} = \dfrac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3} \\ \\ X_{CM} = \dfrac{(80 \times 2)+(120\times4)+(60\times2)}{80+120+60} \\ \\ X_{CM} = \dfrac{160+480+120}{260} \\ \\ \mathbf{X_{CM} = 2.923}[/tex]
conduction happens because of
a)touching
b)liquid or gas
c)space
1. Although mercury is a metal, it is a liquid at room temperature. Mercury melts at about -39°C. If
the temperature of a block of mercury starts at -54°C and increases by 22°C, does the mercury melt?
Explain your answer.
Answer:
I think so because if it starts at a low temperature for that material, it should melt when you bring it up to that temperature.
Answer: Mercury
Explanation: Mercury is kinda like the opposite of regular semi-liquid. For ice to melt you need Fahrenheit to melt ice into water while you need Celsius to melt mercury.
Sparks occur when the electric field in air exceeds 3 x 106 N/C. This is because free electrons normally present in air are accelerated to such high speeds that their kinetic energy will overcome the potential energy holding other electrons to atoms. When those electrons rearrange themselves after such a collision, a flash of light is emitted. Let us suppose that the work done on an electron must give it an energy of 3 x 10-19 J to cause this ionization. How far does an electron involved in making in a spark travel through the air before it collides with an atom
Answer:
h = 5.38 10¹⁶ m
Explanation:
Let's start this exercise by assuming that all the potential energy of the electron is converted into kinetic energy, let's use the conservation of energy
starting point. Just before ionization
Em₀ = U = qE
final point. Right after ionization
Em_f = K = ½ m v²
Energy is conserved
Em₀ = Em_f
q E = ½ m v²
v² = 2qE / m
Now we can use the relationship between net work and kinetic energy
W_net = ΔK
net work is the work done by the electron minus the binding energy with the atom, called the work function, Ф = 3 10-19 J
W - Ф = K_f - K₀
we assume that the electron converts all its initial initial kinetic energy to be zero
W -Ф = ½ m v² - 0
W = ½ m v² +Ф
we substitute
W = 1/2 m 2qE/m + E
W = qE +Ф
W = 1.6 10⁻¹⁹ 3 10⁶ + 3 10⁻¹⁹
W = 4.8 10⁻¹³ + 3 10⁻¹⁹
W = 4.8 10⁻¹³ J
When the electron is in air, its kinetic energy can be transformed into gravitational potential energy
As the electron is in the air, all work is transformed into scientific energy
W = K
starting point Em₀ = K = W
end point Em_F = U = m g h
energy conservation Em₀ = Em_f
W = m g h
h = [tex]\frac{W}{mg}[/tex]
let's calculate
h = [tex]\frac{4.8 \ 10^{-13} x}{9.1 \ 10^{-31} \ 9.8 }[/tex]
h = 5.38 10¹⁶ m
Electron involved in making in spark travel through the air before it collides with an atom will be at the distance of 5.38 10¹⁶ m.
What is an electric field?An electric field is an electric property that is connected with any location in space where a charge exists in any form. The electric force per unit charge is another term for an electric field.
Let's begin this exercise by assuming that all of the electron's potential energy is turned into kinetic energy, and then we'll apply the law of conservation of energy.
Energy before ionization;
[tex]\rm Em_0 = U = qE[/tex]
Energy after ionization;
[tex]Em_f = K = \frac{1}{2} mv^2[/tex]
From the law of conservation of energy principle;
[tex]Em_0 = Em_f \\\\ q E =\frac{1}{2} m v^2\\\\ v^2 = \frac{2qE }{m}[/tex]
The relationship between net work and kinetic energy;
[tex]W_{net} = \triangle K[/tex]
The work function is defined as net work, which is the work done by the electron minus the binding energy with the atom.
[tex]W - \phi = K_f - K_0[/tex]
[tex]W = K_f+ \phi[/tex]
[tex]W = \frac{1}{2} m \times \frac{2qE}{m} + E\\ \\W = qE + \phi \\\\ \rm W = 1.6 \times 10^{-19}\times 3 \tims 10^6 3 10⁶ +3 \times 10^{-19} \\\\ W = 4.8 \times 10^{-13}+ 3 \times 10^{-19}\\\\ W = 4.8 \times 10^{-13} J[/tex]
EMF at starting point;
[tex]\rm Em_0 = K = W[/tex]
EMF at the endpoint;
[tex]\rm Em_F = U = m g h[/tex]
From the law of conservation of energy principle;
[tex]Em_0 = Em_f \\\\ W = m g \\\\ h = \frac{W}{mg}\\\\\ h = \frac{4.8 \timjes 10^{-13}}{9.1 \times 10^{-31} \times 9.81 }\\\\ \rm h= 5.38 \times 10^{16}[/tex]
Hence electron involved in making in spark travel through the air before it collides with an atom will be at a distance of 5.38 10¹⁶ m.
To learn more about the electric field refer to the link;
https://brainly.com/question/26690770
Which of the following is NOT part of the grain group?
Answer:
Any food made from wheat, rice, oats, cornmeal, barley, or another cereal grain is a grain product. Anything else is not
Explanation:
Look at this attached photo
Answer:
C) Kinetic energy
Explanation:
Since the skateboarder is ALREADY going down the hill, he is using kinetic energy.
Kinetic energy is when you're moving and in motion
A 51.0 kg crate, starting from rest, is pulled across a floor with a constant horizontal force of 225 N. For the first 10.0 m the floor is frictionless, and for the next 10.5 m the coefficient of friction is 0.17.
What is the final speed of the crate after being pulled these 20.5 meters?
Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:
[tex] F = ma [/tex]
[tex] a = \frac{F}{m} = \frac{225 N}{51.0 kg} = 4.41 m/s^{2} [/tex]
Now, we can calculate the final speed of the crate at the end of 10.0 m:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad_{1} [/tex]
[tex] v_{f} = \sqrt{0 + 2*4.41 m/s^{2}*10.0 m} = 9.39 m/s [/tex]
For the next 10.5 meters we have frictional force:
[tex] F - F_{\mu} = ma [/tex]
[tex] F - \mu mg = ma [/tex]
So, the acceleration is:
[tex] a = \frac{F - \mu mg}{m} = \frac{225 N - 0.17*51.0 kg*9.81 m/s^{2}}{51.0 kg} = 2.74 m/s^{2} [/tex]
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad_{2} [/tex]
[tex] v_{f} = \sqrt{(9.39 m/s)^{2} + 2*2.74 m/s^{2}*10.5 m} = 12.07 m/s [/tex]
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!