Answer: y = 63x - 180
Step-by-step explanation: y = mx + b ------(i)
Step one: y = 9, x = 3
9 = 63 (3) + b
9 = 189 + b
-180 = b
b = -180
y = 63x - 180
Answer is
y = -1/3x-6
IN Date OUT IN OUT Employee Time Card: 7:30 10/1 11:30 4:15 12:00 John Apple 10/2 8:15 11:00 5:15 11:45 10/3 11:15 3:55 7:00 12:10 Dept: Cust. Serv. 4:30 10:55 12:00 6:25 10/4 NOTE: NO OVERTIME 1:30 5:00 12:45 10/5 6:00 TOTAL HOURS RATE per hour: $13.75 What is John's total pay for the week? deneaker notes
I can see it now
thank you
11:30-7:30= 4h
11:00-8.15=2:45h
11:15-7:00=4:15h
10:55-6:25=4:30h
10:45-6:00=4:45h
Total = 4+2.75+4.25+4.5+4.75=20.25
4:15-12:00=4:15h
5:15-11:45=5:30h
3:55-12:10=3:45h
4:30-12:00=4:30h
5:00-1:30=3:30h
Total = 4.25+5.5+3.75+4.5+3.5=21.5
Total hours = 21.5+20.25=41.75
ok, the total pay would be:
Rate per hour * total hours:
[tex]13.75\times41.75=574.0625[/tex]Did you get the same value? hello? are you still with me? ok
do you have any question? oh, remember: After our session, the answer is saved in your profile . My pleasure
what is an equation of the line that passes through the point -6 and -7 and is perpendicular to the line 6x+5y=30I got y=5/6-2 but apparently its wrong
First we can find the slope. The standard form of the equation of a line is:
[tex]y=ax+b[/tex]Where a is the slope and b is the intercept.
When 2 lines are perpendicular, the slopes are reciprocal and opposite to each other. If we write the given equation of the perpendicular line in the standard form we have:
[tex]6x+5y=30\rightarrow y=-\frac{6}{5}x+\frac{30}{5}\rightarrow y=-\frac{6}{5}x+6[/tex]So you got the slope right, it's 5/6.
Now, with the given point we find the intercept. The point is x = -6 and y = -7, so we replace these values into the expression we have until now:
[tex]y=\frac{5}{6}x+b[/tex][tex]-7=\frac{5}{6}(-6)+b[/tex]And solve for b
[tex]-7=-5+b\rightarrow b=-7+5=-2[/tex]So the equation of the line is:
[tex]y=\frac{5}{6}x-2[/tex]Mr. Santos cycled a total of 16 kilometers by making 4 trips to work. After 5 trips to work, how many kilometers will Mr. Santos have cycled in total? 5 Kilometers
According to the information given in the exercise, you know that he cycled a total of of 16 kilometers by making 4 trips to work.
Let be "d" the total amount of kilometers Mr. Santos will have cycled after 5 trips to work.
Based on the above, you can set up the following proportion:
[tex]\frac{16}{4}=\frac{d}{5}[/tex]Finally, you must solve for the variable "d" in order to find its value. This is:
[tex]\begin{gathered} 4=\frac{d}{5} \\ \\ (4)(5)=d \\ d=20 \end{gathered}[/tex]Therefore, the answer is:
[tex]20\operatorname{km}[/tex]What is the equation of this line?
A. y=4/3x−5
B. y=3/4x−5
C. y=−43/x−5
D. y=4/3x+5
a triangular pyramid has four faces h = b = 1. What is the pryimands surface area?(There's no image)(
Let's find the area of one face
[tex]A=\frac{bh}{2}[/tex]Where h = b = 1.
[tex]A=\frac{1\cdot1}{2}=\frac{1}{2}[/tex]Given that there are four faces, we have to multiply the area above by 4
[tex]S=4\cdot\frac{1}{2}=2[/tex]Hence, the answer is 2 square units.The quadratic equation y= -16t^2 +4t+2 represents a moving objects trajectory where y is the objects height in feet above the ground after t seconds . At what time will the objects hit the ground ?
Since y is the object's height, it will be on the ground when y = 0. So let's do that:
[tex]0=-16t^2+4t+2[/tex]Here, we can use Bhaskara's Formula to find the roots of the equation:
[tex]\begin{gathered} t=\frac{-4\pm\sqrt[]{4^2-4\cdot(-16)\cdot2}}{2\cdot(-16)} \\ t=\frac{-4\pm\sqrt[]{16+128}}{-32}=\frac{-4\pm\sqrt[]{144}}{-32}=\frac{-4\pm12}{-32} \\ t_1=\frac{-4+12}{-32}=\frac{8}{-32}=-0.25 \\ t_2=\frac{-4-12}{-32}=\frac{-16}{-32}=0.5 \end{gathered}[/tex]Since the time at start is 0, we can't have a negative sign, it would be like saying what happened before the object was in the air. The it will hit the ground at t = 0.5 s.
Mr. Ellis has started a vegetable garden. He bought 15 bags of soil and 3 bags offertilizer for $282.72. He realized he didn't have enough supplies, so he boughtanother 5 bags of soil and 2 bags of fertilizer for $107.23. What was the cost of eachbag of soil and fertilizer? Let the cost of each bag of soil = x and the cost of eachbag of fertilizer = y. A. Each bag of soil was $12.99, and each bag of fertilizer was $16.25.B. Each bag of fertilizer was $9.75, and each bag of soil was $77.99.C. Each bag of soil was $9.75, and each bag of fertilizer was $77.99.D. Each bag of fertilizer was $12.99, and each bag of soil was $16.25.
The variables are:
x: cost of each bag of soil
y: cost of each bag of fertilizer
He bought 15 bags of soil and 3 bags of fertilizer for $282.72, that is,
15x + 3y = 282.72 (eq. 1)
He bought another 5 bags of soil and 2 bags of fertilizer for $107.23, that is,
5x + 2y = 107.23 (eq. 2)
Multiplying equation 2 by 3, we get:
3(5x + 2y) = 3(107.23)
3(5x) + 3(2y) = 3(107.23)
15x + 6y = 321.69 (eq. 3)
Subtracting equation 3 to equation 1, we get:
15x + 3y = 282.72
-
15x + 6y = 321.69
-------------------------------
-3y = -38.97
y = -38.97/-3
y = 12.99
Replacing this result into the first equation,
15x + 3(12.99) = 282.72
15x + 38.97 = 282.72
15x = 282.72 - 38.97
15x = 243.75
x = 243.75/15
x = 16.25
D. Each bag of fertilizer was $12.99, and each bag of soil was $16.25.
2/(x - 1) - 1/(x + 1) - 3/(x ^ 2 - 1)
The first step to solve this problem is to solve the substraction between the first two fractions:
[tex]undefined[/tex]What is the solution to the system of equations shown below?3x+8y=-186x+16y=-54A.) The solution is (0, −18).B.) The solution is (−18, 0).C.) There are an infinite number of solutions.D.) There is no solution.
3x + 8y = -18 -----------------------(1)
6x + 16 y = - 54 ---------------------------(2)
Using elimination method,
multiply equation (1) by 6 and equation (2) by 3
18x + 48y = -108 -----------------(3)
18 x + 48y = 162 -------------------(4)
From this, we can deduce that there is no solution to the system of equations
what is 9.77 with 8% tax
it will be 9.77+0.08(9.77)=10.5516
The volume of the rectangular prism is 105 cubic yards. What is the surface area of the prism in square feet?
Answer:
198.18 is the answer
Step-by-step explanation:
the answer is 198.18
hope it helps
enter the explicit and recursive equations for sequence 2, 12,72, 432
The explicit and recursive equations of the sequence 2, 12, 72, 432 are f(n) = 2 · 6ⁿ⁻¹ and f(n) = 6 · f(n - 1).
What is the equation behind the sequence?
In this problem we find an example of a geometric progression, whose explicit and recursive forms are defined below:
Explicit form
f(n) = a · rⁿ⁻¹
Recursive form
f(1) = 2, f(n) = r · f(n - 1)
Where:
a - Value of the first element of the series.r - Common ration - Index of the n-th element of the series.If we know that a = 2 and r = 6, then we find the explicit and recursive equations below:
Explicit form
f(n) = 2 · 6ⁿ⁻¹
Recursive form
f(n) = 6 · f(n - 1)
The first four elements of the sequence are 2, 12, 72, 432.
To learn more on geometric sequences: https://brainly.com/question/11266123
#SPJ1
45. (09.01) Let A = {1, 2, 3, 4, 5} and B = {2,4}. What is A n B? O {2,4) O {1, 2, 3) O {1, 2, 3, 4 } O {1, 2, 3, 4,5)
Answer:
{2,4}
Explanation:
Given sets A and B defined below:
[tex]\begin{gathered} A=\mleft\{1,2,3,4,5\mright\} \\ B=\mleft\{2,4\mright\} \end{gathered}[/tex]The set A Π B is the set of elements common to sets A and B.
[tex]A\cap B=\{2,4\}[/tex]To mail the envelope first class do US post office charges $.39 for the 1st ounce and $.22 for each additional ounce . use inequality to find the maximum number of whole ounce of that can be mailed for $7.24
Let N be the total amount of whole ounces that are mailed.
Since mailing the first ounce has a cost of $0.39, then there will be N-1 ounces charged for $0.22 each.
The total cost of mailing N ounces will be:
[tex]0.39+0.22\times(N-1)[/tex]If that cost cannot exceed $7.24, then:
[tex]0.39+0.22\times(N-1)\le7.24[/tex]Solve the inequality for N:
[tex]\begin{gathered} \Rightarrow0.22\times(N-1)\le7.24-0.39 \\ \Rightarrow0.22N-0.22\le6.85 \\ \Rightarrow0.22N\le6.85+0.22 \\ \Rightarrow0.22N\le7.07 \\ \Rightarrow N\le\frac{7.07}{0.22} \\ \Rightarrow N\le32.136\ldots \end{gathered}[/tex]Since N must be a whole number, the maximum value of N that satisfies the inequality is 32.
Therefore, the maximum number of whole ounces that can be mailed for $7.24 is:
[tex]32[/tex]What does slope mean?
Slope is a measure of its steepness
Mathematically,
Slope = Rise / Run
Rise = y2 - y1
Run = x2 - x1
Slope = y2 - y1 / x2 - x1
Answer:
Suppose a linear equation describes something (say, population growth). The slope is the rate (say, of growth) and the y-intercept gives the starting value.
Step-by-step explanation:
how do I graph the line with the given slope m and y-intercept b.
m=5/3,b=-4
y=(5/3)x+4
I am aware that the slope is "big," m = - 5 /3, and that the yy-intercept is "left(0, 4), right" (0,4). The final graph of the line should be declining when viewed from left to right because the slope is negative.
y = mx+c
how to draw this graph?
step 1: Plot the given equation's yy-intercept, which is left(0,4right), first (0,4).
On the xy axis, the position (0,4) .
step2: Use the slope largem = -5 /3
m= 5/3
to locate a different point using the y-intercept b as a guide. The slope instructs us to move 3 units to the right after dropping down 5 units.
To find the opposite spot, start at (0,4) and go 5 units down and 3 units to the right.
Step 3: Make a line that goes through all of the points.
Create a line that joins the coordinates (0,4) and (3,5)
To learn more about y-intercept b refer to:
https://brainly.com/question/26231013
#SPJ13
h(x) = 3a + 410-8-h612-X10-8-668-2-2-10Select the correct answer from each drop-down menu.Function h is alwaysThe function'sis located at (0,5), and there is noThe function isfor all values of x.
We are given the following exponential function.
[tex]h(x)=3^x+4_{}[/tex]The function h(x) is always increasing as can be seen in the given graph.
The y-intercept of a graph is the point where the function intersects/crosses the y-axis.
As you can see from the graph, the graph intersects the y-axis at the point (0, 5)
Therefore, the function's y-intercept is located at (0, 5)
The x-intercept of a graph is the point where the function intersects/crosses the x-axis.
As you can see from the graph, the graph does not intersect the x-axis at any point.
Therefore, there is no x-intercept.
Notice that the graph of the function h(x) is always positive for all values of x.
Answer:
Step-by-step explanation:
Solve for x in the parallelogram below.
Answer:
3
Step-by-step explanation:
In parallelogram, opposite sides are equal.
Here,
5x + 2 and 17 are opposite sides.
5x + 2 = 17
5x = 17 - 2
5x = 15
x = 15 / 5
x = 3
A homeowner estimates that it will take 9 days to roof his house. A professional roofer estimates that he could roof the house in 5 days. How long ( in days ) will it take if the homeowner helps the roofer?
Solution:
If x denote the days, the rate unit being Jobs per day is:
[tex]\frac{1}{x}=\frac{1}{9}+\frac{1}{5}[/tex]this is equivalent to
[tex]\frac{1}{x}=\frac{5+9}{45}=\frac{14}{45}[/tex]solving for x, we get:
[tex]x\text{ = }\frac{45}{14}=3.2\text{ days}[/tex]that is just a little more than 3 days.
The graph of y=(x + 2)^2 – 1 is reflected across the x axis and then translated up 3 units and right 4 units. What is the equation for the transformed graph?
ANSWER
[tex]y=-(x-2)^2\text{ + 4}[/tex]EXPLANATION
We have that the graph of y is:
[tex]y=(x+2)^2\text{ - 1}[/tex]It is first reflected about the x axis.
A reflection about the x axis is represented as:
y = -f(x)
which means that we find the negative of the function:
[tex]\begin{gathered} \Rightarrow y=-\lbrack(x+2)^2\text{ - 1\rbrack} \\ y=-(x+2)^2\text{ + 1} \end{gathered}[/tex]Then, it is translated 3 units up (vertical shift) and 4 units right (horizontal shift).
A translation is represented as:
y = f(x - a) + b
where a = horizontal shift; b = vertical shift
So, we have to find:
y = f(x - 4) + 3
That is:
[tex]\begin{gathered} y\text{ = }-\lbrack(x-4)+2\rbrack^2\text{ + 1 + 3} \\ y=-(x-4+2)^2\text{ + 4} \\ y=-(x-2)^2\text{ + 4} \end{gathered}[/tex]Therefore, that is the equation of the transformed graph.
Drag "Yes" if the lengths could create a triangle, or "No" if the lengths could not create a triangle.
Position Value of Term 1 1 2 3 -18 1-24 5 -30 What expression shows the relationship between the value of any term and n, its position in the sequence?
basically they are the negative multiples of 6, so:
[tex]a_n=-6n[/tex]what is the answer to a negative 4 divided by a positive 6?
The expression given as negative 4 divided by a positive 6 has a value of -2/3
How to evaluate the expression?From the question, the expression is given as
negative 4 divided by a positive 6
Rewrite the expression properly
This is rewritten as follows
-4 divided by +6
This can be represented as
-4/6
There are no like terms in the above expression
So, we have the following equation
-4/6 = -4/6
Divide 4 and 6 by a common factor
The common factor is 2
So, we have
-4/6 = -2/3
The expression cannot be further simplified
So, we have the following equation
-4/6 = -2/3
Hence, the value of the expression is -2/3
Read more about expressions at
https://brainly.com/question/4344214
#SPJ1
The expression given as "negative 4 divided by a positive 6" has a value of that is -2/3
What is an expression?Expression in maths is defined as the collection of numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
From the problem, the expression is given as;
"negative 4 divided by a positive 6"
Rewrite the expression properly then;
-4 divided by +6
This can be express as;
-4/6
There are no like terms in the expression
So, we have the equation;
-4/6 = -4/6
Divide 4 and 6 by a common factor;
The common factor is 2
-4/6 = -2/3
So, we have the equation;
-4/6 = -2/3
Hence, the value of the expression will be; -2/3
Read more about expressions at;
brainly.com/question/4344214
#SPJ1
Suppose you deposit $600 into an account that pays 5% annual interest, compounded continuously. How much will you have in the account in 4 years? ƒ(t) = ae^rt
To determine the amount that will be on the account after 4 years you have to apply the given exponential function that models the amount of money on the account with respect to the time.
[tex]f(t)=ae^{rt}[/tex]Where
a represents the initial amount
r represents the interest rate expressed as a decimal value
t is the time period in years
The initial amount on the account is a= $600
The time period is t= 4 years
The interest rate is r=5%, divide it by 100 to express it as a decimal value:
[tex]r=\frac{5}{100}=0.05[/tex]Using this information, you can calculate the final amount:
[tex]\begin{gathered} f(t)=ae^{rt} \\ f(4)=600e^{0.05\cdot4} \\ f(4)=600e^{0.2} \\ f(4)=732.84 \end{gathered}[/tex]After 4 years there will be $732.84 on the account. The correct option is B.
Solve the following compound inequality:0< x+7< 9
you need to subtract 7 in each section of the inequality is
-7< x<2
-7< x and x<2
Let v be the vector from initial point P1=(−4,−9) to terminal point P2=(6,2). Write v in terms of i and j.
Step 1;
P1 = ( - 4 , -9 )
P2 = ( 6 , 2 )
Step 2:
[tex]\begin{gathered} \text{Let P}_1=(x_1,y_1)_{} \\ P_2=(x_2,y_2\text{ ) } \end{gathered}[/tex]Step 3:
[tex]\text{v = (x}_2-x_1)i+_{}(y_2-y_1\text{ ) j}[/tex]Step 4:
[tex]\begin{gathered} \text{v = (x}_2-x_1)i+_{}(y_2-y_1\text{ ) j} \\ \text{v = (6}-(-4))i+_{}(2-(-9)\text{) j} \\ v\text{ = (6+4)i + (2 + 9)j} \\ v\text{ = 10i + 11 j} \end{gathered}[/tex]Four times a number decreased by three is between -15 and 41?
Answer:
The number will lie between -3 and 11
Step-by-step explanation:
Let the number be 'x'
According to the question,
-15 < 4x - 3 < 41
-12 < 4x < 44 (Adding 3)
-3 < x < 11 (Dividing by 4)
Y.11 Multi-step problems with customary uni You have prizes to reveal! Go to your Tracy decides to take her puppy for a walk. After 90 feet, they stop to smell some roses. Then, Tracy runs into a friend 200 yards up the road. They start talking, and soon it's time for Tracy to go home. So, she and her puppy head back to her house. How many feet long was Tracy's walk? feet Submit
Given:
The distance travelled by Tracy till she stopped to smell roses, x=90 feet.
The distance from roses to the friend, y=200 yards.
The distance travelled by Tracy one side,
[tex]\begin{gathered} D=x+y \\ =90\text{ f}eet+200\times3feet \\ =90\text{ f}eet+600\text{ f}eet \\ =690\text{ f}eet \end{gathered}[/tex](1 yard=3 feet).
Now, the total distance travelled byTracy both sides is,
[tex]\begin{gathered} d=2D \\ =2\times690\text{ f}eet \\ =1380\text{ f}eet \end{gathered}[/tex]Therefore, Tracy walk was 1380 feet long.
Parallel and Perpendicular LinesDetermine whether the following lines are parallel, perpendicular, orneither. Write the corresponding letter on the line next to the question.A = parallel, B = perpendicular, or C = neither1. y = }x+6 and y =- *x + 4
One of the criteria for lines being perpendicular is the fact that the slope of the function in a perpendicular line is the inverse of the slope of the first times -1.
And as you can see m (being the slope of the first equation) is the inverse of the second equiation:
[tex]m=\frac{7}{3},m_1=-\frac{1}{m}[/tex][tex]-\frac{1}{m}=-\frac{1}{\frac{7}{3}}=-\frac{3}{7}[/tex]Therefore line 1 is perpendicular to line 2.
If a,b ,and c represent the set of all values of x that satisly the equation below, what is the value(A+ b+ c) + (abc)?X^3-20x = x^2(A) -1(B) 0(C) 1(D) 9
First, we need to find the solutions a, b, and c of the equation:
[tex]x^3-20x=x^2[/tex]We can rewrite it as:
[tex]\begin{gathered} x^3-x^{2}-20x=0 \\ \\ x(x^{2}-x-20)=0 \\ \\ x=0\text{ or }x^{2}-x-20=0 \end{gathered}[/tex]Thus, one of the solutions is a = 0.
To find the other solutions, we can use the quadratic formula. We obtain:
[tex]\begin{gathered} x=\frac{-(-1)\pm\sqrt[]{(-1)^{2}-4(1)(-20)}}{2(1)} \\ \\ x=\frac{1\pm\sqrt[]{1+80}}{2} \\ \\ x=\frac{1\pm\sqrt[]{81}}{2} \\ \\ x=\frac{1\pm9}{2} \\ \\ b=\frac{1-9}{2}=-4 \\ \\ c=\frac{1+9}{2}=5 \end{gathered}[/tex]Now, we need to find the value of the expression:
[tex]\mleft(a+b+c\mright)+abc[/tex]Using the previous solutions, we obtain:
[tex]\mleft(0-4+5\mright)+0(-4)(5)=1+0=1[/tex]Therefore, the answer is 1.