Answer:
C. and D.
Step-by-step explanation:
In the word problem, the two facts to solve the problem are:
A. The wait to ride the roller coaster was 40 minutes and
B. The line of people was 100 meters long
Because the length of waiters has an effect on the time. Thus, if the line is reduced to 50 meters, then the waiting time would reduce i.e 20 minutes.
Therefore, the facts that are not required to solve the word problem are:
C. The roller coaster is the fastest ride at the fair.
D. It was Tuesday.
Please help!! Over several years, Stephon gathered data about his age and the time it took him to run two laps on the school track. The scatter plot shows the data he gathered and the line of best fit. The equation of the line of best fit is y = -2.1x + 565.6. Based on the line of best fit, approximately how long will it take Stephon to run two laps on the track when he is 192 months old?
Answer:
Time taken by Stephen = 162 seconds
Step-by-step explanation:
Stephan gathered data which fits in the line of best fit,
y = -2.1x + 565.6
Where x represents the age (in months)
And y represents the time (in seconds) taken by Stephen to run two laps on the track.
Time taken to run 2 laps at the age of 192 months,
By substituting x = 192 months,
y = -2.1(192) + 565.6
= -403.2 + 565.6
= 162.4 seconds
≈ 162 seconds
Therefore, time taken by Stephen to cover 2 laps was 162 seconds when he was 192 months old.
can I get a step by step explanation Thnx
Answer:
( 2A - kn) /k = m
Step-by-step explanation:
A = k/2(m+n)
Multiply each side by 2/k
2/k *A =2/k * k/2(m+n)
2A /k = m+n
Subtract n from each side
2A /k - n = m+n -n
2A /k - n = m
Getting a common denominator
2A/k - kn/k = m
( 2A - kn) /k = m
Answer:
Step-by-step explanation:
[tex]A=\frac{k(m+n)}{2}\\2A=k(m+n)\\\frac{2A}{k} =m+n\\\frac{2A}{k}-n=m\\2A-kn=km\\\frac{(2A-kn)}{k}=m[/tex]
Find the sum of the cubes of first three composite numbers.
Answer:
792
Step-by-step explanation:
The first three composite numbers are 4, 6 ,8
so 4^3+6^3+8^3=64+216+512=792
In a survey, 29 people were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of $41 and standard deviation of $8. Construct a confidence interval at a 99% confidence level.
Give your answers to one decimal place.
Answer:
The 99% confidence interval is
[tex]37.167< \= x < 44.833[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 29[/tex]
The sample mean is [tex]\= x =[/tex]$41
The sample standard deviation is [tex]\sigma =[/tex]$8
The level of confidence is [tex]C =[/tex]99%
Given that the confidence level id 99% the level of confidence is evaluated as
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1[/tex]%
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table which is
[tex]Z_{\frac{\alpha }{2} } = 2.58[/tex]
The reason we are obtaining values for is because is the area under the normal distribution curve for both the left and right tail where the 99% interval did not cover while is the area under the normal distribution curve for just one tail and we need the value for one tail in order to calculate the confidence interval
Next we evaluate the margin of error which is mathematically represented as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 2.58 * \frac{8 }{\sqrt{29} }[/tex]
[tex]MOE = 3.8328[/tex]
The 99% confidence level is constructed as follows
[tex]\= x - MOE < \= x < \= x + MOE[/tex]
substituting values
[tex]41 - 3.8328 < \= x < 41 + 3.8328[/tex]
[tex]37.167< \= x < 44.833[/tex]
Plz help this is an evil question
Answer:
18.9 units of fencing
Step-by-step explanation:
First find the perimeter
P = 2(l+w)
P = 2( 2.5+1.28)
P = 2( 3.78)
P =7.56m
We need 2.5 units of fencing for each meter
Multiply by 2.5
7.56*2.5
18.9 units of fencing
Answer:
Julio needs to purchase 18.9 units of fencing.
Step-by-step explanation:
I meter of the perimeter accounts for 2.5 units of fencing. Respectively 2 meters account for 2 times as much, and 3 meters account for 3 times as much of 2.5 units. Therefore, if we determine the perimeter of this rectangular garden, then we can determine the units of fencing by multiplying by 2.5.
As you can see this is a 2.5 by 1.28 garden. The perimeter would be two times the supposed length, added to two times the width.
2.5 x 2 + 1.28 x 2 = 5 + 2.56 = 7.56 - this is the perimeter. The units of fencing should thus be 7.56 x 2.5 = 18.9 units, or option d.
Need Answers ASAP!!!! (due today)
Answer:
1.
a. 20 m²: barn door is 5m x 4m
b. 468 m²:surface area of barn
i. left and right barn walls: 2(15 x 7) = 210
ii. back wall: 7 x 8 = 56
iii. front wall: (7 x 8) - 20* = 36
*20 for the barn door
iv. front of roof: (4 x 4) / 2 = 8 x 2* = 16
*I split the triangle into 2 smaller triangles
v. sides of roof: 2(5 x 15) = 150
2.
a. 15 m²: silo door is 3m x 5m
b. 244.18 m²: surface area of silo
i. SA(silo)=2πrh+2πr²
ii. SA(silo) = 2π(2.5)(14) + 2π(2.5)²
iii. SA(silo) = 259.18
iv. SA(silo - door) = 259.18 - 15
v. SA(silo - door) = 244.18
3.
a. 712.18 m²: total surface area painted red
i. add both surface areas: 468 + 244.18 = 712.18 m²
hope this helps :)
A casino offers a game wherein a player can roll one six sided die. If the player rolls a 1or 2, they
win. If the player rolls a 3, 4, 5, or 6, they lose. If a player bets $2.00 and wins, they will be paid out
an additional $3.00. If they lose, they lose their initial $2.00. Find the expected value of the $2.00
bet.
Enter your answer rounded to the nearest cent and don't forget, expected values can be negative!
Answer:
Expected Value of $2:
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
Step-by-step explanation:
Probability of a win = 2/6 = 0.3333
Probability of a loss = 4/6 = 0.6667
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
The casino game player's expected value is computed by multiplying each of the possible outcomes by the likelihood (probability) of each outcome and then adding up the values. The sum of the values is the expected value, which amounts to a loss of $0.33.
x=7 what would match this soulotion
Answer:
x = 7
Step-by-step explanation:
7 = 7
It's given
6th grade math, help me please.
Answer:
a) [tex]\frac{2}{3} \,\frac{lb}{bread}[/tex]
b) [tex]1\frac{1}{4} \,\frac{in}{domino}[/tex]
Step-by-step explanation:
Part a:
every 4 lbs of flour, she makes 6 loaves of bread. this as a rate in simplest fraction form is:
[tex]\frac{4}{6} \,\frac{lb}{bread} = \frac{2}{3} \,\frac{lb}{bread}[/tex]
Part b:
every 10 inches , 8 dominoes can be placed. then the rate can be written as:
[tex]\frac{10}{8} \,\frac{in}{domino} = \frac{5}{4} \,\frac{in}{domino} =1\frac{1}{4} \,\frac{in}{domino}[/tex]
6th grade math, help me please:)
Answer:
A. 3/5
Step-by-step explanation:
Simple math, 9/15. Divide both by 3.
3*3=9 and 3*5=15 so answer is 3/5!
Answer:
answer is A
Step-by-step explanation:
this is a probability question
divide the number of baskets made by the total number of attempts
9/15 = 3/5
What is the focus of the parabola? y=−1/4x2−x+3
Answer: Focus = (-2, 3)
Step-by-step explanation:
[tex]y=-\dfrac{1}{4}x^2-x+3\\\\\rightarrow a=-\dfrac{1}{4},\ b=-1[/tex]
First let's find the vertex. We do that by finding the Axis-Of-Symmetry:
[tex]AOS: x=\dfrac{-b}{2a}\quad =\dfrac{-(-1)}{2(\frac{-1}{4})}=\dfrac{1}{-\frac{1}{2}}=-2[/tex]
Then finding the maximum by inputting x = -2 into the given equation:
[tex]y=-\dfrac{1}{4}(-2)^2-(-2)+3\\\\y=-1+2+3\\\\y=4[/tex]
The vertex is: (-2, 4)
Now let's find p, which is the distance from the vertex to the focus:
[tex]a=\dfrac{1}{4p}\\\\\\-\dfrac{1}{4}=\dfrac{1}{4p}\\\\\\p=-1[/tex]
The vertex is (-2, 4) and p = -1
The focus is (-2, 4 + p) = (-2, 4 - 1) = (-2, 3)
Identify any outlier(s) in the data. {52, 61, 42, 46, 50, 51, 49, 44, 40, 66, 53, 67, 45, 64, 60, 69}
An outlier in statistics is a data point that deviates considerably from other observations. The given data set has no outlier.
What is an outlier?An outlier in statistics is a data point that deviates considerably from other observations. An outlier can be caused by measurement variability or by experimental mistake; the latter is sometimes eliminated from the data set.
To find the outlier for the given data set follow the given steps.
Step one: The first step is to find the quartiles for the data set.
For this data set, the quartiles are:
Q1 = 45.5
Q3 = 62.5
Step Two: Find the Interquartile Range
The interquartile range is the difference between the first and third quartiles.
IQR = Q3 - Q1
IQR = 45.5 - 62.5
IQR = 17
Step Three:
The next step is to set up a fence beyond the first and third quartiles using the interquartile range.
Lower Fence = Q1 - (1.5 × IQR)
Lower Fence = 45.5 - (1.5 × 17)
Lower Fence = 20
Upper Fence = Q3 + (1.5 × IQR)
Upper Fence = 62.5 + (1.5 × 17)
Upper Fence = 88
Step Four: Find the Outliers
Any numbers in the data that are above or below the fences are outliers.
Since there are no numbers outside the two fences. Hence, it can be concluded that the given data set does not have, any outlier.
Learn more about Outlier:
https://brainly.com/question/26958242
#SPJ2
CAN SOMEONE PLEASE HELP ME! To find x
ANSWERS
A-(11)
B-(14)
C-(7)
D-(3)
Answer:
C-(7)
Step-by-step explanation:
Given figure is a trapezoid and 21 - x is the mid segment.
Therefore by mid-segment formula of a trapezoid, we have:
21 - x = 1/2(17 + 11)
21 - x = 1/2 * 28
21 - x = 14
21 - 14 = x
7 = x
x = 7
f(x)=2x+1 and g(x)=3x2+4, find (f∘g)(−2) and (g∘f)(−2).
Answer:
Step-by-step explanation:
Fog=2(g)+1
2(3x+2+4)+1
2{3x+6)+1
6x+12+1
=6x+13
Fog(-2)=6(-2)+13
-12+13
=1
Gof=3(f)+2+4
=3(2x+1)+6
6x+3+6
=6x+9
Gof(-2)=6(-2)+9
-12+9
=-3
What is the equation perpendicular to -x+y= 7 and passes through (-1,1)
Answer:
Step-by-step explanation:
First , let us rewrite the given equation into y= mx+b format
.y= -x +7
Slope is -1
Slope of the line perpendicular to the given equation is -(-1) ie., 1
Let us find the y-intercept by plugging in the values of x,y and slope into the equation y= Mx +b
1 = -1 +b
2 = b
Equation of the line perpendicular to the given equation and passing through (-1,1) is
y=x +2
6th grade math , help me please:)
Answer:
(a) $7/ticket
(b) 3 cats/dog
(c) 10 ft/sec
(d) 16 cups/gal
Step-by-step explanation:
(a) $35 for 5 tickets
$35/(5 tickets) = $7/ticket
(b) 21 cats and 7 dogs
21 cats/(7 dogs) = 3 cats/dog
(c) 40 ft in 4 seconds
40 ft/(4 sec) = 10 ft/sec
(d) 48 cups for 3 gallons
48 cups/(3 gal) = 16 cups/gal
The line passing through points
(4,0) and (-2, 1) has a slope of?
A. -6
B. -1/6
C. 1/2
D. 2
E. 1/6
Answer:
b. -1/6
Step-by-step explanation:
slope = (difference in y)/(difference in x)
slope = (1 - 0)/(-2 - 4) = 1/(-6) = -1/6
Answer:
m = -1/6 = B
Step-by-step explanation:
[tex]m = \frac{y_2-y_1}{x_2-x_1} \\ x_1=4\\ y_1=0\\ x_2=-2\\y_2=1.\\m = \frac{1-0}{-2-4} \\m = \frac{1}{-6}[/tex]
Intelligence quotients (IQs) measured on the Stanford Revision of the Binet Simon Intelligence Scale are normally distributed with a mean of 100 and a standard deviation of 16. Determine the percentage of people who have an IQ between 115 and 140.
Answer:
the percentage of people who have an IQ between 115 and 140 is 16.79%
Step-by-step explanation:
From the information given:
We are to determine the percentage of people who have an IQ between 115 and 140.
i.e
P(115 < X < 140) = P( X ≤ 140) - P( X ≤ 115)
[tex]P(115 < X < 140) = P( \dfrac{X-100}{\sigma}\leq \dfrac{140-100}{16})-P( \dfrac{X-100}{\sigma}\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{140-100}{16})-P( Z\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{40}{16})-P( Z\leq \dfrac{15}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.9375)[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.938)[/tex]
From Z tables :
[tex]P(115 < X < 140) = 0.9938-0.8259[/tex]
[tex]P(115 < X < 140) = 0.1679[/tex]
Thus; we can conclude that the percentage of people who have an IQ between 115 and 140 is 16.79%
Using the normal distribution, it is found that 82.02% of people who have an IQ between 115 and 140.
Normal Probability DistributionIn a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem:
The mean is of [tex]\mu = 100[/tex].The standard deviation is of [tex]\sigma = 15[/tex].The proportion of people who have an IQ between 115 and 140 is the p-value of Z when X = 140 subtracted by the p-value of Z when X = 115, hence:
X = 140:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 100}{16}[/tex]
[tex]Z = 2.5[/tex]
[tex]Z = 2.5[/tex] has a p-value of 0.9938.
X = 115:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{115 - 100}{16}[/tex]
[tex]Z = -0.94[/tex]
[tex]Z = -0.94[/tex] has a p-value of 0.1736.
0.9938 - 0.1736 = 0.8202.
0.8202 = 82.02% of people who have an IQ between 115 and 140.
More can be learned about the normal distribution at https://brainly.com/question/24663213
Please helppp!!!!! Geometry
Answer:
[tex]\boxed{Option \ 4}[/tex]
Step-by-step explanation:
∠YVZ = 180 - 52 - 43 - 38 (Angles on a straight line add up to 180 degrees so if we try to find an unknown angle on the straight line, we need too subtract all the other angles from 180 degrees)
=> ∠YUZ = 47 degrees
Step-by-step explanation: In the figure shown, <UVW is a straight angle.
This means it measures 180 degrees.
So to find <YVZ, we add up all the angles and subtract the sum
from 180 to get the answer to this problem.
43 + 52 + 38 gives us a sum of 133.
Now we take 180 - 133 yo get 47.
So m<YVZ is 47 degrees.
What is the measure of o?
Answer:
2π radians
Step-by-step explanation:
You are flying a kite on a line that is 350 feet long. Let's suppose the line is perfectly straight (it never really is) and it makes an angle of 65 degrees with the horizontal direction. The kite is flying at an altitude of feet.
Answer:
We can think that the line of the kite is the hypotenuse of a triangle rectangle, and the altitude is one of the cathetus of the triangle.
And we know that it makes an angle of 65° with the horizontal (i guess this is measured between the hypotenuse and the horizontal adjacent to the kite.
This angle is complementary to the top angle of our triangle rectangle, such that A + 65° = 90°
A = 90° - 65° = 25°
Then the altitude of the kite is the adjacent cathetus to this angle.
We can use the relation:
sin(A) = Adjacent cathetus/hypotenuse.
Sin(25°) = X/350ft
Sin(25°)*350ft = X = 147.9m
The kite is flying at an altitude of approximately 317.20 feet.
The situation will form a right angle triangle.
The hypotenuse of the triangle is the will be the line of the kite which is 350 ft long.
The line makes an angle of 65° with the horizontal direction. The horizontal direction is the adjacent of the triangle formed.
Using trigonometric ratio, the altitude of the kite can be found below.
The altitude of the kite is the height/ opposite side of the triangle.
Therefore,
sin 65° = opposite / hypotenuse
sin 65° = opposite / 350
cross multiply
opposite = 350 × sin 65
altitude of the kite = 350 × 0.90630778703
altitude of the kite = 317.207725463
altitude of the kite ≈ 317.20 ft
read more; https://brainly.com/question/13835041?referrer=searchResults
Find the length L of the curve
[tex]y = \sqrt{x} [/tex]
from the point P(0,0) to the point Q(4,2)
Answer:
4.647 to the nearest thousandth.
Step-by-step explanation:
The formula for the length of an arc between x = a and x = b is
a
∫ √( 1 + (f'(x))^2) dx
b
Here f(x) = √x so
we have ∫ (√( 1 + (1/2 x^-1/2))^2 ) between x = 0 and x = 4.
= ∫ ( √( 1 + 1/(4x)) dx between x = 0 and x = 4.
This is not easy to integrate but some software I have gives me the following
length = √17 + 1/8 log(33 + 1/8 √17)
= 4.647.
Find the slope of the line passing through the points (-5, 3) and (7,9).
Answer:
[tex]\huge\boxed{slope=\dfrac{1}{2}=0.5}[/tex]
Step-by-step explanation:
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points
[tex](-5;\ 3)\to x_1=-5;\ y_1=3\\(7;\ 9)\to x_2=7;\ y_2=9[/tex]
Substitute:
[tex]m=\dfrac{9-3}{7-(-5)}=\dfrac{6}{7+5}=\dfrac{6}{12}=\dfrac{6:6}{12:6}=\dfrac{1}{2}[/tex]
Answer:
1/2
Step-by-step explanation:
We can use the slope formula since we have 2 points
m = ( y2-y1)/(x2-x1)
= (9-3)/( 7 - -5)
= (9-3) /( 7+5)
= 6/ 12
= 1/2
John needs to produce a scale diagram of a bedroom using a scale of 1:40. The length of the room is 3.4 metres. What is the length on the diagram? _____ cm
Answer:
8.5cm
Step-by-step explanation:
convert 3.4metres to cm that is by multiplying by 100
3.4×100=340cm
1rep 40
?rep 340
that is 340/40
=8.5cm
Answer:
8.5 cm
Step-by-step explanation:
Scale = 1:40
Length of the room = 3.4 meters
3.4 meters =3.4 X 100 =340 cm
Since 1 unit on the diagram represents 40 units
The length of the diagram
[tex]=\dfrac{340}{40}\\\\=8.5$ cm[/tex]
The length of the room on the diagram is 8.5 cm.
45% of 80.374 is a number between
Answer:
36.1683
Step-by-step explanation:
45*80.374/100=
Given: AD = BC and AD || BC
Prove: ABCD is a parallelogram.
Angles Segments Triangles Statements Reasons
ZBCA
DAC
A
Statements
Reasons
00
D
с
Assemble the proof by dragging tiles to
the Statements and Reasons columns.
Triangle DAC is congruent to triangle BCA by SAS congruence theorem.
What is the congruence theorem?Triangle congruence theorem or triangle congruence criteria help in proving if a triangle is congruent or not. The word congruent means exactly equal in shape and size no matter if we turn it, flip it or rotate it.
Given that, AD = BC and AD || BC.
AD = BC (Given)
AD || BC (Given)
AC = AC (Reflexive property)
∠DAC=∠BCA (Interior alternate angles)
By SAS congruence theorem, ΔDAC≅ΔBCA
By CPCT, AB=CD
Therefore, triangle DAC is congruent to triangle BCA by SAS congruence theorem.
To learn more about the congruent theorem visit:
https://brainly.com/question/24033497.
#SPJ5
what is the volume of the specker below volume of a cuboid 50cm 0.4m 45cm
Answer:
50*0.4*45=900cm²
Please help me identify the rays!!!!
Answer:
D (The last choice)
Step-by-step explanation:
We know that rays are lines with a dot on one side and an arrow on the other. WE also know that lines have two arrows on each end. Keeping this in mind, we can identify which line segments and rays and lines.
At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 8 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude. At what rate is the height of the pile changing when the pile is 22 feet high
Answer:
(11π/9 )ft/s
Step by step Explanation
Let us denote the height as h ft
But we were told that The diameter of the base of the cone is approximately three times the altitude, then
Let us denote the diameter = 3h ft, and the radius is 3h/2
The volume of the cone is
V = (1/3)π r^2 h
Then if we substitute the values we have
= (1/3)π (9h^2/4)(h) = (3/4)π h^3
dV/dt = (9/4)π h^2 dh/dt
We were given as 22feet and rate of 8 cubic feet per minute
h = 22
dV/dt = 8
8= (9/4)π (22) dh/dt
= 11π/9ft/s
Therefore, the rate is the height of the pile changing when the pile is 22 feet is
11π/9ft/s
Enter the correct answer in the box by replacing the values of a and b. f(x) = a(b)^x
Answer:
f(x)= 8(0.5)^x
Step-by-step explanation:
As you can see on the graph there are two specific points labeled:
(0,8) and (1,4)
The 8 would be the initial value and starting point of the "design"
A is always the initial value so replace that.
Then proceed to divide 4 by 8 to figure out the percentage change its 0.5
leave x as it is