Select all the expressions that are equivalent to 312 • 79. 33 • 34 • 49

(33)9 • (73)6

73 • (3–4)–3 • 76

(33 + 39) • (76 + 73)

320 • (73)3 • (34)–2


please help asap

Answers

Answer 1

The expressions that are equivalent to 312 • 79 are (33)9 • (73)6 and 320 • (73)3 • (34)–2.

To determine which expressions are equivalent to 312 • 79, we need to evaluate each option and compare the results.  

First, let's consider (33)9 • (73)6. Here, (33)9 means raising 33 to the power of 9, and (73)6 means raising 73 to the power of 6. By evaluating these powers and multiplying the results, we obtain the product.

Next, let's examine 320 • (73)3 • (34)–2. Here, (73)3 means raising 73 to the power of 3, and (34)–2 means taking the reciprocal of 34 squared. By evaluating these values and multiplying them with 320, we obtain the product.

Expressions yield the same result as 312 • 79, confirming their equivalence. The other options listed do not produce the same value when evaluated, and thus are not equivalent to 312 • 79.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11


Related Questions

A) Consider a linear transformation L from R^m to R^n
. Show that there is an orthonormal basis {v1,...,vm}
R^m such that the vectors { L(v1 ), ,L ( vm)}are orthogonal. Note that some of the vectors L(vi ) may be zero. Hint: Consider an orthonormal basis 1 {v1,...,vm } for the symmetric matrix AT A.
B)Consider a linear transformation T from Rm to Rn
, where m ?n . Show that there is an orthonormal basis {v1,... ,vm }of Rm and an orthonormal basis {w1,...,wn }of Rn such that T(vi ) is a scalar multiple of wi , for i=1,...,m
Thank you!

Answers

A) For any linear transformation L from R^m to R^n, there exists an orthonormal basis {v1,...,vm} for R^m such that the vectors {L(v1),...,L(vm)} are orthogonal. B) For any linear transformation T from Rm to Rn, where m is less than or equal to n, there exists an orthonormal basis {v1,...,vm} of Rm and an orthonormal basis {w1,...,wn} of Rn such that T(vi) is a scalar multiple of wi, for i=1,...,m.

A) Let A be the matrix representation of L with respect to the standard basis of R^m and R^n. Then A^T A is a symmetric matrix, and we can find an orthonormal basis {v1,...,vm} of R^m consisting of eigenvectors of A^T A. Note that if λ is an eigenvalue of A^T A, then Av is an eigenvector of A corresponding to λ, where v is an eigenvector of A^T A corresponding to λ. Also note that L(vi) = Avi, so the vectors {L(v1),...,L(vm)} are orthogonal.

B) Let A be the matrix representation of T with respect to some orthonormal basis {e1,...,em} of Rm and some orthonormal basis {f1,...,fn} of Rn. We can extend {e1,...,em} to an orthonormal basis {v1,...,vn} of Rn using the Gram-Schmidt process. Then we can define wi = T(ei)/||T(ei)|| for i=1,...,m, which are orthonormal vectors in Rn. Let V be the matrix whose columns are the vectors v1,...,vm, and let W be the matrix whose columns are the vectors w1,...,wn. Then we have TV = AW, where T is the matrix representation of T with respect to the basis {v1,...,vm}, and A is the matrix representation of T with respect to the basis {e1,...,em}. Since A is a square matrix, it is diagonalizable, so we can find an invertible matrix P such that A = PDP^-1, where D is a diagonal matrix. Then we have TV = AW = PDP^-1W, so V^-1TP = DP^-1W. Letting Q = DP^-1W, we have V^-1T = PQ^-1. Since PQ^-1 is an orthogonal matrix (because its columns are orthonormal), we can apply the Gram-Schmidt process to its columns to obtain an orthonormal basis {w1,...,wm} of Rn such that T(vi) is a scalar multiple of wi, for i=1,...,m.

Learn more about orthonormal vectors here:

https://brainly.com/question/31992754

#SPJ11

geometric summations and their variations often occur because of the nature of recursion. what is a simple expression for the sum i=xn−1 i=0 2 i ?

Answers

Geometric summations and their variations often occur because of the nature of recursion. The sum of the series i=0 to n-1 (2^i) is 2^n - 1.

The sum of the geometric series i=0 to n-1 (2^i) can be expressed as:

2^n - 1

Therefore, the simple expression for the sum i=0 to n-1 (2^i) is 2^n - 1.

To derive this expression, we can use the formula for the sum of a geometric series:

S = a(1 - r^n) / (1 - r)

In this case, a = 2^0 = 1 (the first term in the series), r = 2 (the common ratio), and n = number of terms in the series (which is n in this case). Substituting these values into the formula, we get:

S = 2^0 * (1 - 2^n) / (1 - 2)

Simplifying, we get:

S = (1 - 2^n) / (-1)

S = 2^n - 1

Therefore, the sum of the series i=0 to n-1 (2^i) is 2^n - 1.

Learn more about sum of the series here

https://brainly.com/question/30682995

#SPJ11

find the pmf of (y1|u = u), where u is a nonnegative integer. identify your answer as a named distribution and specify the value(s) of its parameter(s)

Answers

To find the pmf of (y1|u = u), where u is a nonnegative integer, we need to use the Poisson distribution. The Poisson distribution describes the probability of a given number of events occurring in a fixed interval of time or space, given that these events occur independently and at a constant average rate. The pmf of (y1|u = u) can be expressed as: P(y1=k|u=u) = (e^-u * u^k) / k! where k is the number of events that occur in the fixed interval, u is the average rate at which events occur, e is Euler's number (approximately equal to 2.71828), and k! is the factorial of k. Therefore, the named distribution for the pmf of (y1|u = u) is the Poisson distribution, with parameter u representing the average rate of events occurring in the fixed interval.

About Poisson Distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of the number of events occurring in a given time period if the average of these events is known and in independent time since the last event.

Learn more about poisson distribution at https://brainly.com/question/30388228

#SPJ11

(strang 5.1.15) use row operations to simply and compute these determinants: (a) 101 201 301 102 202 302 103 203 303 (b) 1 t t2 t 1 t t 2 t 1

Answers

a. The determinant of the given matrix is -1116.

b. The determinant is 0.

(a) We can simplify this matrix using row operations:

R2 = R2 - 2R1, R3 = R3 - 3R1

101 201 301

102 202 302

103 203 303

->

101 201 301

0 -2 -2

0 -3 -6

Expanding along the first row:

101 | 201 301

-2 |-202 -302

-3 |-203 -303

Det = 101(-2*-303 - (-2*-203)) - 201(-2*-302 - (-2*-202)) + 301(-3*-202 - (-3*-201))

Det = -909 - 2016 + 1809

Det = -1116

Therefore, the determinant is -1116.

(b) We can simplify this matrix using row operations:

R2 = R2 - tR1, R3 = R3 - t^2R1

1 t t^2

t 1 t^2

t^2 t^2 1

->

1 t t^2

0 1 t^2 - t^2

0 t^2 - t^4 - t^4 + t^4

Expanding along the first row:

1 | t t^2

1 | t^2 - t^2

t^2 | t^2 - t^2

Det = 1(t^2-t^2) - t(t^2-t^2)

Det = 0

Therefore, the determinant is 0.

Learn more about determinant at https://brainly.com/question/30329252

#SPJ11

Calcit produces a line of inexpensive pocket calculators. One model, IT53, is a solar powered scientific model with a liquid crystal display (LCD). Each calculator requires four solar cells, 40 buttons, one LCD display, and one main processor. All parts are ordered from outside suppliers, but final assembly is done by Calclt. The processors must be in stock three weeks before the anticipated completion date of a batch of calculators to allow enough time to set the processor in the casing, connect the appropriate wiring, and allow the setting paste to dry. The buttons must be in stock two weeks in advance and are set by hand into the calculators. The LCD displays and the solar cells are ordered from the same supplier and need to be in stock one week in advance. Based on firm orders that CalcIt has obtained, the master production schedule for IT53 for a 10-week period starting at week 8 is given by Week 8 9 10 11 12 13 14 15 16 17 MPS 1.200 1.200 800 1.000 1.000 300 2.200 1.400 1.800 600 Determine the gross requirements schedule for the solar cells, the buttons, the LCD display, and the main processor chips.

Answers

The gross requirements schedule for the solar cells, buttons, LCD display, and main processor chips for a 10-week production schedule for the IT53 calculator model is as follows: Solar Cells: 4,800, Buttons: 48,000 , LCD Displays: 12,000 ,Main Processors: 10,400

To determine the gross requirements schedule for the IT53 calculator model, we need to first calculate the total amount of each part required for each week of production. Based on the given master production schedule, we can calculate the total number of calculators required for each week by multiplying the MPS by the number of weeks in the production period. For example, in week 8, a total of 12,000 calculators are required (1,200 x 10).

Next, we can calculate the total amount of each part required for each week by multiplying the number of calculators required by the number of parts needed per calculator. For example, each calculator requires four solar cells, so in week 8, 48,000 solar cells are required (12,000 x 4). Similarly, each calculator requires 40 buttons, so in week 8, 480,000 buttons are required (12,000 x 40). The LCD displays and main processors are ordered from the same supplier and require one week of lead time, so in week 7, 12,000 LCD displays and 12,000 main processors are required.

By repeating this process for each week in the production schedule, we can calculate the gross requirements schedule for the solar cells, buttons, LCD displays, and main processors. The final results are as follows:

Solar Cells: 4,800

Buttons: 48,000

LCD Displays: 12,000

Main Processors: 10,400

Learn more about  solar cells here:

https://brainly.com/question/29553595

#SPJ11

A 1.4-cm-tall object is 23 cm in front of a concave mirror that has a 55 cm focal length.
a. Calculate the position of the image.
b. Calculate the height of the image.
c.
State whether the image is in front of or behind the mirror, and whether the image is upright or inverted.
State whether the image is in front of or behind the mirror, and whether the image is upright or inverted.
The image is inverted and placed behind the mirror.
The image is upright and placed in front of the mirror.
The image is inverted and placed in front of the mirror.
The image is upright and placed behind the mirror.

Answers

A 1.4-cm-tall object is placed 23 cm in front of a concave mirror with a 55 cm focal length. We need to determine the position and height of the resulting image and whether it is upright or inverted, and in front of or behind the mirror.

a. Using the mirror equation 1/f = 1/do + 1/di where f is the focal length, do is the object distance, and di is the image distance, we can solve for di. Plugging in the values, we get 1/55 = 1/23 + 1/di, which gives di = -19.25 cm. The negative sign indicates that the image is formed behind the mirror.

b. To determine the height of the image, we can use the magnification equation m = -di/do, where m is the magnification. Plugging in the values, we get m = -(-19.25)/23 = 0.837. The negative sign indicates that the image is inverted. The height of the image can be calculated by multiplying the magnification by the height of the object, so hi = mho = 0.8371.4 = 1.17 cm.

c. The image is inverted and formed behind the mirror, so it is located between the focal point and the center of curvature. Since the magnification is greater than 1, the image is larger than the object. Therefore, the image is inverted and magnified and located behind the mirror.

Learn more about magnification here:

https://brainly.com/question/28957672

#SPJ11

The form of "Since some grapefruits are citrus and all oranges are citrus, some oranges are grapefruits" is:
A) Some P are M
All S are M
Some S are P
B) Some M are not P
All M are S
Some S are not P
C) Some M are P
All S are M
Some S are P

Answers

Answer:A

Step-by-step explanation: it is right

A farmer had 4/5 as many chickens as ducks. After she sold 46 ducks, another 14 ducks swam away, leaving her with 5/8 as many ducks as chickens. How many ducks did she have left?

Answers

Let's assume the number of ducks the farmer initially had as 'd' and the number of chickens as 'c'.

Given:

The farmer had 4/5 as many chickens as ducks, so c = (4/5)d.

After selling 46 ducks, the number of ducks becomes d - 46.

After 14 ducks swam away, the number of ducks becomes (d - 46) - 14.

The farmer was left with 5/8 as many ducks as chickens, so (d - 46 - 14) = (5/8)c.

Now we can substitute the value of c from the first equation into the second equation:

(d - 46 - 14) = (5/8)(4/5)d.

Simplifying the equation:

(d - 60) = (4/8)d,

d - 60 = 1/2d.

Bringing like terms to one side:

d - 1/2d = 60,

1/2d = 60.

Multiplying both sides by 2 to solve for d:

d = 120.

Therefore, the farmer initially had 120 ducks.

After selling 46 ducks, the number of ducks left is 120 - 46 = 74.

After 14 more ducks swam away, the final number of ducks left is 74 - 14 = 60.

So, the farmer is left with 60 ducks.

Learn more about linear equation here:

https://brainly.com/question/2030026

#SPJ11

The concept of rhythmic regularity suggests a. Meters that frequently change within a piece or movement. B. The regular use of syncopated rhythms. C. Strong rhythms moving at a steady tempo. D. Irregular rhythms

Answers

The concept of rhythmic regularity suggests strong rhythms moving at a steady tempo.

What is Rhythm?

Rhythm is a recurring sequence of sound that has a beat, which can be calculated and felt. The rhythm is made up of beats, which can be organized into measures or bars in Western music.

The word "rhythm" comes from the Greek word "rhythmos," which means "any regular recurring motion, symmetry."Rhythmic regularity, as the name implies, refers to the steady beat and consistent rhythm that is present throughout a piece of music.

The beats are emphasized and move at a regular tempo, giving the music a sense of predictability and stability.Syncopated rhythms, on the other hand, are those in which the beat is shifted or emphasized in unexpected ways. They are used to create tension and interest in music by breaking up the regularity of the rhythm.

Therefore, option B "The regular use of syncopated rhythms" is incorrect.

Regularity, on the other hand, suggests a consistent, predictable pattern of beats and rhythms moving at a steady tempo.

Therefore, option C "Strong rhythms moving at a steady tempo" is correct.

Irregular rhythms (option D) are not related to rhythmic regularity, and meters that frequently change within a piece or movement (option A) are examples of irregular rhythms.

To know more about tempo, visit

https://brainly.com/question/31418233

#SPJ11

1. in each of the following, factor the matrix a into a product xdx−1, where d is diagonal: 5 6 -2 -2

Answers

We have factored the matrix A as A = XDX^(-1), where D is the diagonal matrix and X is the invertible matrix.

To factor the matrix A = [[5, 6], [-2, -2]] into a product XDX^(-1), where D is diagonal, we need to find the diagonal matrix D and the invertible matrix X.

First, we find the eigenvalues of A by solving the characteristic equation:

|A - λI| = 0

|5-λ 6 |

|-2 -2-λ| = 0

Expanding the determinant, we get:

(5-λ)(-2-λ) - (6)(-2) = 0

(λ-3)(λ+4) = 0

Solving for λ, we find two eigenvalues: λ = 3 and λ = -4.

Next, we find the corresponding eigenvectors for each eigenvalue:

For λ = 3:

(A - 3I)v = 0

|5-3 6 |

|-2 -2-3| v = 0

|2 6 |

|-2 -5| v = 0

Row-reducing the augmented matrix, we get:

|1 3 | v = 0

|0 0 |

Solving the system of equations, we find that the eigenvector v1 = [3, -1].

For λ = -4:

(A + 4I)v = 0

|5+4 6 |

|-2 -2+4| v = 0

|9 6 |

|-2 2 | v = 0

Row-reducing the augmented matrix, we get:

|1 2 | v = 0

|0 0 |

Solving the system of equations, we find that the eigenvector v2 = [-2, 1].

Now, we can construct the diagonal matrix D using the eigenvalues:

D = |λ1 0 |

|0 λ2|

D = |3 0 |

|0 -4|

Finally, we can construct the matrix X using the eigenvectors:

X = [v1, v2]

X = |3 -2 |

|-1 1 |

To factor the matrix A, we have:

A = XDX^(-1)

A = |5 6 | = |3 -2 | |3 0 | |-2 2 |^(-1)

|-2 -2 | |-1 1 | |0 -4 |

Calculating the matrix product, we get:

A = |5 6 | = |3(3) + (-2)(0) 3(-2) + (-2)(0) | |-2(3) + 2(0) -2(-2) + 2(0) |

|-2 -2 | |-1(3) + 1(0) (-1)(-2) + 1(0) | |(-1)(3) + 1(-2) (-1)(-2) + 1(0) |

A = |5 6 | = |9 -6 | | -2 0 |

|-2 -2 | |-3 2 | | 2 -2 |

Know more about matrix here;

https://brainly.com/question/29132693

#SPJ11

Find the surface area of the prism. Round to the nearest whole number

Show working out

Answers

The surface area of the solid in this problem is given as follows:

D. 189 cm².

How to obtain the area of the figure?

The figure in the context of this problem is a composite figure, hence we obtain the area of the figure adding the areas of all the parts of the figure.

The figure for this problem is composed as follows:

Four triangles of base 7 cm and height 10 cm.Square of side length 7 cm.

The surface area of the triangles is given as follows:

4 x 1/2 x 7 x 10 = 140 cm².

The surface area of the square is given as follows:

7² = 49 cm².

Hence the total surface area is given as follows:

A = 140 + 49

A = 189 cm².

More can be learned about the area of a composite figure at brainly.com/question/10254615

#SPJ4

The scores earned on the mathematics portion of the SAT, a college entrance exam, are approximately normally distributed with mean 516 and standard deviation 1 16. What scores separate the middle 90% of test takers from the bottom and top 5%? In other words, find the 5th and 95th percentiles.

Answers

The scores earned on the mathematics portion of the SAT, a college entrance exam, are approximately normally distributed with mean 516 and standard deviation 1 16. The scores that separate the middle 90% of test takers from the bottom and top 5% are 333.22 and 698.78, respectively.

Using the mean of 516 and standard deviation of 116, we can standardize the scores using the formula z = (x - μ) / σ, where x is the score, μ is the mean, and σ is the standard deviation.
For the 5th percentile, we want to find the score that 5% of test takers scored below. Using a standard normal distribution table or calculator, we find that the z-score corresponding to the 5th percentile is approximately -1.645.
-1.645 = (x - 516) / 116
Solving for x, we get:
x = -1.645 * 116 + 516 = 333.22
So the score separating the bottom 5% from the rest is approximately 333.22.
For the 95th percentile, we want to find the score that 95% of test takers scored below. Using the same method, we find that the z-score corresponding to the 95th percentile is approximately 1.645.
1.645 = (x - 516) / 116
Solving for x, we get:
x = 1.645 * 116 + 516 = 698.78
So the score separating the top 5% from the rest is approximately 698.78.
Therefore, the scores that separate the middle 90% of test takers from the bottom and top 5% are 333.22 and 698.78, respectively.

Read more about SAT.

https://brainly.com/question/9087649

#SPJ11

If you put 90 ml of concentrate in a glass how much water should be added

Answers

If you put 90 ml of concentrate in a glass, you should add 210 ml of water to dilute it to a 1:3 concentration ratio.

To understand why, we need to use the concentration ratio formula, which is:Concentration Ratio = Concentrate Volume / Total VolumeWe can rearrange the formula to solve for the Total Volume:Total Volume = Concentrate Volume / Concentration RatioIn this case, we know the Concentrate Volume is 90 ml, but we don't know the Concentration Ratio. However, we know that the ratio of concentrate to water should be 1:3. This means that for every 1 part of concentrate, we should have 3 parts of water. This gives us a total of 4 parts (1+3=4). Therefore, the Concentration Ratio is 1/4 or 0.25.To find the Total Volume, we can substitute the known values:Total Volume = 90 ml / 0.25 = 360 mlThis is the total volume of the mixture if we were to use a 1:3 concentration ratio.

However, the question asks how much water should be added. So, to find the amount of water, we need to subtract the concentrate volume from the total volume:Water Volume = Total Volume - Concentrate VolumeWater Volume = 360 ml - 90 mlWater Volume = 270 mlTherefore, you should add 270 ml of water to 90 ml of concentrate to dilute it to a 1:3 concentration ratio.

Learn more about Concentration ratio here,A concentration ratio indicates the:

a. number of firms in an industry.

b. number of large firms in an industry compa...

https://brainly.com/question/15848538

#SPJ11

use the fundamental theorem of calculus, part 2 to evaluate ∫1−1(t3−t2)dt.

Answers

Using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To use the fundamental theorem of calculus, part 2 to evaluate the integral ∫1−1(t3−t2)dt, we first need to find the antiderivative of the integrand. To do this, we can apply the power rule of calculus, which states that the antiderivative of x^n is (x^(n+1))/(n+1) + C, where C is the constant of integration. Using this rule, we can find the antiderivative of t^3 - t^2 as follows:
∫(t^3 - t^2)dt = ∫t^3 dt - ∫t^2 dt
= (t^4/4) - (t^3/3) + C
Now that we have found the antiderivative, we can use the fundamental theorem of calculus, part 2, which states that if F(x) is an antiderivative of f(x), then ∫a^b f(x)dx = F(b) - F(a). Applying this theorem to the integral ∫1−1(t3−t2)dt, we get:
∫1−1(t3−t2)dt = (1^4/4) - (1^3/3) - ((-1)^4/4) + ((-1)^3/3)
= (1/4) - (1/3) - (1/4) - (-1/3)
= -1/6
Therefore, using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To know more about calculus visit :

https://brainly.com/question/30761130

#SPJ11

Consider the one-sided (right side) confidence interval expressions for a mean of a normal population. What value of a would result in a 85% CI?

Answers

The one-sided (right side) confidence interval expression for an 85% confidence interval for the population mean is:

[tex]x + 1.04σ/√n < μ\\[/tex]

For a one-sided (right side) confidence interval for the mean of a normal population, the general expression is:

[tex]x + zασ/√n < μ\\[/tex]

where x is the sample mean, zα is the z-score for the desired level of confidence (with area α to the right of it under the standard normal distribution), σ is the population standard deviation, and n is the sample size.

To find the value of a that results in an 85% confidence interval, we need to find the z-score that corresponds to the area to the right of it being 0.15 (since it's a one-sided right-tailed interval).

Using a standard normal distribution table or calculator, we find that the z-score corresponding to a right-tail area of 0.15 is approximately 1.04.

Therefore, the one-sided (right side) confidence interval expression for an 85% confidence interval for the population mean is:

[tex]x + 1.04σ/√n < μ[/tex]

To know more about normal distribution refer here:

https://brainly.com/question/29509087

#SPJ11

Consider the following time series data. time value 7.6 6.2 5.4 5.4 10 7.6 Calculate the trailing moving average of span 5 for time periods 5 through 10. t-5: t=6: t=7: t=8: t=9: t=10:

Answers

The trailing moving average of span 5 is 6.92.

How to calculate trailing moving average of span 5 for the given time series data?

The trailing moving average of span 5 for the given time series data is as follows:

t-5: (7.6 + 6.2 + 5.4 + 5.4 + 10)/5 = 6.92

t=6: (6.2 + 5.4 + 5.4 + 10 + 7.6)/5 = 6.92

t=7: (5.4 + 5.4 + 10 + 7.6 + 6.2)/5 = 6.92

t=8: (5.4 + 10 + 7.6 + 6.2 + 5.4)/5 = 6.92

t=9: (10 + 7.6 + 6.2 + 5.4 + 5.4)/5 = 6.92

t=10: (7.6 + 6.2 + 5.4 + 5.4 + 10)/5 = 6.92

Therefore, the trailing moving average of span 5 for time periods 5 through 10 is 6.92.

Learn more about trailing moving average

brainly.com/question/13835241

#SPJ11

HELP PLEASE!!


In circle D, AB is a tangent with point A as the point of tangency and M(angle)CAB =105 degrees


What is mCEA

Answers

Given: Circle D, AB is a tangent with point A as the point of tangency, and M∠CAB = 105°.

We need to calculate mCEA.

As we can see in the image attached below:[tex][tex][tex]\Delta[/tex][/tex][/tex]

Let us consider the below-given diagram:

[tex]\Delta[/tex]ABC is a right triangle as AB is tangent to circle D at A (a tangent to a circle is perpendicular to the radius of the circle through the point of tangency), therefore, ∠ABC = 90°.

So,

mBAC = 180° – 90°

= 90°.M

∠CAB = 105°

Now, as we know that,

m∠BAC + m∠CAB + m∠ABC = 180°

90° + 105° + m∠ABC = 180°

m∠ABC = 180° - 90° - 105°

m∠ABC = -15°

Therefore,

m∠CEA = m∠CAB - m∠BAC

m∠CEA = 105° - 90°

m∠CEA = 15°

Hence, the value of mCEA is 15 degrees.

To know more about perpendicular visit:

https://brainly.com/question/12746252

#SPJ11

using thin airfoil theory, calculate αl =0. (round the final answer to two decimal places. you must provide an answer before moving on to the next part.)

Answers

The angle of attack α at zero lift is equal to the zero-lift angle of attack α₀. To provide a specific value, we would need more information about the airfoil being used, such as its camber or profile.

Using thin airfoil theory, we can calculate the angle of attack α when the lift coefficient (Cl) is equal to zero. In thin airfoil theory, the lift coefficient is given by the formula:

Cl = 2π(α - α₀)

Where α₀ is the zero-lift angle of attack. To find α when Cl = 0, we can rearrange the formula:

0 = 2π(α - α₀)

Now, divide both sides by 2π:

0 = α - α₀

Finally, add α₀ to both sides:

α = α₀

So, the angle of attack α at zero lift is equal to the zero-lift angle of attack α₀. To provide a specific value, we would need more information about the airfoil being used, such as its camber or profile.

learn more about airfoil theory

https://brainly.com/question/31482349

#SPJ11

help me please im stuck

Answers

The number of points Aiden earns for each visit is 2.5, so the total number of points he earns after v visits is:

Total points = 75 + 2.5v

In order to get a free movie ticket, he needs at least 90 points. Therefore, we can write the inequality:

75 + 2.5v ≥ 90

Simplifying and solving for v:

2.5v ≥ 15

v ≥ 6

Therefore, Aiden needs to make at least 6 visits to the movie theater to earn enough points for a free movie ticket. The inequality representing this is:

v ≥ 6

Give a parametric description of the form r(u, v) = x(u, v),y(u, v),z(u, v) for the following surface. The cap of the sphere x^2 +y^2 + z^2 = 16, for 2 squareroot 3 lessthanorequalto z lessthanorequalto 4 Select the correct choice below and fill in the answer boxes to complete your choice.

Answers

A possible parametric representation of the cap is:

r(u, v) = (4 sin(u) cos(v), 4 sin(u) sin(v), 4 cos(u))

We can use spherical coordinates to parameterize the cap of the sphere:

x = r sinθ cosφ = 4 sinθ cosφ

y = r sinθ sinφ = 4 sinθ sinφ

z = r cosθ = 4 cosθ

where 2√3 ≤ z ≤ 4, 0 ≤ θ ≤ π/3, and 0 ≤ φ ≤ 2π.

Thus, a possible parametric representation of the cap is:

r(u, v) = (4 sin(u) cos(v), 4 sin(u) sin(v), 4 cos(u))

where 2√3 ≤ z ≤ 4, 0 ≤ u ≤ π/3, and 0 ≤ v ≤ 2π.

To know more about spherical coordinates refer here:

https://brainly.com/question/4465072

#SPJ11

A cost of tickets cost: 190. 00 markup:10% what’s the selling price

Answers

The selling price for the tickets is $209.

Here, we have

Given:

If the cost of tickets is 190 dollars, and the markup is 10 percent,

We have to find the selling price.

Markup refers to the amount that must be added to the cost price of a product or service in order to make a profit.

It is computed by multiplying the cost price by the markup percentage. To find out what the selling price would be, you just need to add the markup to the cost price.

The markup percentage is 10%.

10 percent of the cost of tickets ($190) is:

$190 x 10/100 = $19

Therefore, the markup is $19.

Now, add the markup to the cost of tickets to obtain the selling price:

Selling price = Cost price + Markup= $190 + $19= $209

Therefore, the selling price for the tickets is $209.

To learn about the selling price here:

https://brainly.com/question/31211894

#SPJ11

Describe the sample space of the experiment, and list the elements of the given event. (Assume that the coins are distinguishable and that what is observed are the faces or numbers that face up.)A sequence of two different letters is randomly chosen from those of the word sore; the first letter is a vowel.

Answers

The event consists of two elements: the sequence "oe" where the first letter is "o" and the second letter is "e", and the sequence "or" where the first letter is "o" and the second letter is "r".

The sample space of the experiment consists of all possible sequences of two different letters chosen from the letters of the word "sore", where the order of the letters matters. There are six possible sequences: {so, sr, se, or, oe, re}. The given event is that the first letter is a vowel. This reduces the sample space to the sequences that begin with "o" or "e": {oe, or}.

Therefore, the event consists of two elements: the sequence "oe" where the first letter is "o" and the second letter is "e", and the sequence "or" where the first letter is "o" and the second letter is "r".

Learn more about sequence here

https://brainly.com/question/7882626

#SPJ11

HURRY MY TIMES RUNNING OUT

Answers

Answer:

C

Step-by-step explanation:

Input x 6 = output for each of these numbers

3x6 =18

6x6 =36

11x6 = 66

12x6 = 72

the other options are incorrect. A is divided by 4, B is times 4, and D is divided by 6.

problem 7. let a be an n xn matrix. (a) prove that if a is singular, then adj a must also be singular. (b) show that if n ≥2, then det(adj a) = [ det(a) ]n−1 .

Answers

The both statements are proved that,

(a) If A be an n*n matrix and is singular matrix then adj A is also singular.

(b) If n ≥ 2, then |adj (A)| = |A|ⁿ⁻¹.

Given that the A is a matrix of order n*n.

(a) So, |adj (A)| = |A|ⁿ⁻¹

When A is a singular so, |A| = 0

So, |adj (A)| = |A|ⁿ⁻¹ = 0ⁿ⁻¹ = 0

Hence, adj(A) is also singular matrix.

(b) Now, we know that,

A*adj(A) = |A|*Iₙ, where Iₙ is the identity matrix of order n*n.

Now taking determinant of both sides we get,

|A*adj(A)| = ||A|*Iₙ|

|A|*|adj (A)| = |A|ⁿ*|Iₙ|, since A is a matrix of n*n

|A|*|adj (A)| = |A|ⁿ, since |Iₙ| = 1, identity matrix.

|adj (A)| = |A|ⁿ/|A|

|adj (A)| = |A|ⁿ⁻¹

Hence the second statement is also proved.

To know more about singular matrix here

https://brainly.com/question/31424535

#SPJ4

a caramel corn company gives four different prizes, one in each box. they are placed in the boxes at random. find the average number of boxes a person needs to buy to get all four prizes.

Answers

This problem can be solved using the concept of the expected value of a random variable. Let X be the random variable representing the number of boxes a person needs to buy to get all four prizes.

To calculate the expected value E(X), we can use the formula:

E(X) = 1/p

where p is the probability of getting a new prize in a single box. In the first box, the person has a 4/4 chance of getting a new prize. In the second box, the person has a 3/4 chance of getting a new prize (since there are only 3 prizes left out of 4). Similarly, in the third box, the person has a 2/4 chance of getting a new prize, and in the fourth box, the person has a 1/4 chance of getting a new prize. Therefore, we have:

p = 4/4 * 3/4 * 2/4 * 1/4 = 3/32

Substituting this into the formula, we get:

E(X) = 1/p = 32/3

Therefore, the average number of boxes a person needs to buy to get all four prizes is 32/3, or approximately 10.67 boxes.

To know more about average refer here

https://brainly.com/question/16956746

SPJ11

At a large district court, Assistant District Attorneys (ADAs) are paid by the hour. Data from the


personnel office show that mean hourly wages paid to ADAs is $52 with a standard deviation of


$5. 50.


Determine the probability that an ADA will earn between $50 and $60 per hour.


Show your calculations.

Answers

To determine the probability that an ADA will earn between $50 and $60 per hour, we can use the standard normal distribution and the z-score.

Given:

Mean (μ) = $52

Standard deviation (σ) = $5.50

To find the probability, we need to calculate the z-scores for the lower and upper limits, and then use the z-table or a calculator to find the corresponding probabilities.

Step 1: Calculate the z-scores

For the lower limit of $50:

z_lower = (X_lower - μ) / σ = (50 - 52) / 5.50

For the upper limit of $60:

z_upper = (X_upper - μ) / σ = (60 - 52) / 5.50

Step 2: Look up the probabilities from the z-table or use a calculator

Using the z-table or a calculator, we can find the probabilities corresponding to the z-scores.

Let's denote the probability for the lower limit as P1 and the probability for the upper limit as P2.

Step 3: Calculate the final probability

The probability that an ADA will earn between $50 and $60 per hour is the difference between P2 and P1.

P(X_lower < X < X_upper) = P2 - P1

Note: Make sure to use the cumulative probabilities (area under the curve) from the z-table or calculator.

I will perform the calculations using the given mean and standard deviation to find the probabilities. Please hold on.

Learn more about probability here:

https://brainly.com/question/31740607

#SPJ11

find the area of the parallelogram with vertices a(−1,2,4), b(0,4,8), c(1,1,5), and d(2,3,9).

Answers

The area of the parallelogram for the given vertices is equal to √110 square units.

To find the area of a parallelogram with vertices A(-1, 2, 4), B(0, 4, 8), C(1, 1, 5), and D(2, 3, 9),

we can use the cross product of two vectors formed by the sides of the parallelogram.

Let us define vectors AB and AC as follows,

AB

= B - A

= (0, 4, 8) - (-1, 2, 4)

= (1, 2, 4)

AC

= C - A

= (1, 1, 5) - (-1, 2, 4)

= (2, -1, 1)

Now, let us calculate the cross product of AB and AC.

AB × AC = (1, 2, 4) × (2, -1, 1)

To compute the cross product, we can use the determinant of a 3x3 matrix.

AB × AC

= (2× 4 - (-1) × 1, -(1 × 4 - 2 × 1), 1 × (-1) - 2 × 2)

= (9, 2, -5)

The magnitude of the cross product gives us the area of the parallelogram.

Let us calculate the magnitude,

|AB × AC|

= √(9² + 2² + (-5)²)

= √(81 + 4 + 25)

= √110

Therefore, the area of the parallelogram with vertices A(-1, 2, 4), B(0, 4, 8), C(1, 1, 5), and D(2, 3, 9) is √110 square units.

Learn more about parallelogram here

brainly.com/question/29251934

#SPJ4

test the series for convergence or divergence. [infinity] n25n − 1 (−6)n n = 1

Answers

The limit of the ratio is less than 1, the series converges. Therefore, the series [infinity] n25n − 1 (−6)n n = 1 converges.

To test the series for convergence or divergence, we can use the ratio test.
The ratio test states that if the limit of the absolute value of the ratio of consecutive terms in the series is less than 1, then the series converges. If the limit is greater than 1 or does not exist, then the series diverges.
Let's apply the ratio test to this series:
lim(n→∞) |(n+1)25(n+1) − 1 (−6)n+1| / |n25n − 1 (−6)n|
= lim(n→∞) |(n+1)25n(25/6) − (25/6)n − 1/25| / |n25n (−6/25)|
= lim(n→∞) |(n+1)/n * (25/6) * (1 − (1/(n+1)²))| / 6
= 25/6 * lim(n→∞) (1 − (1/(n+1)²)) / n
= 25/6 * lim(n→∞) (n^2 / (n+1)²) / n
= 25/6 * lim(n→∞) n / (n+1)²
= 0
Since the limit of the ratio is less than 1, the series converges. Therefore, the series [infinity] n25n − 1 (−6)n n = 1 converges.

Learn more about series here, https://brainly.com/question/15415793

#SPJ11

if f ( 5 ) = 13 f(5)=13, f ' f′ is continuous, and ∫ 7 5 f ' ( x ) d x = 15 ∫57f′(x) dx=15, what is the value of f ( 7 ) f(7)? f ( 7 ) =

Answers

Use the fundamental theorem of calculus and the given information the value of f(7) is 15.



First, we know that f'(x) is continuous, which means we can use the fundamental theorem of calculus to find the antiderivative of f'(x), denoted as F(x):

F(x) = ∫ f'(x) dx

Since we know that ∫ 7 5 f'(x) dx = 15, we can use this to find the value of F(7) - F(5):

F(7) - F(5) = ∫ 7 5 f'(x) dx = 15

Next, we can use the fact that f(5) = 13 to find F(5):

F(5) = ∫ f'(x) dx = f(x) + C

f(5) + C = 13

where C is the constant of integration.

Now we can solve for C:

C = 13 - f(5)

Plugging this back into our equation for F(7) - F(5), we get:

F(7) - F(5) = ∫ 7 5 f'(x) dx = 15

F(7) - (f(5) + C) = 15

F(7) = 15 + f(5) + C

F(7) = 15 + 13 - f(5)

F(7) = 28 - f(5)

Finally, we can use the fact that F(7) = f(7) + C to solve for f(7):

f(7) + C = F(7)

f(7) + C = 28 - f(5)

f(7) = 28 - f(5) - C

Substituting C = 13 - f(5), we get:

f(7) = 28 - f(5) - (13 - f(5))

f(7) = 15

Therefore, the value of f(7) is 15.

Learn more about integration

brainly.com/question/18125359

#SPJ11

Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}b. If a sequence of positive numbers converges, then the sequenceis decreasing.c. If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

Answers

a. True, b. False, c. False. are the correct answers.

Find out if the given statements are correct or not?

a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}

This statement is true. The sequence of partial sums for the series 1+2+3+⋯ is given by:

1, 1+2=3, 1+2+3=6, 1+2+3+4=10, …

We can see that each term in the sequence of partial sums is obtained by adding the next term in the series to the previous partial sum. For example, the second term in the sequence of partial sums is obtained by adding 2 to the first term. Similarly, the third term is obtained by adding 3 to the second term, and so on. Therefore, the sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}.

b. If a sequence of positive numbers converges, then the sequence is decreasing.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and converges to 0 as n approaches infinity. However, this sequence is not decreasing. In fact, each term in the sequence is greater than the previous term. For example, the second term (1/2) is greater than the first term (1/1), and the third term (1/3) is greater than the second term (1/2), and so on.

c. If the terms of the sequence {an} are positive and increasing, then the sequence of partial sums for the series ∑[infinity]k=1 ak diverges.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and increasing, since each term is greater than the previous term. The sequence of partial sums for the series ∑[infinity]k=1 ak is given by:

1, 1+1/2, 1+1/2+1/3, 1+1/2+1/3+1/4, …

We can see that the sequence of partial sums is increasing, but it is also bounded above by the value ln(2) (which is approximately 0.693). Therefore, by the Monotone Convergence Theorem, the series converges to a finite value (in this case, ln(2)).

Learn more  about  Sequence

brainly.com/question/16671654

a.  The statement "The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}" is true

b. The statement If a sequence of positive numbers converges, then the sequence is decreasing is false

c. the statement is false If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

a. The statement is true. The nth partial sum of the series 1 + 2 + 3 + ... + n is given by the formula Sn = n(n+1)/2. For example, S3 = 3(3+1)/2 = 6, which corresponds to the third term of the sequence {1,3,6,10,...}. This pattern continues for all n, so the sequence of partial sums for the series 1 + 2 + 3 + ... is indeed {1,3,6,10,...}.

b. The statement is false. A sequence of positive numbers may converge even if it is not decreasing. For example, the sequence {1, 1/2, 1/3, 1/4, ...} is not decreasing, but it converges to 0.

c. The statement is false. The sequence of partial sums for a series with positive, increasing terms may converge or diverge. For example, the series ∑[infinity]k=1(1/k) has positive, increasing terms, but its sequence of partial sums (1, 1+1/2, 1+1/2+1/3, ...) converges to the harmonic series, which diverges.

On the other hand, the series ∑[infinity]k=1(1/2^k) also has positive, increasing terms, and its sequence of partial sums (1/2, 3/4, 7/8, ...) converges to 1.

Learn more about converges series at https://brainly.com/question/15415793

#SPJ11

Other Questions
You now control 3 pair of long lost bug friends. You know the maze, but you do not have any information about which square each bug starts in. You want to help the bugs reunite. You must pose a search problem whose solution is an all-purpose sequence of actions such that, after executing those actions, both bugs will be on the S3me square, regardless of their initial positions. Any square will do, 3S the bugs have no goal in mind other than to see each other once again. Both bugs execute the actions mindlessly and do not know whether their moves succeed; Assume the probability distributions for R and R given the following information. R1 = 7% 0 (R* )=4% T=.40 (6)a. Management is considering a capital structure with L = .50. With this capital structure, kd will be 10% and ke will be 15%. What is the probability of achieving an R greater than ke? (5)b. Suppose management wants the probability from part a to be 72%. With everything else equal, what would the necessary increase in R be to get a 72% chance of having R greater than ke? General motors stock fell from $39.57 per share in 2013 to 28.72 per share during2016. If you bought and sold 8 shares at these prices what was your loss as a percent ofthe purchase price? the /\g of a certain reaction is - 78.84 kj/mol at 25oc. what is the keq for this reaction? An inert electrode must be used when one or more species involved in the redox reaction are:Select the correct answer below:good conductors of electricitypoor conductors of electricityeasily oxidizedeasily reduced The following data are available for the most recent year of operations for Slacker & Sons. The revenue portion of the sales activity variance is $225,000 F. Master budget based on actual sales of 170,000 units: Revenue $ 4,500,000 Materials 870,000 Labor 645,000 Variable manufacturing overhead and administrative costs 145,000 Fixed manufacturing overhead and administrative costs 500,000 Required: a. How many units were actually sold in the most recent period? (Do not round intermediate calculations.) b. Prepare a sales activity variance for the most recent year for Slacker & Sons. (Do not round intermediate calculations. Indicate the effect of each variance by selecting "F" for favorable, or "U" for unfavorable. If there is no effect, do not select either option.) What is the concentration of H+ in solution given the [OH] = 1.32 x 10^-4? A) 1.0 x 10^14 M B) 7.58 x 10^-11 M C) 1.32 x 10^-11 M D) not enough information E) none of the above why should marketing managers look beyond sales in many cases when assessing results of marketing tactics? upgrading a class b office space to a class a space will cost $5,520. how much will the monthly rent need to be increased to recover the cost of the upgrade in 7 years? Revenue variances For the year, Logitom planned to sell 920,000 units at a $39 selling price. The marketing manager was asked to explain why budgeted revenue had not been achieved for that year. Investigation revealed the following information: Actual sales volume 946,000 units Actual selling price $38 per unit Calculate the sales price variance, the sale volume variance, and the total revenue variance. Note: Do not use a negative sign with your answers. Sales price variance FavorableUnfavorableNeither favorable or unfavorable Sales volume variance FavorableUnfavorableNeither favorable or unfavorable Total revenue variance FavorableUnfavorableNeither favorable or unfavorable What is "For to everyone who has, more will be given, and he will have abundance; but from him who does not have, even what he has will be taken away. " often paraphrased as? a port serves as a channel through which several clients can exchange data with the same server or with different servers. true false 11. Write the SQL code to find how many employees are in job_code 501. 12. Write the SQL code to find what is the job description of job_code 507 13. Write the SQL codes to find how many projects are available Please helpTo determine whether 2126.5 and 58158 are in a proportional relationship, write each ratio as a fraction in simplest form.What is 2 1/2/6.5 as a fraction in simplest form?What is 5/8/1 5/8 as a fraction in simplest form? The isoelectric point, pI, of the protein horse liver alcohol dehydrogenase is 6.8, while that of hexokinase P-II is 4.93. What is the net charge of horse liver alcohol dehydrogenase at pH5.1 ? What is the net charge of hexokinase P-II at pH5.5 ? sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using insertion sort. use a table to explain the insertion sort after each pass Imagine a sealed plastic bag containing a gas a 40 F. If we increased thetemperature of the gas ten times what would happen? What gas law(s)is(are) here in play? Calcium phosphate used in fertilizers can bemade in the reaction described by the fol-lowing equation:2H3PO4(aq) + 3Ca(OH)(aq) Ca3(PO4)2(s) + 6H2O(aq)What mass in grams of each product wouldbe formed if 7. 5 L of 5. 00 M phosphoric acidreacted with an excess of calcium hydroxide? Elizabeth Loftus' research has greatly contributed to the study of A the serial-position effect. B repressed memories. anterograde amnesia. C false memories. D Question 3 of 10What does it mean for a writer's language to create a tone?A. The places a writer chooses have personal significance.B. The musical key of a writer's words can be major or minor.C. The ideas a writer engages may have universal meaning.OD. The way a writer describes things suggests a mood or feeling.SUBMIT