Answer: 132 Ounces.
Step-by-step explanation: 1 pound = 16 ounces. 8 1/4 or 8.25 x 16 = 132
Seth weigh 132 ounce when he was born.
What is Unitary Method?The unitary technique involves first determining the value of a single unit, followed by the value of the necessary number of units.
For example,Let's say Ram spends 36 Rs. for a dozen (12) bananas.
12 bananas will set you back 36 Rs. 1 banana costs 36 x 12 = 3 Rupees.
As a result, one banana costs three rupees. Let's say we need to calculate the price of 15 bananas.
This may be done as follows: 15 bananas cost 3 rupees each; 15 units cost 45 rupees.
We have,
Seth weighed 8 pounds when he was 8 1/4 pounds born.
So, the weight in ounce
= 8 1/4 x 16
= 33/4 x 16
= 33 x 4
= 132 ounce
Learn more about Unitary Method here:
https://brainly.com/question/22056199
#SPJ2
Lisa recorded her earnings for six weeks: $50, $50, $50, $45, $50, $50, $180, $50. Does the mean or the mode best describe Lisa's typical weekly earnings? Explain your answer.
The objective of a study by LeRoith et al. (A-68) was to evaluate the effect of a 7-week administration of recombinant human GH (rhGH) and recombinant human insulin-like growth factor (rhIGF-I) separately and in combination on immune function in elderly female rhesus monkeys. The assay for the in vivo function of the immune system relied on the response to immunization with tetanus toxoid.
The study aimed to provide insights into the potential effects of rhGH and rhIGF-I, both separately and in combination, on the immune function of elderly individuals, as indicated by the immune response to tetanus toxoid immunization.
The study aimed to evaluate the impact of a 7-week administration of recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor (rhIGF-I), both separately and in combination, on immune function in elderly female rhesus monkeys. The researchers used the response to immunization with tetanus toxoid as an assay to measure the in vivo function of the immune system.
The study design likely involved the following steps:
Selection of elderly female rhesus monkeys as the study subjects: The researchers chose female monkeys of advanced age to represent the elderly population.
Administration of recombinant human growth hormone (rhGH): The researchers administered rhGH to a group of monkeys for a period of 7 weeks. This hormone is known to stimulate growth and metabolism.
Administration of recombinant human insulin-like growth factor (rhIGF-I): Another group of monkeys received rhIGF-I, a hormone that mediates the effects of GH, for the same duration.
Combination treatment: A third group of monkeys received both rhGH and rhIGF-I simultaneously during the 7-week period.
Immunization with tetanus toxoid: After the 7-week treatment period, all monkeys were immunized with tetanus toxoid, which is a vaccine used to induce an immune response against tetanus.
Measurement of immune response: The researchers assessed the immune function by measuring the response of the monkeys' immune systems to the tetanus toxoid immunization. They likely examined parameters such as antibody production or T-cell response.
Data analysis: The researchers analyzed the immune response data to determine the effects of rhGH, rhIGF-I, and their combination on the immune function of the elderly female rhesus monkeys.
The study aimed to provide insights into the potential effects of rhGH and rhIGF-I, both separately and in combination, on the immune function of elderly individuals, as indicated by the immune response to tetanus toxoid immunization.
To learn more about immunization visit:
https://brainly.com/question/19975865
#SPJ11
a pizza parlor offers four sizes of pizza and 12 different toppings. a customer may choose any number of toppings (or no tipping at all). how many different pizzas does this parlor offer?
The pizza parlor offers 2^48, or approximately 281 trillion, different pizzas.
To calculate the total number of different pizzas offered, we need to consider all possible combinations of pizza sizes and toppings.
For each pizza size, there are 12 options for toppings (including no toppings). Therefore, the total number of pizzas for a single size is 2^12 (2 options for each of the 12 toppings). Since there are four different sizes, the total number of different pizzas offered by the parlor is:
2^12 x 2^12 x 2^12 x 2^12 = 2^(12+12+12+12) = 2^48
Thus, the pizza parlor offers 2^48, or approximately 281 trillion, different pizzas.
To learn more about pizza, click here:
https://brainly.com/question/7602584
#SPJ11
H с Homework: 6.2 Homework Question 5, 6.2.11-T Construct the indicated confidence interval for the population mean y using the t-distribution. Assume the population is normally distributed. C= 0.98, *= 12.1, =0.95, n=15 (Round to one decimal place as needed.)
We are 98% confident that the mean of the true population y lies between 10.8 and 13.4.
To construct the confidence interval, we first need to calculate the critical value of t using the given values of C and n. Since C = 0.98, we can find the level of significance as α = 1 - C = 0.02.
Using a t-table or calculator, the critical value of t for a two-tailed test with 14 degrees of freedom and
[tex]\frac{\alpha}{2} = 0.01[/tex] is approximately 2.977.
Next, we can calculate the sample standard deviation as s = σ/√n = [tex]\frac{0.95}{\sqrt{15}}= 0.245[/tex].
Then, we can use the formula for a confidence interval for the population mean using the t-distribution:
(y ± t)×[tex]\frac{s}{\sqrt{n}}[/tex]
Substituting the given values, we get:
(12.1 ± 2.977)×[tex]\frac{0.245}{\sqrt{15}}[/tex]
Simplifying and rounding to one decimal place, we get the confidence interval: (10.8, 13.4)
Therefore, we are 98% confident that the true population mean y lies between 10.8 and 13.4.
To know more about the standard deviation visit:
https://brainly.com/question/31488498
#SPJ11
E7.5. Given the variance-covariance matrix of three random variables X1, X2 and X3,∑=
4 1 2
1 9 -3
2 -3 25 a. Find the correlation matrix p. b. Compute the correlation between X1, and i/2X2 + 1/2X3.
a. The correlation matrix p = [tex]\left[\begin{array}{ccc}1&1/3&2/5\\1/3&1&-3/5\\2/5&-3/5&1\end{array}\right][/tex]. b. The correlation between X1, and i/2X2 + 1/2X3 is 0.3.
a. The correlation matrix p can be calculated by dividing the covariance matrix by the product of the standard deviations of the variables:
p = [tex]\left[\begin{array}{ccc}1&1/3&2/5\\1/3&1&-3/5\\2/5&-3/5&1\end{array}\right][/tex]
b. To compute the correlation between X1 and i/2X2 + 1/2X3, we first need to calculate the standard deviations of the variables:
σ1 = sqrt(4) = 2
σ2 = sqrt(9) = 3
σ3 = sqrt(25) = 5
Then, we can calculate the covariance between X1 and i/2X2 + 1/2X3:
cov(X1, i/2X2 + 1/2X3) = cov(X1, i/2X2) + cov(X1, 1/2X3)
= i/2 * cov(X1, X2) + 1/2 * cov(X1, X3)
= i/2 * 1 + 1/2 * 2
= 1.5
Finally, we can compute the correlation using the formula:
corr(X1, i/2X2 + 1/2X3) = cov(X1, i/2X2 + 1/2X3) / (σ1 * σ2/2 + σ3/2)
= 1.5 / (2 * 3/2 + 5/2)
= 0.3
Therefore, the correlation between X1 and i/2X2 + 1/2X3 is 0.3.
Know more about correlation here:
https://brainly.com/question/13879362
#SPJ11
A quadratic equation has zeros at -6 and 2. Find standard form
The quadratic equation with zeros at -6 and 2 is y² + 4y - 12 = 0. This is in standard form, which is ax² + bx + c = 0, with a = 1, b = 4, and c = -12.
To find the quadratic equation with zeros at -6 and 2, we can start by using the fact that if a quadratic equation has roots x₁ and x₂, then it can be written in the form
(y - x₁)(y - x₂) = 0
where y is the variable in the quadratic equation.
Substituting the given values of the zeros, we get
(y - (-6))(y - 2) = 0
Simplifying this expression, we get
(y + 6)(y - 2) = 0
Expanding this expression, we get
y² - 2y + 6y - 12 = 0
Simplifying this expression further, we get
y² + 4y - 12 = 0
So the quadratic equation with zeros at -6 and 2 is
y² + 4y - 12 = 0
This is the standard form of a quadratic equation, which is
ax² + bx + c = 0
where a, b, and c are constants. In this case, a = 1, b = 4, and c = -12.
To know more about quadratic equation:
https://brainly.com/question/30098550
#SPJ1
Solve the following differential equation: (x² + y² + xy) dx + (xY) dy = 0 +
The solution to the given differential equation is:
[tex]$\frac{1}{2}x^4y + \frac{2}{3}x^3y^2 = C$[/tex]
To solve the given differential equation:
[tex]$(x^2 + y^2 + xy)dx + (xy)dy = 0$[/tex]
We will first check whether this is an exact differential equation or not.
[tex]$\frac{\partial M}{\partial y} = \frac{\partial }{\partial y}(x^2 + y^2 + xy) = 2y + x$[/tex]
[tex]$\frac{\partial N}{\partial x} = \frac{\partial }{\partial x}(xy) = y$[/tex]
Since [tex]$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$[/tex], this is not an exact differential equation.
Next, we will check if this differential equation is solvable using an integrating factor.
[tex]$\frac{1}{xy}(x^2 + y^2 + xy)dx + dy = 0$[/tex]
Let us assume the integrating factor as [tex]$u = u(x)$[/tex]
Multiplying both sides of the differential equation with the integrating factor, we get:
[tex]$\frac{1}{y}(x^2 + y^2 + xy)u(x)dx + u(x)dy = 0$[/tex]
Now, we can see that this is an exact differential equation.
[tex]$\frac{\partial }{\partial y}\left(\frac{1}{y}(x^2 + y^2 + xy)u(x)\right) = \frac{xu(x)}{y}$[/tex]
[tex]$\frac{\partial }{\partial x}\left(u(x)\right) = \frac{xu(x)}{y}$[/tex]
Solving this differential equation, we get:
[tex]$\ln |u(x)| = \frac{1}{2}\ln(x^2y^2) = \ln(xy)$[/tex]
[tex]$u(x) = xy$[/tex]
Multiplying the integrating factor to the original differential equation, we get:
[tex]$(x^3y + x^2y^2 + x^2y^2)dx + (x^2y^2)dy = 0$[/tex]
[tex]$(x^3y + 2x^2y^2)dx + (x^2y^2)dy = 0$[/tex]
This is now an exact differential equation and can be solved by finding the potential function:
[tex]$\frac{\partial }{\partial x}\left(\frac{1}{2}x^4y + \frac{2}{3}x^3y^2\right) = x^3y + 2x^2y^2$[/tex]
[tex]$\frac{\partial }{\partial y}\left(\frac{1}{2}x^4y + \frac{2}{3}x^3y^2\right) = x^2y^2$[/tex]
Therefore, the potential function is [tex]$\frac{1}{2}x^4y + \frac{2}{3}x^3y^2 = C$[/tex], where C is the constant of integration.
Hence, the solution to the given differential equation is:
[tex]$\frac{1}{2}x^4y + \frac{2}{3}x^3y^2 = C$[/tex]
To learn more about Multiplying visit:
https://brainly.com/question/23536361
#SPJ11
Asemi annual coupon bond has a par value of $1,000 and matures in 10years. Today it sells for $887 and has a YTM of 10.9%. Solve forcoupon rate
The coupon rate for the semi-annual bond is approximately 11.96%.
Given the information provided, we have the following details:
- Par value: $1,000
- Maturity: 10 years
- Current price: $887
- YTM (Yield to Maturity): 10.9%
To solve for the coupon rate, we can use the bond pricing formula:
Bond Price = (C * (1 - (1 + r/2)^(-2n))) / (r/2) + (Par Value / (1 + r/2)^(2n))
Where:
- Bond Price = $887
- C = Coupon payment per period (which we need to find)
- r = YTM / 100 = 0.109
- n = Maturity in years = 10
Plugging in the given values:
$887 = (C * (1 - (1 + 0.109/2)^(-2*10))) / (0.109/2) + ($1,000 / (1 + 0.109/2)^(2*10))
Now, we can solve for the coupon payment, C:
C = (($887 * 0.109/2) - ($1,000 / (1 + 0.109/2)^(2*10))) / (1 - (1 + 0.109/2)^(-2*10))
C ≈ $59.80
Since this is a semi-annual bond, the annual coupon payment would be:
Annual Coupon Payment = C * 2 = $59.80 * 2 = $119.60
Finally, to find the coupon rate, we can divide the annual coupon payment by the par value:
Coupon Rate = (Annual Coupon Payment / Par Value) * 100 = ($119.60 / $1,000) * 100 = 11.96%
So, the coupon rate for the semi-annual bond is approximately 11.96%.
To learn more about Coupon Rate
https://brainly.com/question/30145053
#SPJ11
For each of the figures, write an absolute value equation that has the following solution set
The absolute value equation that has a solution set of 3 and 7 is |x-5|= 2.
We have,
The solution sets of the absolute value equation are given as x = {3, 7}.
So, Mean of solution
x₁= (7+3)/2
= 10/2
= 5
and, x₂ = (7-3)/2
= 4/2
= 2
Now, the absolute value equation
|x - x₁| - x₂ = 0
|x -5|-2 = 0
|x-5|= 2
Learn more about absolute value equation here:
brainly.com/question/2166748
#SPJ1
Isabel is going to rent a truck for one day. There are two companies she can choose from, and they have the following prices. Company A charges $90 and allows unlimited mileage. Company B has an initial fee of $75 and charges an additional $0. 60 for every mile driven. For what mileages will Company A charge less than Company B? Use m for the number of miles driven, and solve your inequality for m
Therefore, if Isabel plans to drive inequality more than 25 miles, Company B will be more expensive than Company A. If she plans to drive 25 miles or less, Company A will be more expensive.
Let's start by setting up an inequality to represent the mileages for which Company A charges less than Company B.
For Company A, the cost is a flat fee of $90, regardless of the number of miles driven.
For Company B, the cost depends on the number of miles driven. The initial fee is $75, and then there is an additional charge of $0.60 for every mile driven. So, the total cost for Company B can be represented by the equation:
Cost(B) = 0.60m + 75
here m is the number of miles driven.
We want to find the mileages for which Company A charges less than Company B. In other words, we want to find the values of m for which:
Cost(A) < Cost(B)
Substituting in the expressions for the costs, we get:
90 < 0.60m + 75
Simplifying and solving for m, we get:
15 < 0.60m
25 < m
Learn more about inequality visit: brainly.com/question/24372553
#SPJ4
thank you all for any help it realy means a lot
Answer: x +
Step-by-step explanation:
the correct expression is:
5 x (8 + 4)
when expanded, this would give you:
5x8 + 5x4
so the blanks should be filled with x and +
2. Solve the given initial-value problem (a) xy2 dy/dx = y3-r3, y(2) = 2. dy dr
(b) x2+2y2 dy/dx =ry. dar y(-1) = 1.
(c) (x-yey/x)dr - zey/xdy=0, y(1) = 0.
a) The solution to the initial-value problem is: y^3 = 3xr^3 + 2.
b) The solution to the initial-value problem is: x^2 y + (1/2) y^3 = (1/2) r^2 + 3/2.
c) The solution to the initial-value problem is: xr - ye^y = z ln|x| + 1.
(a) We can start by separating the variables and integrating both sides with respect to x and y:
xy^2 dy = y^3 - r^3 dx
Integrating both sides:
(1/3) y^3 = xr^3/3 + C
Using the initial condition y(2) = 2:
(1/3) (2)^3 = 2r^3/3 + C
C = 2/3
Thus, the solution to the initial-value problem is:
y^3 = 3xr^3 + 2
(b) Similar to part (a), we can separate the variables and integrate both sides with respect to x and y:
x^2 + 2y^2 dy = ry dx
Integrating both sides:
x^2 y + (1/2) y^3 = (1/2) r^2 + C
Using the initial condition y(-1) = 1:
(-1)^2 (1) + (1/2) (1)^3 = (1/2) r^2 + C
C = 3/2
Thus, the solution to the initial-value problem is:
x^2 y + (1/2) y^3 = (1/2) r^2 + 3/2
(c) We can start by multiplying both sides by dx and integrating:
(x-yey) dr = zey dy/x
Integrating both sides:
xr - ye^y = z ln|x| + C
Using the initial condition y(1) = 0:
1r - 0e^0 = z ln|1| + C
C = 1
Thus, the solution to the initial-value problem is:
xr - ye^y = z ln|x| + 1
Learn more about "initial value problem": https://brainly.com/question/31041139
#SPJ11
Solve for x.
4x -9 = 2x +5
Answer:
x = 7
Step-by-step explanation:
Solve for x.
4x - 9 = 2x + 5
4x - 2x = 5 + 9
2x = 14
x = 14 : 2
x = 7
-----------------
check (replace "x" with "7")
4 * 7 - 9 = 2 * 7 + 5 (remember PEMDAS)
28 - 9 = 14 + 5
19 = 19
the answer is good
Answer:
hence the required value of x is 7.
what is the median for the data set 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 10, 11, 12, 12, 13, 14.
Answer:9.5
Step-by-step explanation:
Answer: 8
Step-by-step explanation:
The median of this data set is 8. If you cross one number from both sides at the same time, you will eventually come to the middle of the data set, which is 8.
Find the dimensions of the rectangle with area 225 square inches that has minimum perimeter, and then find the minimum perimeter.
1. Dimensions: 2. Minimum perimeter: Enter your result for the dimensions as a comma separated list of two numbers. Do not include the units.
the dimensions of the rectangle are L = 15 inches and W = 15 inches, and the minimum perimeter is: P = 2L + 2W = 60 inches.
Let the length and width of the rectangle be L and W, respectively, so that the area of the rectangle is A = LW = 225. We want to find the dimensions of the rectangle with minimum perimeter P = 2L + 2W, and then find the minimum perimeter.
Using the given area, we can solve for one of the variables in terms of the other:
L = 225/W
Substituting this expression for L into the expression for the perimeter, we get:
P = 2(225/W) + 2W
Taking the derivative of P with respect to W and setting it equal to zero to find the minimum, we get:
[tex]dP/dW = -450/W^2 + 2 = 0[/tex]
Solving for W, we get:
W^2 = 225
Since W must be positive (it is a length), we take the positive square root:
W = 15
Substituting this value of W back into the expression for L, we get:
L = 225/W = 15
To know more about Dimensions,refer here:
https://brainly.com/question/28688567
#SPJ11
Solve the differential equation by variation of parameters. 4y'' − y = ex/2 8
The solution of the differential equation 4y'' − y = [tex] {e}^{x/2} [/tex] + 8 by variation of parameter method is y(x) = (15C - 16)[tex] {e}^{x/2} [/tex] + 15C' [tex] {ex}^{-x/2} [/tex]
To solve the differential equation by variation of parameters, we assume that the solution is of the form,
y(x) = u₁(x)y₁(x) + u₂(x)y₂(x), linearly independent solutions of the homogeneous equation are y₂(x) and y₂(x), and functions to be determined u₁(x) and u₂(x). The homogeneous equation associated with the given differential equation is,
4y'' - y = 0
The characteristic equation is,
4r² - 1 = 0 which has solutions r = ±1/2. Therefore, the general solution of the homogeneous equation is,
y(x) = C[tex] {e}^{x/2} [/tex] + C'[tex] {e}^{-x/2} [/tex]
C and C' are arbitrary constants.
Now, we need to find particular solutions of the non-homogeneous equation. We can guess that a particular solution has the form,
[tex] y_{p(x)} = A(x) {e}^{(x/2)} [/tex]
where A(x) is a function to be determined. We can find A(x) by substituting y_p(x) into the differential equation and solving for A(x). We have,
[tex] 4y_{p(x)} - y_{p(x)} = {e}^{(x/2)} +8 [/tex]
Differentiating twice and substituting these into the differential equation gives:
[tex]4( A"(x) + A'(x)) {e}^{2/y} 2 + \frac{A(x)}{4} - A(x) {e}^{(x/2)} = {e}^{(x/2)} + 8[/tex]
Simplifying and solving for A(x), we obtain,
A(x) = -16/15
Therefore, a particular solution of the differential equation is:
[tex]y_{p(x)} = \frac{ - 16}{15} {e}^{(x \div 2)} [/tex]
The general solution of the non-homogeneous equation is then,
y(x) = C[tex] {e}^{x/2} [/tex] + C'[tex] {e}^{-x/2} [/tex] [tex]\frac{ - 16}{15} {e}^{(x/2)} [/tex]
Simplifying and collecting terms, we get,
y(x) = (15C - 16)[tex] {e}^{x/2} [/tex] + 15C' [tex] {ex}^{-x/2} [/tex] ,where C and C' are arbitrary constants.
To know more about variation of parameters method, visit,
brainly.com/question/31585746
#SPJ4
Complete question - Solve the differential equation by variation of parameters. 4y'' − y = e^x/2 + 8.
How to write an equation to describe a proportional relationship
A proportional relationship is a type of linear relationship where the ratio of two variables is constant.
The number of hours studied (x) and the corresponding grade on a test (y) for a group of students. We observe that the grades are directly proportional to the number of hours studied. To write an equation to describe this proportional relationship, we can use the form y = kx, where k is the constant of proportionality.
To find the value of k, we can use any data point in the dataset. Let's say that when a student studies for 5 hours, they get a grade of 80. We can substitute these values into the equation:
[tex]80 = k[/tex] × [tex]5[/tex]
To solve for k, we can divide both sides by 5:
[tex]k = 80 / 5[/tex]
[tex]= 16[/tex]
Therefore, the equation to describe this proportional relationship is:
[tex]y = 16x[/tex]
This means that for every additional hour studied, the grade increases by 16 points.
To learn more about proportional relationship visit:
https://brainly.com/question/18855170
#SPJ4
Complete Question:
How to write an equation to describe a proportional relationship?
2. Determine the supremum and infimum in R of each of the following sets. Is this value also the maximum/minimum? (a) {1/n: 0 € N} (b) {z E Q: 22 < 3}
To determine the supremum and infimum of the given sets.
(a) The set {1/n: n ∈ N} consists of the reciprocals of positive integers. The smallest element in the set is 1, as it corresponds to n=1. The set has no largest element since it has an infinite number of elements getting smaller as n increases. Therefore, the infimum (greatest lower bound) of the set is 1, and there is no maximum. The supremum (least upper bound) of the set is not in the set itself, but it exists and equals 1.
(b) The set {z ∈ Q: 22 < 3} is an empty set since there is no rational number z that satisfies the condition 22 < 3. In this case, there is no supremum or infimum since the set has no elements. Consequently, there is no maximum or minimum value.
Learn more about supremum and infimum: https://brainly.com/question/24424398
#SPJ11
PLEASE HELP ME SOLVE THIS ONE QUESTION , I HAVE SOLVED I) IT IS II) I NEED HELP WITH
5. A is the point (1,5) and B is the point (3,9).M is the midpoint of AB
i) M = (2,5)
ii)Find the equation of the line that is perpendicular to AB and passes through M.
Give your answer in the form : y=mx+c
I)
[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ A(\stackrel{x_1}{1}~,~\stackrel{y_1}{5})\qquad B(\stackrel{x_2}{3}~,~\stackrel{y_2}{9}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 3 +1}{2}~~~ ,~~~ \cfrac{ 9 +5}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ 14 }{2} \right)\implies (2~~,~~7)[/tex]
II)
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the line AB
[tex](\stackrel{x_1}{1}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{9}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{9}-\stackrel{y1}{5}}}{\underset{\textit{\large run}} {\underset{x_2}{3}-\underset{x_1}{1}}} \implies \cfrac{ 4 }{ 2 } \implies 2 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{ 2 \implies \cfrac{2}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{2}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{2} }}[/tex]
so we're really looking for the equation of a line whose slope is -1/2 and it passes through (2 , 7)
[tex](\stackrel{x_1}{2}~,~\stackrel{y_1}{7})\hspace{10em} \stackrel{slope}{m} ~=~ - \cfrac{1}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{7}=\stackrel{m}{- \cfrac{1}{2}}(x-\stackrel{x_1}{2}) \\\\\\ y-7=- \cfrac{1}{2}x+1\implies {\Large \begin{array}{llll} y=- \cfrac{1}{2}x+8 \end{array}}[/tex]
Which is different? A cylinder is shown. The radius of its base is 5 centimeters and height is 12 centimeters. Responses How much does it take to fill the cylinder? How much does it take to fill the cylinder? What is the capacity of the cylinder? What is the capacity of the cylinder? How much does it take to cover the cylinder? How much does it take to cover the cylinder? How much does the cylinder contain?
How much does it take to cover the cylinder? is different from the rest, as it refers to the surface area of the cylinder, not its volume or capacity.
The term "cover" usually means to place something over the top or on the surface of something else, such as a lid covering a container.
In the context of a cylinder, "covering" would typically refer to finding the surface area of the cylinder, which includes both the top and bottom circles as well as the curved lateral surface.
In contrast, the other statements are related to the volume or capacity of the cylinder, which refers to how much space is contained inside the cylinder.
To learn more on Three dimensional figure click:
https://brainly.com/question/2400003
#SPJ1
Which could be the dimensions of a rectangular prism whose surface area is greater than 140 square feet? Select
three options.
6 feet by 2 feet by 3 feet
6 feet by 5 feet by 4 feet
7 feet by 6 feet by 4 feet
8 feet by 3 feet by 7 feet
8 feet by 4 feet by 3 feet
Mark this and return
Save and Exit
Next
Submit
The three options with dimensions resulting in a surface area greater than 140 square feet are:
6 feet by 5 feet by 4 feet7 feet by 6 feet by 4 feet8 feet by 3 feet by 7 feetTo determine whether the dimensions of a rectangular prism result in a surface area greater than 140 square feet, we can use the formula for the surface area of a rectangular prism:
Surface Area = 2lw + 2lh + 2wh
where l, w, and h are the length, width, and height of the rectangular prism, respectively.
Option 1: 6 feet by 2 feet by 3 feet
Surface Area = 2(6)(2) + 2(6)(3) + 2(2)(3) = 24 + 36 + 12 = 72 square feet
This option does not have a surface area greater than 140 square feet.
Option 2: 6 feet by 5 feet by 4 feet
Surface Area = 2(6)(5) + 2(6)(4) + 2(5)(4) = 60 + 48 + 40 = 148 square feet
This option has a surface area greater than 140 square feet.
Option 3: 7 feet by 6 feet by 4 feet
Surface Area = 2(7)(6) + 2(7)(4) + 2(6)(4) = 84 + 56 + 48 = 188 square feet
This option has a surface area greater than 140 square feet.
Option 4: 8 feet by 3 feet by 7 feet
Surface Area = 2(8)(3) + 2(8)(7) + 2(3)(7) = 48 + 112 + 42 = 202 square feet
This option has a surface area greater than 140 square feet.
Option 5: 8 feet by 4 feet by 3 feet
Surface Area = 2(8)(4) + 2(8)(3) + 2(4)(3) = 64 + 48 + 24 = 136 square feet
This option does not have a surface area greater than 140 square feet.
Therefore, the three options with dimensions resulting in a surface area greater than 140 square feet are:
6 feet by 5 feet by 4 feet7 feet by 6 feet by 4 feet8 feet by 3 feet by 7 feetTo learn more about Dimensions of Rectangular Prism,
brainly.com/question/30344019
what is the next fraction in this sequence; 1/3, 5/12, 1/2, 7/12
Answer:2/3
Step-by-step explanation:
Since with each fraction, the value increases by an increment of 0.0833333333333, which we can figure out by subtracting the smaller values by the values that come directly after them in the string of fractions, we can find that the next value in the list is 2/3, which is 7/12 + 0.0833333333333.
(question/equation in the photo) PLEASE PLEASE HELP ITS DUE TMR
Answer:
The perimeter of the quarter circle is 24.997 cm
Step-by-step explanation:
Given, the radius of the circle = 7 cm
The perimeter of the circle = 2πr
and perimeter of the quarter circle = 2r + C
where r is the radius and C is the circumference of the sector of a circle
Circumference of the sector = ∅/360°(2πr)
C = 90°/360°(2×3.142×7)
C = 10.997 cm
perimeter of the quarter circle = 2r + C
= 2×7 + 10.997
= 24.997 cm
The perimeter of the quarter circle will be 24.997 cm
learn more about circles here :
brainly.com/question/29142813
For the following exercises, use substitution to solve the system of equations. Show work and give answer as and order pair.
. 5x + 6y = 14
4x + 8y = 8
A
(-4,1)
B
(4,-1)
C
(-4,-1)
D
(-4,1)
E
None of the above
Answer:
(4, -1)
Hope you can understand what I did
Assume C is the center of the circle.
HELP!!!!! WORTH 30 POINTS
The relation that is a function is given as follows:
Bottom left graph.
When does a graph represents a function?A graph represents a function if it has no vertically aligned points, that is, each value of x is mapped to only one value of y. Vertically aligned points mean that a value of x is mapped to multiple values of y, that is, a single input is mapped to multiple outputs which disqualify the relation as a function.
Hence the bottom left graph is the only one with a relation representing a function, as a vertical line would not cross the graph of the function more than once no matter where it was plotted.
More can be learned about graphs and functions at https://brainly.com/question/12463448
#SPJ1
Students at Mendel middle school are planning a fair for their school’s fundraiser. Liam makes a poster for the fair. Maureen looks at the poster and says that the price per ticket decreases the more tickets a customer buys. Liam disagrees. Is Liam or Maureen correct? What is the y-intercept of the graph? Explain what it means in the problem situation.
Use the equation for the velocity of a free-falling object,
v =
2gh
,
where v is the velocity measured in feet per second,
g = 32
feet per second per second, and h is the distance (in feet) the object has fallen. A stone strikes the water with a velocity of 138 feet per second. Estimate to two decimal places the height from which the stone was dropped
As per the given equation, the stone was dropped from a height of approximately 1.08 feet or about 13 inches.
The velocity of a free-falling object is an important concept in physics, and it is defined by the equation:
v = 2gh
In this equation, v represents the velocity of the object in feet per second, g represents the acceleration due to gravity in feet per second per second, and h represents the distance that the object has fallen in feet.
Suppose a stone is dropped from a certain height and strikes the water with a velocity of 138 feet per second. Our task is to estimate the height from which the stone was dropped.
To solve this problem, we need to rearrange the equation to solve for h. We start by dividing both sides of the equation by 2g:
h = v/2g
Substituting the given values, we get:
h = 138/2(32) = 1.078125
To know more about equation here
https://brainly.com/question/10413253
#SPJ1
Line q passes through points (2, 5) and (8, 10). Line r is parallel to line q. What is the slope of line r?
Answer:
Step-by-step explanation:
The state of Colorado has a population of about 5.77 million people. The state of Pennsylvania has a population density 5 times greater than the population density of Colorado. Find the population of Pennsylvania.
The population of Pennsylvania is: 1304503 people
How to calculate population density?Population density is calculated by taking the total area of a region in question and dividing it by the total number of people that live in that area. The result will give the average number of inhabitants per square kilometre, mile, acre, meter, etc.
The parameters given are:
Population of colorado = 5,770,000 people
Area of colorado = 280 * 380
= 106,400 mi²
Population density here = 5,770,000/106,400
54.23 people per mi²
Area of Pennsylvania = 283 * 170
= 48110 mi²
Thus:
Population of Pennsylvania/48110 mi² = 5 * 54.23 people per mi²
Population of Pennsylvania = 48110 * mi² * 5 * 54.23 people per mi²
= 1304503 people
Read more about Population Density at: https://brainly.com/question/13902749
#SPJ1