Step-by-step explanation:
You can find the complete solution
You should use cross multiplication to solve
I hope it helped you
PLEASE HELP: A random sample of 200 students are chosen from a student population of 1200 students. which sample do you think is more likely to be representative of the population
Answer:
random sampling is more accurate
Six divided by one thirds
Answer:
18/1
Step-by-step explanation:
Answer:
1/2. I think if I'm wrong I'm sorry
The probability that a randomly selected 25-year-old male will survive the year is 0.9984 according to a report on vital
statistics. If three randomly selected 25-year-old males are selected from the general population, explain how to find the
probability that all three will survive the year. Follow the rules for significant figures.
Answer:
0.9952076759
Step-by-step explanation:
Probability that all three survive
= 0.9984 × 0.9984 × 0.9984
= 0.9952076759
In making a budget, a person should spend about one-third of his or her salary on
rent or housing, should put about one-tenth into a savings account, and should
plan to have about one-third taken out in taxes. What fraction of a person’s salary
is then left for everything else?
Lets see
One-third on rentOne tenth on savingsOne third for taxesLeft:-
1-(1/3+1/10+1/3)1-(20+20+3/30)1-43/3030-43/10-13/10Not left anything
PLEASE HELP ILL GIVE BRAINLIESTTTT
Answer:
50, 30 and 20
Step-by-step explanation:
Check out the attached photo
rom the sample space S={1, 2, 3, 4,..., 15} a single number is to be selected at random. Given the following events, find the indicated probability. A: The selected number is even. B: The selected number is a multiple of 4. C: The selected number is a prime number. P(C∣A)
The probability that the selected number is even, multiple of 4 and prime are 7/15, 1/5 and 2/5 respectively
What is Probability?Probability is the likelihood or chance that an event will occur.
Probability = Expected outcome/Total outcome
Given the following set
S={1, 2, 3, 4,..., 15}
n(S) = 15
If the selected number is even
E = {2, 4, 6, 8, 10, 12, 14}
n(E) = 7
Pr(selecting even number) = n(E)/n(S)
Pr(selecting even number) = 7/15
If the selected number is a multiple of 4
E = {4, 8, 12}
n(E) = 3
Pr(multiple of 4) = n(E)/n(S)
Pr(multiple of 4) = 3/15 = 1/5
If the selected number is a prime number
E = {2, 3, 5, 7, 11, 13}
n(E) = 6
Pr(prime number) = n(E)/n(S)
Pr(prime number) = 6/15 = 2/5
Learn more on probability here: https://brainly.com/question/25870256
Point B (1 -3) is reflected across the x-axis to point D. What are the coordinates of point D?
Answer:
D (1;3).
Step-by-step explanation:
1) the condition 'across the X-axis' means the x-coordinate is not changed, the y-coordinate is changed to positive value. Then
2) the required coordinates of point D are (1; 3).
note, the suggested option is not the only one.
Given mn, find the value of x. + (10N+2)" ION-18)"
Answer:
16
Step-by-step explanation:
equal both using corresponding law
[80 POINTS]
A candlemaker uses 240 cubic centimeters of wax to create a scented candle using a cylindrical mold. He decides to offer a larger-sized candle, which uses twice as much wax as the smaller-sized candle.
Which mold can he use to make the larger-sized candle?
A. a cylinder with a height that is the same as the height of the original mold, and a radius that is double the radius of the original mold
B. a cylinder with a height that is double the height of the original mold, and a radius that is one-half the radius of the original mold
C. a cylinder with a height and a radius that are each double the length of those of the original mold
D. a cylinder with a height that is double the height of the original mold, and a radius that is the same as the radius of the original mold
Answer: a cylinder with a height that is double the height of the original mold, and a radius that is the same as the radius of the original mold
Step-by-step explanation:
Answer:
Answer: a cylinder with a height that is double the height of the original mold, and a radius that is the same as the radius of the original mold.
Step-by-step explanation:
BRAINLIEST?! :D
You look up at a 70°
angle and see a plane directly above a building that is 30 meters away from you. How high is the plane flying? Round your answer to the nearest tenth.
Answer:
tan 70 times thirty gives you -1.70
Can yo solve this ones, please? in adittion, can you put answers and the process. The topic are area down the curve
1) The net area between the two functions is 2.
2) The net area between the two functions is 4/3.
3) The net area between the two functions is 17/6.
4) The net area between the two functions is approximately 1.218.
5) The net area between the two functions is 1/2.
How to determine the area between two functions by definite integrals
The area between the two curves is determined by definite integrals for a interval between two values of x. A general formula for the definite integral is presented below:
[tex]A = \int\limits^{b}_{a} {[f(x) - g(x)]} \, dx[/tex] (1)
Where:
a - Lower limitb - Upper limitf(x) - "Upper" functiong(x) - "Lower" functionNow we proceed to solve each integral:
Case I - [tex]f(x) = \sqrt{x}[/tex] and [tex]g(x) = x^{2}[/tex]The lower and upper limits between the two functions are 0 and 1, respectively. The definite integral is described below:
[tex]A = \int\limits^1_0 {x^{0.5}} \, dx - \int\limits^1_0 {x^{2}} \, dx[/tex]
[tex]A = 2\cdot (1^{1.5}-0^{1.5})-\frac{1}{3}\cdot (1^{3}-0^{3})[/tex]
[tex]A = 2[/tex]
The net area between the two functions is 2. [tex]\blacksquare[/tex]
Case II - [tex]f(x) = -4\cdot x[/tex] and [tex]g(x) = x^{2}+3[/tex]The lower and upper limits between the two functions are -3 and -1, respectively. The definite integral is described below:
[tex]A = - 4 \int\limits^{-1}_{-3} {x} \, dx - \int\limits^{-1}_{-3} {x^{2}} \, dx - 3 \int\limits^{-1}_{-3}\, dx[/tex]
[tex]A = -2\cdot [(-1)^{2}-(-3)^{2}]-\frac{1}{3}\cdot [(-1)^{3}-(-3)^{3}] -3\cdot [(-1)-(-3)][/tex]
[tex]A = \frac{4}{3}[/tex]
The net area between the two functions is 4/3. [tex]\blacksquare[/tex]
Case III - [tex]f(x) = x^{2}+2[/tex] and [tex]g(x) = -x[/tex]The definite integral is described below:
[tex]A = \int\limits^{1}_{0} {x^{2}} \, dx + 2\int\limits^{1}_{0}\, dx + \int\limits^{1}_{0} {x} \, dx[/tex]
[tex]A = \frac{1}{3}\cdot (1^{3}-0^{3}) + 2\cdot (1-0) +\frac{1}{2}\cdot (1^{2}-0^{2})[/tex]
[tex]A = \frac{17}{6}[/tex]
The net area between the two functions is 17/6. [tex]\blacksquare[/tex]
Case IV - [tex]f(x) = e^{-x}[/tex] and [tex]g(x) = -x[/tex]The definite integral is described below:
[tex]A = \int\limits^{0}_{-1} {e^{-x}} \, dx+ \int\limits^{0}_{-1} {x} \, dx[/tex]
[tex]A = -(e^{0}-e^{1}) + \frac{1}{2}\cdot [0^{2}-(-1)^{2}][/tex]
[tex]A \approx 1.218[/tex]
The net area between the two functions is approximately 1.218. [tex]\blacksquare[/tex]
Case V - [tex]f(x) = \sin 2x[/tex] and [tex]g(x) = \sin x[/tex]This case requires a combination of definite integrals, as f(x) may be higher that g(x) in some subintervals. The combination of definite integrals is:
[tex]A = \int\limits^{\frac{\pi}{3} }_0 {\sin 2x} \, dx - \int\limits^{\frac{\pi}{3} }_{0} {\sin x} \, dx + \int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin x} \, dx -\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin 2x} \, dx[/tex]
[tex]A = -\frac{1}{2}\cdot (\cos \frac{2\pi}{3}-\cos 0)+(\cos \frac{\pi}{3}-\cos 0 ) -(\cos \frac{\pi}{2}-\cos \frac{\pi}{3} )+\frac{1}{2}\cdot (\cos \pi-\cos \frac{2\pi}{3} )[/tex]
[tex]A = \frac{1}{2}[/tex]
The net area between the two functions is 1/2. [tex]\blacksquare[/tex]
To learn more on definite integrals, we kindly invite to check this verified question: https://brainly.com/question/14279102
Solve using the square root property.X^2=-12
Answer:
x = ± 2i[tex]\sqrt{3}[/tex]
Step-by-step explanation:
note that [tex]\sqrt{-1}[/tex] = i
x² = - 12 ( take square root of both sides )
x = ± [tex]\sqrt{-12}[/tex] = ± [tex]\sqrt{4(3)(-1)}[/tex] = ± 2i[tex]\sqrt{3}[/tex]
You can buy 1 pound of chocolate for 7.99 how much is a chocolate pronounce round your answer to the nearest cent
Answer:
Step-by-step explanation:
1 pound = 16 ounces
16 ounces = $7.99
1 ounce = $0.50 (about)
Write an expression for the area of the following regular polygon?
Answer:
126x - 42x²
Step-by-step explanation:
Finding the necessary information
P = Perimeter = 6(6 - 2x) = 36 - 12xa = 7xArea
1/2 x (36 - 12x) x 7x(18 - 6x) x 7x126x - 42x²2x + y = 7 - 9x + 6y = 0
x=2
Step-by-step explanation:
y=7-2x -------(1)
6y=9x
y=9x/6 = 3x/2------(2)
Now,
Equation equation 1 and 2
7-2x= 3x /2
2(7-2x)=3x
14-4x=3x
14=4x+3x
14=7x
14/7=x
x=2
How to solve this 2 question?
8. For brevity, let U = unemployed, E = employed, M = male, F = female. We're given that
P(M) = P(F) = 50/100 = 1/2
P(U) = 60/100 = 3/5
P(M | U) = 2/3
P(E) = 40/100 = 2/5
P(F | E) = 3/4
8a. This follows immediately from the given information. Specifically,
P(E) = 1 - P(U) = 1 - 3/5 = 2/5
8b. By definition of conditional probability,
P(A | B) = P(A and B) / P(B) ⇒ P(A and B) = P(A | B) P(B)
It follows that
P(M and U) = P(M | U) P(U) = 2/3 • 3/5 = 2/5
8c. Using Bayes' rule/the definition of conditional probability,
P(U | F) = P(U and F) / P(F) = P(F | U) P(U) / P(F)
Since F and M are mutually exclusive,
P(F | U) = 1 - P(M | U)
and so
P(U | F) = (1 - 2/3) • 3/5 / [(1 - 2/3) • 3/5 + 3/4 • 2/5] = 2/5
8d. Here we assume gender and employment status are independent, so for instance
P(F and E) = P(F) P(E)
We then have by the inclusion/exclusion principle that
P(F or U) = P(F) + P(U) - P(F and U) = P(F) + P(U) - P(F) P(U)
We also have by the law of total probability
P(F) = P(F and U) + P(F and E)
so
P(F or U) = P(F and U) + P(F and E) + P(U) - P(F) P(U)
By the assumed independence,
P(F or U) = P(F) P(U) + P(F) P(E) + P(U) - P(F) P(U)
P(F or U) = P(F) P(E) + P(U)
P(F or U) = 1/2 • 2/5 + 3/5 = 4/5
9.
a. This is mostly a matter of counting the ways a given type of stamp can fall out.
[tex]P(A) = \dfrac{\dbinom{20}3}{\dbinom{24}3} = \dfrac{285}{506}[/tex]
since there are 20 non-green stamps.
[tex]P(B) = \dfrac{\dbinom21 \dbinom{22}2}{\dbinom{24}3} = \dfrac{21}{92}[/tex]
since there are 2 red and unused stamps, 1 of which we want; the other 2 stamps come from the remaining 22 non-red-and-unused stamps.
[tex]P(A \cap B) = \dfrac{\dbinom21 \dbinom{18}2}{\dbinom{24}3} = \dfrac{153}{1012}[/tex]
since exactly 1 of the stamps must be red and unused, and the other 2 stamps that fall out can be neither green nor red and unused.
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B) = \dfrac{162}{253}[/tex]
which follows from the inclusion/exclusion principle.
b. There is a total of 10 used stamps, so the probability of at least 1 going missing is
[tex]P(C) = \dfrac{\dbinom{10}1\dbinom{14}2 + \dbinom{10}2\dbinom{14}1 + \dbinom{10}3}{\dbinom{24}3} = \dfrac{415}{506}[/tex]
By definition of conditional probability,
[tex]P(C \mid A) = \dfrac{P(C \cap A)}{P(A)}[/tex]
However, there are no used green stamps; any used stamp that goes missing must be red, blue or yellow. So the event A ∩ C is really just the event C, and
[tex]P(C \mid A) = P(C) = \dfrac{415}{506}[/tex]
c. A and C are independent if and only if
[tex]P(A \cap C) = P(A) P(C)[/tex]
We know
[tex]P(C \cap A) = P(C)[/tex]
so if A and C are independent, then
[tex]P(C) = P(A) P(C)[/tex]
but this would imply P(A) = 1, which is clearly not the case as we found in 9.a. So A and C are not independent.
f(X)= 4X+8 g(X)= X+3, find f(X) • g(X)
Answer:
[tex]4x + 20[/tex]
Step-by-step explanation:
[tex]4(x + 3) + 8 = 4x + 12 + 8 = 4x + 20[/tex]
A rock is dropped from the top of a building and hits the ground at a velocity of
–72ft/sec. If the acceleration due to gravity is – 32ft /sec², what is the height of the
building?
Answer:
81 [ft].
Step-by-step explanation:
1) the basic formula is: h=gt²/2, where g - acceleration due to gravity, t - elapsed time;
2) if the final velocity is 72, g=32, then it is possible to calculate elapsed time:
[tex]t=\frac{V}{g}=\frac{72}{32}=\frac{9}{4} [sec].[/tex]
3) if g=32, t=9/4, then the required height is:
[tex]h=\frac{32*(\frac{9}{4} )^{2} }{2}=\frac{16*81}{16}=81[ft].[/tex]
The height of the building comes to be 81 feet.
Initial velocity u= 0 feet/sec
Final velocity v= 72 feet/sec
The acceleration due to gravity g =32ft /sec²
Height of the building h= suppose h
What is the equation of motion?The equation of a motion is:
[tex]v^{2} =u^{2} +2gh[/tex]
Where u and v are the initial and final velocities.
[tex]72^{2} =0+2*32*h\\144 = 64h\\h=81[/tex]
So, the height of the building = 81 feet.
Therefore, the height of the building comes to be 81 feet.
To get more about motion visit:
https://brainly.com/question/453639
Factor out the greatest common factor 45d^3-18d^2
Answer:
9d^2(5d−2)
Step-by-step explanation:
A student is interested in the depth of the water off the
end of the local pier. Starting at midnight, he measures
the depth of the water every three hours for an entire
day and records the results in the table.
The equation of the least-squares regression line is
9 = 13.0 -0.259x, where y is the depth of the water
and x is the number of hours past midnight. Which
shows the residual plot?
For edge
The residual plot regarding the depth of the water is the difference between the observed response and the fitted response values.
What is a residual plot?Your information is incomplete. Therefore, an overview of a residual plot will be given. A residual plot is a graph that shows the residual on the vertical axis while the independent variable is on the horizontal axis.
Here, the equation of the least-squares regression line is 9 = 13.0 -0.259x, where y is the depth of the water and x is the number of hours past midnight.
In this case, the residual plot regarding the depth of the water is the difference between the observed response and the fitted response values.
Learn more about residual plot on:
https://brainly.com/question/3297603
Answer: C
Step-by-step explanation: Edge '23 Trust me
Pls help I cant figure it out ;-;
Answer:
coke red
Step-by-step explanation:
correct me if im wrong
Compare the functions shown below:
g(x)
f(x) = −3x + 2 cosine function with y intercept at 0, negative 3 h(x) = 4 sin(2x + π) + 3
Using complete sentences, explain which function has the greatest y-intercept.
Answer:
I know 3 h(x)=4sin(2x+pi)+3 is the correct option.
Step-by-step explanation:
I don't exactly know why but based on examples in this class I made this conclusion.
Answer:
all are -3
Step-by-step explanation:
substitue 0
For f(x) = 2 – 2x2, evaluate f(-4).
Answer:
x = 1 ± [tex]\sqrt2[/tex]
Step-by-step explanation:
Hope this helped! Have a nice day!
Please give Brainliest when you can.
- King Jaron
Evaluate f(p) = p + 2 when p = -3
Answer:
-1
Step-by-step explanation:
we plug in p = -3 in the equation to get the answer.
f(p) = -1
Consider the sum 7+(-11)+4
Answer:
0
Step-by-step explanation:
7-11=-4
-4+4=0
na conta de adição (soma) representa a seguir
Step-by-step explanation:
I only understand English i am sorry
Drag each equation to show if it could be a correct first step to solving the equation 3(6+x)=24.
Answer:
NoYesYesYesNoNoStep-by-step explanation:
18+x=24 and 6x+3 fail distributive property, while 3(6+x)=72 is not the same as 3(6+x)=24
How do I do show my work using Brainly math?
Step-by-step explanation: please see attached to PDF document.
Answer:
a) 6
b) 1/3
c) 2
Step-by-step explanation:
a) 3 ( x + 1 ) - x = 15. expand the bracket
3x + 3 - x = 15
2x + 3 = 15. collect the like terms
2x = 15 - 3.
2x = 12.
x = 12/2 = 6
b) 5 ( x + 2 ) - 2x = 11. expand the bracket
5x + 10 - 2x = 11
3x + 10 = 11. collect the like terms
3x = 11 - 10
3x = 1
x = 1/3
c) 6 ( 1 - 2x ) = - 4 - 7x. expand the bracket
6 - 12x = -4 -7x. collect the like terms
6 + 4 = -7x + 12x
10 = 5x
or
5x =. 10
x = 10/5 = 2
PLEASE MARK ME BRAINLIEST
Simplify the expression with nested parentheses.
4 30+ 26+6 −33
Answer:
not sure if the 4 is seperate but if it is then (30+26)+(6-33)
Step-by-step explanation:
Adam earns $36 for every four hours of work how long will it take him to earn $144
Answer:
It will take 16 hours to earn $144.
Step-by-step explanation:
If Adam earns $36 in 4 hours,
36 = 4k
k = 9
Therefore, expression for total earnings will be,
y = 9x
a). For y = $144, 144 = 9x x = 16 hours