The simplified answer after Simplification of (1/2 - 1/3)(4/5 - 3/4) / (1/2 + 2/3 + 3/4) is 7/36.
To solve this expression, we need to follow the order of operations, which is parentheses, multiplication/division, and addition/subtraction.
First, we simplify the expression inside the parentheses:
(1/2 - 1/3)(4/5 - 3/4) = (1/6)(1/5) = 1/30
Next, we add up the denominators in the denominator of the entire expression:
1/2 + 2/3 + 3/4 = 6/12 + 8/12 + 9/12 = 23/12
Finally, we divide the simplified expression inside the parentheses by the fraction in the denominator:
(1/30) / (23/12) = (1/30) x (12/23) = 4/230 = 2/115 = 7/36
Therefore, the simplified answer is 7/36.
Learn more about Simplification
https://brainly.com/question/28008382
#SPJ4
on the same coordinate plane mark all points (x,y) that satisfy each rule. y = x-3
The equation is y = x - 3
and the points (x, y) is (0,-3) , (-1, -4) and (1, -2)
Equation:An equation is math's way of saying that two things are equal to each other--that is, they have the same value, are worth the same amountA formula is a special equation that expresses an important relationship between variables and numbers.The equation is as follows:
y = x - 3
Substituting 'x = 0' in the given equation, we get
y = 0 - 3
y = -3
Substituting 'x = - 1' in the given equation, we get
y = - 1 - 3
y = -4
Substituting 'x = 1' in the given equation, we get
y = 1 - 3
y = -2
➢ Pair of points of the given equation are shown in the below table.
x y
0 -3
-1 -4
1 -2
➢ Now draw a graph using the points.
➢ See the attachment graph.
Learn more about Graph at:
https://brainly.com/question/10712002
#SPJ1
A manufacturer of soap bubble liquid will test _ new S0 lution formula The solution will be approved, if the percent of produced parisons; in which the content does not allowthe bubbles to inflate. doesnot exceed 7%. random sample of 700 parisons contains 55 defective parisons: After testing_ ppropriate set of hypotheses to determine whether the solution can be approved by using & = 0.05,what is the P-value of this test? 0.206 0.415 0.833 <0.001
A manufacturer of soap bubble liquid tests a new formula with a sample of 700 parisons. With a significance level of 0.05, the test results in a p-value of 0.206, leading to the conclusion that the new formula can be approved since the proportion of defective parisons does not exceed 7%. So, the correct option is A).
Let p be the true proportion of defective parisons in the population.
The null hypothesis is that the proportion of defective parisons is equal to or less than 7%, i.e., H0: p <= 0.07
The alternative hypothesis is that the proportion of defective parisons is greater than 7%, i.e., Ha: p > 0.07
Calculate the sample proportion and standard error
We are given that the sample size n = 700 and the number of defective parisons x = 55.
The sample proportion is P = x/n = 55/700 = 0.0786
The standard error of the sample proportion is
SE = √[(P(1-P))/n] = sqrt[(0.0786*0.9214)/700] = 0.0166
Calculate the test statistic
The test statistic for a one-tailed z-test is
z = (P - p) / SE
Here, we want to test if the proportion of defective parisons is greater than 7%, so we use the alternative hypothesis to calculate the z-value
z = (0.0786 - 0.07) / 0.0166 = 0.516
The p-value is the probability of getting a test statistic as extreme or more extreme than the observed value, assuming the null hypothesis is true. Since this is a one-tailed test, we need to find the area under the standard normal distribution curve to the right of z = 0.516.
Using a standard normal table or calculator, we find that the area to the right of z = 0.516 is 0.206.
The p-value of the test is 0.206, which is greater than the significance level of 0.05. Therefore, we fail to reject the null hypothesis and conclude that there is not enough evidence to suggest that the proportion of defective parisons is greater than 7%.
In other words, the new soap bubble liquid formula can be approved since the proportion of produced parisons with contents that do not allow bubbles to inflate does not exceed 7%. So, the correct answer is A).
To know more about Null hypothesis:
https://brainly.com/question/28920252
#SPJ4
uppose you have a set with k elements. set up a recurrence relation to count the number of subsets of the set (alternatively, the cardinality of its power set). don't forget your initial condition.
Therefore, we have the recurrence relation: |P(S_k)| = 2 * |P(S_{k-1})|
with the initial condition |P(S_0)| = 1 (since the empty set is the only subset of the empty set).
Sure! To count the number of subsets of a set with k elements, we can use the fact that each element can either be in a subset or not. This gives us two options for each element, so there are 2^k total subsets.
To set up a recurrence relation for this, let S_k denote the set with k elements and P(S_k) denote its power set (the set of all subsets of S_k). Then, we can relate P(S_k) to P(S_{k-1}) by considering whether or not to include the kth element in each subset.
If we don't include the kth element, then each subset of S_{k-1} is also a subset of S_k, so there are |P(S_{k-1})| subsets that don't include the kth element.
If we do include the kth element, then each subset of S_{k-1} can be extended by including the kth element, giving us |P(S_{k-1})| more subsets.
Know more about subsets here;
https://brainly.com/question/24138395
#SPJ11
Two concentric circles form a target. The radii of the two circles measure 8 cm and 4 cm. The inner circle is the bullseye of the target. A point on the target is randomly selected.
What is the probability that the randomly selected point is in the bullseye?
Enter your answer as a simplified fraction in the boxes.
The probability that the randomly selected point is in the bullseye is 0.75, or 75%.
The area of the bullseye is the difference between the areas of the larger and smaller circles:
[tex]A = \pi r_1^2 - \pi r_2^2[/tex]
where [tex]r_1[/tex] is the radius of the larger circle (8 cm) and [tex]r_2[/tex] is the radius of the smaller circle (4 cm).
[tex]A = \pi(8^2 - 4^2)A = \pi(64 - 16)A = 48\pi[/tex]
The area of the entire target (both circles) is:
[tex]A = \pi r_1^2[/tex]
A = 64π
Therefore, the probability of selecting a point in the bullseye is:
P(bullseye) = A(bullseye) / A(target)
P(bullseye) = (48π) / (64π)
P(bullseye) = 3/4 or 0.75
So the probability that the randomly selected point is in the bullseye is 0.75, or 75%.
Learn more about probability here:
brainly.com/question/14290572
#SPJ1
A frame {A} is rotated 90° about x, and then it is translated a vector (6.-2.10) with respect to the fixed (initial) frame. Consider a point P = (-5,2,-12) with respect to the new frame {B}. Determine the coordinates of that point with respect to the initial frame.
To determine the coordinates of point P with respect to the initial frame, we first need to find the transformation matrix from frame B to frame A, and then from frame A to the initial frame.
First, let's find the transformation matrix from frame B to frame A. We know that frame A is rotated 90° about x, so its transformation matrix is:
[A] = [1 0 0; 0 0 -1; 0 1 0]
To find the transformation matrix from frame B to frame A, we need to first undo the translation by subtracting the vector (6,-2,10) from point P:
P' = P - (6,-2,10) = (-11,4,-22)
Next, we need to apply the inverse transformation matrix of frame A to P'. The inverse of [A] is its transpose, so:
P'' = [A]T * P' = [1 0 0; 0 0 1; 0 -1 0] * (-11,4,-22) = (-11,-22,-4)
Finally, we need to find the transformation matrix from frame A to the initial frame. Since the initial frame is fixed and not rotated or translated, its transformation matrix is just the identity matrix:
[I] = [1 0 0; 0 1 0; 0 0 1]
So, the coordinates of point P with respect to the initial frame are:
P''' = [I] * P'' = (1*-11, 0*-22, 0*-4) = (-11,0,0)
Learn more about coordinates of point P:
https://brainly.com/question/7817231
#SPJ11
Instructor-created question Homework: Module 9- Hypothesis Testing for two Means (Depend HW Score: 62.68%, 23.19 of 37 points Points: 0 of 1 Save III A survey was conducted of two types of marketers. The first type being marketers that focus primarily on attracting business (B2B), and the second type being marketers that primanly target consumers (B2C) it was reported that 525 (90%) of B2B and 244 (59%) of B2C marketers commonly use a business social media tool. The study also revealed that 309 (53%) of B2B marketers and 241 (58%) of B2C marketers commonly use a video social media tool Suppose the survey was based on 584 B2B marketers and 417 B2C marketers Complete parts (8) tough (c) below a. At the 05 level of significance, is there evidence of a difference between B2Bmarkeders and B2C marketers in the proportion that commonly use the business social mediu tool? Let population 1 correspond to B2B marketers and population 2 correspond to B2C marketers. Choose the connect null and alternative hypotheses below OBH *** OAH 12 H *** H*** ODHO Ос. н. 1, а H, H, X2 Determine the test statistic Test Statistica Type an integer or a decimal Round to we decimal places as needed.) Find the rection region Select the conted choice below and in the answer boxes) to complete your choice (Round to three decimal places as needed OA2- 012 OBZ OC. + Determine a conclusion the ul hypothesis. There of a difference between 20 markets and B2C marketers in the proportion of the business social media tool b. Find the p value in (a) and interpret ils meaning p vake (Type an integer or a decimal Round to three decimal plans as needed Interpret the p valu of the proportion of B2B marketers that use the business social media tool the proportion of B2C marketers that use the business social media tool, the probability that a ZSTAT test statistic the one calculated is approximately equal to the p-value Al the 0.05 level of significance be there evidence of a diference between 28 marketers and B2C marketers in the proportion that use the video social media toor? Lut population correspond to B2B markets and population 2 correspond to B2C marketers Determine the testini Test Static Use 2 decimal places here Determine the p value p value (Type an integer or a deckenal Round to the decimal places as needed Determine a conclusion the null hypothesis. There of a difference between 28 marketers and B2C marketers in the proportion of the video social media tool
a. The null hypothesis is H0: p1 = p2, meaning that there is no difference in the proportion of B2B and B2C marketers who commonly use the business social media tool. The alternative hypothesis is Ha: p1 ≠ p2, indicating that there is a difference in the proportion of B2B and B2C marketers who commonly use the business social media tool.
To determine the test statistic, we can use the formula:
[tex]Z = (\frac{p1-p2}{\sqrt{p(1-p)} } (\frac{1}{n1} +\frac{1}{n2})[/tex]
where p is the pooled sample proportion, n1 and n2 are the sample sizes for B2B and B2C marketers, respectively.
Plugging in the values, we get:
[tex]p = \frac{(x1 + x2)}{(n1 + n2)} = \frac{525+244}{584+417} = 0.677[/tex]
[tex]Z= \frac{ (0.9 - 0.59)}{\sqrt{0.677(1-0.677)(\frac{1}{584}+\frac{1}{417}) } } } = 12.72[/tex]
The rejection region for a two-tailed test with alpha = 0.05 is ±1.96. Since our test statistic (12.72) is outside this range, we reject the null hypothesis and conclude that there is strong evidence of a difference in the proportion of B2B and B2C marketers who commonly use the business social media tool.
b. The p-value is the probability of observing a test statistic as extreme as the one calculated or more extreme, assuming the null hypothesis is true. We can find it using a Z-table or a calculator. Here, the p-value is essentially zero, indicating very strong evidence against the null hypothesis.
Interpreting the p-value, we can say that if the true proportion of B2B marketers who commonly use the business social media tool were equal to that of B2C marketers, the probability of observing a difference as extreme as the one in our sample or more extreme would be very small. Therefore, we can reject the null hypothesis and conclude that the proportion of B2B marketers who commonly use the business social media tool is significantly different from that of B2C marketers.
c. The null hypothesis is H0: p1 = p2, meaning that there is no difference in the proportion of B2B and B2C marketers who commonly use the video social media tool. The alternative hypothesis is Ha: p1 ≠ p2, indicating that there is a difference in the proportion of B2B and B2C marketers who commonly use the video social media tool.
To determine the test statistic, we can use the same formula as in part (a), but with the sample proportions and sizes for the video social media tool:
[tex]p = \frac{(x1 + x2)}{(n1 + n2)} = \frac{309+241}{584+417} = 0.444[/tex]
[tex]Z= \frac{ (0.53 - 0.58)}{\sqrt{0.444(1-0.444)(\frac{1}{584}+\frac{1}{417}) } } } = -1.33[/tex]
The p-value for a two-tailed test with alpha = 0.05 is approximately 0.18. Since this is greater than the significance level, we fail to reject the null hypothesis and conclude that there is not enough evidence to support a difference in the proportion of B2B and B2C marketers who commonly use the video social media tool.
To know more about "Null hypothesis" refer here:
https://brainly.com/question/30535681#
#SPJ11
Each month, Nadeem keeps track of the number of times he visits the library and the number of books he checks out Is there a correlation
you model his data with a linear equation? Is there a causal relationship?
We may draw a scatterplot of the data and compute the correlation coefficient to see whether there is a relationship between Nadeem's visits to the library and the number of books he checks out. Linear Equation = Y =mx+c. Option A is Correct.
The degree and direction of the linear link between two variables are measured by the correlation coefficient. If the correlation is positive, it suggests that if one variable rises, the other variable rises as well.
If there is a correlation, linear regression may be used to describe the data with a linear equation.
Y= mx+c
Based on how frequently Nadeem visits the library, we may use this equation to anticipate how many books he will borrow. Correlation does not always indicate cause, though. Option A is Correct.
Learn more about linear equation visit: brainly.com/question/28732353
#SPJ4
Correct Question:
Each month, Nadeem keeps track of the number of times he visits the library and the number of books he checks out Is there a correlation. you model his data with a linear equation? Is there a causal relationship?
A. There is a positive correlation and no causal relationship.
B. There is a negative correlation and no casual relationship.
C. There is a casual relationship but no positive correlation.
D. There is neither a correlation nor a casual relationship.
Express the confidence interval
40.8%
The confidence interval is in the range of 40.8% ± E.
The confidence interval for a proportion is typically expressed as:
ˆp ± z*SE
where ˆp is the sample proportion, z* is the critical value from the standard normal distribution for the desired level of confidence (e.g. 1.96 for 95% confidence), and SE is the standard error of the proportion.
Using this formula, if the sample proportion is 40.8% and we want a 95% confidence interval, we would have:
40.8% ± 1.96*√[(40.8%*(1-40.8%))/n]
where n is the sample size.
Without knowing the sample size, we cannot calculate the exact confidence interval. However, we can express the interval as:
(40.8% ± E)%
where E is the margin of error, which is equal to 1.96*√[(40.8%*(1-40.8%))/n]. This means that we are 95% confident that the true proportion falls within the range of 40.8% ± E.
Know more about confidence interval here:
https://brainly.com/question/20309162
#SPJ11
Un automóvil sale a 45 km/h de A al mismo tiempo que otro automóvil a 35 km/h sale de B y van en sentido opuesto al encuentro del otro. Si entre A y B hay 400km, ¿a qué distancia de A se encontrarán los automóviles y cuánto tiempo tardarán en encontrarse?
The cars will be 225 km from point A when they meet and it will take 5 hours for the cars to meet..
Let's denote the distance of the faster car from point A as "x" km. Therefore, the distance of the slower car from point B would be "400-x" km.
We can use the formula for distance, which is:
distance = rate × time
For the faster car, the distance it travels can be expressed as:
x = 45t
where t is the time it takes for the cars to meet.
For the slower car, the distance it travels can be expressed as:
400-x = 35t
Now, we can solve for t by setting these two expressions equal to each other:
45t = 400 - 35t
80t = 400
t = 5
We can then substitute t back into either expression to find the distance from point A:
x = 45t = 45(5) = 225 km
To learn more about distance, speed and time click on,
https://brainly.com/question/13410350
#SPJ1
What’s the answer I need it asap?
The distance between A and B is 5 unit.
We have the coordinates as
A(4, 3) and B(4, -2).
Using Distance formula
d= √(x₂ - x₁)² + (y₂ - y₁)²
So, d = √(-2-3)² + (4-4)²
d= √(-5)² + 0²
d = √25
d= 5
Thus, the distance between A and B is 5 unit.
Learn more about Distance Formula here:
https://brainly.com/question/25841655
#SPJ1
The drama club is selling gift baskets to raise money for new costumes. During the fall play, they sold a combined 15 regular gift baskets and 17 deluxe gift baskets, earning a total of $978. During the spring musical, they sold 27 regular gift baskets and 17 deluxe gift baskets, earning a total of $1,230. How much are they charging for the different-sized gift baskets?
The drama club is charging $__ for a regular gift basket and $__ for a deluxe gift basket.
Using the system of equations, we get that the drama club is charging $21 for a regular gift basket and $39 or a deluxe gift basket.
Given that,
The drama club is selling gift baskets to raise money for new costumes.
Let x be cost of the regular gift baskets and y be the cost of the deluxe gift baskets.
During the fall play, they sold a combined 15 regular gift baskets and 17 deluxe gift baskets, earning a total of $978.
15x + 17y = 978
During the spring musical, they sold 27 regular gift baskets and 17 deluxe gift baskets, earning a total of $1,230.
27x + 17y = 1230
From both equations,
978 - 15x = 1230 - 27x
12x = 252
x = 21
Cost of regular gift basket = $21
Cost of deluxe gift basket = y = (978 - 15 (21)) / 17 = $39
Hence the cost two kinds of baskets are $21 and $39.
Learn more about system of equations here :
https://brainly.com/question/24065247
#SPJ1
Sami wants to find the measurements of the sides and angles of the parallelogram shown. Which tools can she use to find these measurements? Select all that apply.
A.
protractor
B.
scale
C.
ruler
D.
compass
In a case whereby Sami wants to find the measurements of the sides and angles of the parallelogram shown the tools she can use to find these measurements are;
A.protractorC.rulerWhat is the function of the selected tool in making a parallelogram?The protractor serves as one of the tools that can be used in making the parallelogram whih which be used in the mearement of the angles of the paralleolgram.
The ruler is also useful in the creation of the parallelogram because it can be used to meausre the lenght of the fiqure, hence the first as well as the third option is right
Learn more about parallelogram at:
https://brainly.com/question/970600
#SPJ1
if abcde is a regular pentagon, find the smallest rotation about e which maps a to d. (mathcounts 1984)
If abcde is a regular pentagon, the smallest rotation about e which maps a to d is 144 degrees.
Using the fact that a regular pentagon has rotational symmetry of order 5. This means that if we rotate the pentagon by 72 degrees around its center, it will appear the same as it did before the rotation.
To map a to d, we need to rotate the pentagon by some angle around point e. Since e is the center of rotation, we need to find an angle that is a multiple of 72 degrees.
To determine the smallest angle of rotation, we need to find the number of 72 degree rotations that take us from a to d.
Starting from a, we can count the number of 72 degree rotations we need to make to reach d. We see that we need to make two 72 degree rotations in a counterclockwise direction.
Therefore, smallest rotation about e that maps a to d is a 144 degree counterclockwise rotation.
We can visualize this by drawing a regular pentagon and marking the point a and d on it. Then, we draw a line segment from a to d and a line segment from e to the midpoint of segment ad.
The angle between these two line segments is 144 degrees.
Know more about pentagon here:
https://brainly.com/question/29673128
#SPJ11
An angle measures 83.2° less than the measure of its supplementary angle. What is the measure of each angle?
Suppose a simple random sample of size n = 200i is obtained from a population whose size is N = 25 and whose population proportion with a specified characteristic is p = 0.2
(a) Describe the sampling distribution of p.
Choose the phrase that best describes the shape of the sampling distribution below.
Approximately normal because n <= 0.05N and n_{D}(1 - p) >= 10
B. Not normal because n <= 0.05N and np(1 - p) >= 10
C. Approximately normal because n <= 0.05N and np(1 - p) < 10
D. Not normal because n <= 0.05N and np(1 - p) < 10
The sampling distribution of p is the distribution of all possible values of p that could be obtained from all possible samples of size n = 200i from the population with size N = 25 and population proportion p = 0.2.
To determine whether the sampling distribution of p is approximately normal, we need to check the conditions n <= 0.05N and [tex]np(1 - p)\geq 10[/tex].
Here, n = 200i and N = 25, so [tex]n\leq 0.05N[/tex] holds if and only if [tex]i\leq 0625[/tex].
Since i is a positive integer, the largest value that i can take is 1. Therefore, n = 200 is the maximum sample size that we can have.
Next, we need to check whether [tex]np(1 - p)\geq 10[/tex]. Substituting n = 200 and p = 0.2, we get np(1 - p) = 32, which is greater than or equal to 10. Therefore, this condition is also satisfied.
Hence, we can conclude that the sampling distribution of p is approximately normal because [tex]n\leq0.05N[/tex] and [tex]np(1 - p)\geq 10[/tex].
Therefore, the correct answer is option A: Approximately normal because and [tex]n\leq0.05N[/tex] and [tex]n_{D} (1 - p)\geq 10.[/tex].
To know more about the sampling distribution visit:
https://brainly.com/question/30711768
#SPJ11
9y-7x=-13 -9x+y=15 substitution
The solution of the given system of equations by substitution is (-2, -3).
Given a system of equations,
9y - 7x = -13 [Equation 1]
-9x + y = 15 [Equation 2]
We have to find the solution of the given system of equations.
From [Equation 2],
y = 15 + 9x [Equation 3]
Substitute [Equation 3] in [Equation 1].
9 (15 + 9x) - 7x = -13
135 + 81x - 7x = -13
74x = -148
x = -2
y = 15 + (-18) = -3
Hence the solution of the given system of equations is (-2, -3).
Learn more about System of equations here :
https://brainly.com/question/24065247
#SPJ1
just answer for brainleist
Answer:
128° + 52° + 38° + x° = 360°
218° + x° = 360°
x = 142
Which of this is NOT a family of antiderivative of 2(3x + 2) ? a. 3 2(3x + 2)4 - +C 12 (3x + 2)4 - -C 6 b. 4(3x + 2)4 12 + K (3x + 2) 6 + K
4(3x + 2)4 12 + K (3x + 2) 6 + K is NOT a family of antiderivative of 2(3x + 2). The correct answer is Option b.
To find the antiderivative of 2(3x + 2), follow these steps:
1. Notice the function is 2(3x + 2).
2. Apply the power rule of integration, which states that ∫x^n dx = (x^(n+1))/(n+1) + C, where n ≠ -1.
3. In this case, n = 1, so the antiderivative is (2(3x + 2)^2)/(2) + C.
4. Simplify to obtain (3x + 2)^2 + C.
Option b doesn't match this result, so it is NOT a family of antiderivatives of 2(3x + 2).
Learn more about antiderivative:
https://brainly.com/question/12956882
#SPJ11
y"" + 2y + y= 7 +75sin2x I want other answers compared to the answers posted earlier.. keep it short and simple.
The general solution of the y" + 2y + y= 7 +75sin2x is given as:
y = (c₁+c₂x)[tex]e^{-x}[/tex] + 7 - 12cos2x - 9sin2x
The Greek terms trigonon (triangle) and metron (measure) are the origin of the word trigonometry. The connections between the lengths and angles of triangles' sides are the subject of this area of mathematics. An equation with one or more trigonometric ratios of unknown angles is said to as trigonometric. The ratios of sine, cosine, tangent, cotangent, secant, and cosecant angles are used to express it.
y" + 2y' + y = 7 + 75sin2x
Auxlliary equation are (m²+2m+1) = 0
CF = (c₁+c₂x)[tex]e^{-x}[/tex]
PI = [tex]\frac{1}{D^2+2D+1} (7+75sin2x)[/tex]
Now,
[tex]\frac{7}{D^2+2D+1} +\frac{75}{D^2+2D+1} (sin2x)[/tex]
7 -3(2D+3)sin2x
7 - 6D.sin2x - 9sin2x
7 - 6 x 2cos2x - 9sin2x
7 - 12cos2x - 9sin2x
PI = 7 - 12cos2x - 9sin2x
Finally,
y = C.F + P.I
y = (c₁+c₂x)[tex]e^{-x}[/tex] + 7 - 12cos2x - 9sin2x.
Learn more about General solution:
https://brainly.com/question/17004129
#SPJ4
The graph of the parent tangent function was transformed such that the result is function f. f(x) = tan(x + 1) Which graph represents function f?
THE ANSWER IS D!!!!!!!!!!
Using translation concepts, it is found that graph D represents the function f(x) = tan(x + 1).
A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction in it's definition.
The function f(x) = tan(x + 1) is a translation of one unit to the left of g(x) = tan(x), which has g(0) = 0, hence at the translated function g(-1) = 0, which means that graph D represents the function f(x).
To learn more on Functions click:
https://brainly.com/question/30721594
#SPJ1
Write a variable equation for the sentence.
22. Sarah threw the javelin 9 inches farther than Kimberly.
Answer:
y = x + 9
Step-by-step explanation:
We Know
Sarah threw the javelin 9 inches farther than Kimberly.
Let's y represent the total distance Sarah threw and x is the distance Kimberly threw, we have the equation
y = x + 9
A researcher developed a regression model to predict the tear rating of a bag of coffee based on the plate gap in bag-sealing equipment. Data were collected on 30 bags in which the plate gap was varied. An analysis of variance from the regression showed that b1=0.7098 and Upper S1=0.2146. a. At the 0.05 level ofsignificance, is there evidence of a linear relationship between the plate gap of the bag-sealing machine and the tear rating of a bag of coffee? b. Construct a 95% confidence interval estimate of the population slope, betaβ1.
Compute the test statistic.
The test statistic is
Determine the critical value(s).
The critical value(s) is(are)
reach a decision
H0.
There is blank evidence at the 0.05 level of significance to conclude that there is a linear relationship between the summated rating and the cost of a meal at a restaurant.
The 95% confidence interval is
Expert Ans
a. At the 0.05 level of significance, there is evidence of a linear relationship between the plate gap of the bag-sealing machine and the tear rating of a bag of coffee.
b. A 95% confidence interval estimate of the population slope, betaβ1 is (0.5590, 0.8606).
a. To test for the linear relationship between plate gap and tear rating, we can use the null and alternative hypotheses:
H0: β1 = 0 (there is no linear relationship)
Ha: β1 ≠ 0 (there is a linear relationship)
We can use the t-test to test this hypothesis. The test statistic is calculated as:
t = b1 / (S1 / [tex]\sqrt(n)[/tex])
where b1 is the sample slope, S1 is the standard error of the slope, and n is the sample size. Substituting the values given in the question, we get:
t = 0.7098 / (0.2146 / sqrt(30)) = 5.05
Using a t-distribution with n-2 = 28 degrees of freedom and a significance level of 0.05, we can find the critical values as ±2.048. Since the calculated t-value of 5.05 is greater than the critical value of 2.048, we reject the null hypothesis and conclude that there is evidence of a linear relationship between plate gap and tear rating at the 0.05 level of significance.
b. To construct a 95% confidence interval estimate of the population slope β1, we can use the formula:
b1 ± tα/2(S1 / [tex]\sqrt(n)[/tex])
where tα/2 is the critical value from the t-distribution with n-2 degrees of freedom and a confidence level of 95%. Substituting the values given in the question, we get:
b1 ± 2.048(0.2146 / [tex]\sqrt(30)[/tex]) = 0.7098 ± 0.1508
Therefore, the 95% confidence interval for the population slope β1 is (0.5590, 0.8606).
To know more about significance level, refer to the link below:
https://brainly.com/question/13947717#
#SPJ11
Round 68,425,389 to the nearest million. (Don't forget to include commas in the number.)
Compare the functions y= 2x² and y= 2. Which of the following statements are true? Check all that
apply.
For any x-value, the y-value of the exponential function is always greater.
For any x-value, the y-value of the exponential function is always smaller.
For some x-values, the y-value of the exponential function is smaller.
For some x-values, the y-value of the exponential function is greater.
For any x-value greater than 7, the y-value of the exponential function is greater.
For equal intervals, the y-values of both functions have a common ratio.
DONE
Answer: Answer:
3. For some x-values, the y-value of the exponential function is smaller.
4. For some x-values, the y-value of the exponential function is greater.
5. For any x-value greater than 7, the y-value of the exponential function is greater.
Step-by-step explanation:
We are given the functions,
It is required to find the true statements of the functions.
From the graphs of the functions below, we have that the graphs intersect at the point (6.32,79.878).
To the left of the point, we have that the exponential function have smaller y-values than the parabola.
To the right of the point, we have that the exponential function have greater y-values than the parabola.
Moreover, after x= 7, the y-values of the exponential function are always greater than parabola.
Thus, the correct options are 3, 4 and 5.
Step-by-step explanation:
Answer:
- For any x-value, the y-value of the exponential function is always greater. (False)
- For any x-value, the y-value of the exponential function is always smaller. (False)
- For some x-values, the y-value of the exponential function is smaller. (True)
- For some x-values, the y-value of the exponential function is greater. (True)
- For any x-value greater than 7, the y-value of the exponential function is greater. (Not enough information provided to determine)
- For equal intervals, the y-values of both functions have a common ratio. (False)
Carlita has a swimming pool in her backyard that is rectangular with a length of 26 feet and a width of 16 feet. She wants to install a concrete walkway of width c around the pool. Surrounding the walkway, she wants to have a wood deck that extends w feet on all sides. Find an expression for the perimeter of the wood deck.
The expression for the perimeter of the wood deck, obtained from the formula for finding the perimeter of a rectangle is; 84 + 8·c + 8·w
What is the formula for finding the perimeter of a rectangle?The perimeter of a rectangle is found from the sum of twice the length and twice the width of the rectangle.
The dimensions of the rectangular swimming pool are;
Length = 26 feet
Width = 16 feet
The width of the concrete walkway = c
The width of the wooden deck = w
Therefore;
The length of the perimeter of the wooden deck = 26 + 2·c + 2·w
The width of the perimeter of the wooden deck = 16 + 2·c + 2·w
The expression for the perimeter of the of the around the wooden walkway = 2 × (26 + 2·c + 2·w) + 2 × (16 + 2·c + 2·w) = 84 + 8·c + 8·wLearn more on writing expressions here: https://brainly.com/question/1859113
#SPJ1
A number cube is tossed 60 times.
Outcome Frequency
1 12
2 13
3 11
4 6
5 10
6 8
Determine the experimental probability of landing on a number greater than 4.
17 over 60
18 over 60
24 over 60
42 over 60
The experimental probability of landing on a number greater than 4 is 18/60
How to determine the experimental probability?The experimental probability will be given by the number of times that the outcome was greater than 4 (so a 5 or a 6) over the total number of trials.
We can see that the total number of trials is 60, and we have:
The outcome 5 a total of 10 times.
The outomce 6 a total of 8 times.
Adding these values we will get 10 + 8 = 18
Then the experimental probability of a number greater than 4 is:
E = 18/60
Learn more about probability at:
brainly.com/question/25870256
#SPJ1
Find the probability of exactly three
successes in eight trials of a binomial
experiment in which the probability of
success is 45%.
, or the probability of failure, as a decimal.
Enter q,
9
= [?]
Enter
Answer:
q = 0.55p(3 of 8) = 0.2568Step-by-step explanation:
You want q and the probability of 3 successes in 8 trials if the probability of success is 0.45.
QThe value designated q is the complement of p, the probability of success.
q = 1 -p
q = 1 -0.45
q = 0.55
P(3 of 8)The probability of 3 successes is ...
P(3 of 8) = 8C3·p^3·q^(8-3) = 56·0.45^3·0.55^5
P(3 of 8) ≈ 56°0.091125·0.050328 ≈ 0.256826
The probability of exactly 3 successes in 8 trials is about 0.2568.
<95141404393>
suppose we roll two dice. what is the probability that the sum is 7 given that neither die showed a 6?
The probability that the sum is 7 given that neither die showed a 6 is 4/25 or 0.16.
To find the probability that the sum is 7 given that neither die showed a 6, we need to consider the possible outcomes of rolling two dice without any 6s, and then identify the outcomes where the sum is 7.
Determine the total number of possible outcomes without rolling a 6.
Since there are 5 possible outcomes for each die (1, 2, 3, 4, and 5), there are 5 x 5 = 25 possible outcomes for rolling two dice without any 6s.
Identify the outcomes where the sum is 7.
The possible outcomes that result in a sum of 7 are: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1). However, since neither die can show a 6, we can only consider the following four outcomes: (1, 6), (2, 5), (3, 4), and (4, 3).
Calculate the probability.
The probability that the sum is 7 given that neither die showed a 6 is the number of favorable outcomes divided by the total number of possible outcomes:
P(sum is 7 | no 6s) = (number of outcomes with sum 7) / (total number of outcomes without 6s) = 4 / 25
So, the probability that the sum is 7 given that neither die showed a 6 is 4/25 or 0.16.
Learn more about "probability": https://brainly.com/question/13604758
#SPJ11
A student randomly draws a card from a standard deck of 52 cards. He records the type of card drawn and places it back in the deck. This is repeated 20 times. The table below shows the frequency of each outcome.
Outcome Frequency
Heart 7
Spade 3
Club 6
Diamond 4
Determine the experimental probability of drawing a diamond.
0.13
0.20
0.35
0.70
The experimental probability of drawing a diamond is 0.20
Determining the experimental probability of drawing a diamond.From the question, we have the following parameters that can be used in our computation:
Outcome Frequency
Heart 7
Spade 3
Club 6
Diamond 4
For diamond, we have
P(Diamond) = Diamond/Total
So, we have
P(Diamond) = 4/20
Evaluate
P(Diamond) = 0.20
Hence, the value is 0.20
Read more about probability at
https://brainly.com/question/24756209
#SPJ1
B. Match each picture of the figure with its formula.
Write the letter on the line.
2.
3.
5 In.
5 in.
8 In.
8 in.
8 In.
8 in.
5 In.
5 in.
5 In.
5 In.
a. A - lw
A= 5.8
b. V = lwh
V=8.5.5
c. P = a + b + c
P= 5 + 5+8
The marching of figure images with their formulas are:
Figure 1:
P = a + b + c
P = 5 + 5 + 8
Figure 2:
A = lw
A = 5 * 8
Figure 3:
V = lwh
V = 8 * 5 * 5
How to find the perimeter and area of the figures?The formula for the area of a triangle is:
Area = ¹/₂ * base * height
Formula for area of a rectangle is:
Area = length * width
Formula for volume of a cuboid is:
V = length * width * height
1) For the triangle, we are not give the height and so we can only find the perimeter which is:
P = a + b + c
P = 5 + 5 + 8
2) The area of this rectangle is:
A = lw
A = 5 * 8
3) Volume of this cuboid is:
V = lwh
V = 8 * 5 * 5
Read more about Perimeter and area at: https://brainly.com/question/19819849
#SPJ1