Solve equation for x. 5x^2 - 4x =6

Solve Equation For X. 5x^2 - 4x =6

Answers

Answer 1

Answer:

Step-by-step explanation:

use the quadratic formula

5x^2-4x-6

4+-[tex]\sqrt{16+120}[/tex] all over 10

4+-[tex]2\sqrt{34}[/tex]/10

2+-[tex]\sqrt{34}[/tex]/5

D


Related Questions

Rewrite the fraction with a rational denominator:
[tex]\frac{1}{\sqrt{5} +\sqrt{3} -1}[/tex]
Give me a clear and concise explanation (Step by step)
I will report you if you don't explain

Answers

The expression with rational denominator is [tex]\frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

How to rewrite the fraction?

From the question, the fraction is given as

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1}[/tex]

To rewrite the fraction with a rational denominator, we simply rationalize the fraction

When the fraction is rationalized, we have the following equation

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{1}{\sqrt 5 + \sqrt{3} - 1} \times \frac{\sqrt 5 - \sqrt{3} + 1}{\sqrt 5 - \sqrt{3} + 1}[/tex]

Evaluate the products in the above equation

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{(\sqrt 5)^2 - (\sqrt{3} + 1)^2}[/tex]

This gives

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{5 - 10 - 2\sqrt 3}[/tex]

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{- 5 - 2\sqrt 3}[/tex]

Rationalize again

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{- 5 - 2\sqrt 3} \times \frac{- 5+2\sqrt 3}{- 5 +2\sqrt 3}[/tex]

This gives

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{(-5)^2 - (2\sqrt 3)^2}[/tex]

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{25 -12}[/tex]

Evaluate

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

Hence, the expression is [tex]\frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

Read more about rational expressions at

https://brainly.com/question/20400557

#SPJ1

The answer is 57.3 provided by my teacher, I need help with the work

Answers

Apply the angles sum property in the triangle ABC,

[tex]62+90+\angle ACB=180\Rightarrow\angle ACB=180-152=28^{}[/tex]

Similarly, apply the angles sum property in triangle BCD,

[tex]20+90+\angle BCD=180\Rightarrow\angle BCD=180-110=70[/tex]

From triangle ABC,

[tex]BC=AC\sin 62=30\sin 62\approx26.5[/tex]

From triangle BDC,

[tex]BD=BC\cos 20=26.5\cos 20\approx24.9[/tex]

Now, consider that,

[tex]\angle BDE+\angle BDC=180\Rightarrow\angle BDE+90=180\Rightarrow\angle BDE=90[/tex]

So the triangle BDE is also a right triangle, and the trigonometric ratios are applicable.

Solve for 'x' as,

[tex]x=\tan ^{-1}(\frac{BD}{DE})=\tan ^{-1}(\frac{24.9}{16})=57.2764\approx57.3[/tex]

Thus, the value of the angle 'x' is 57.3 degrees approximately.ang

PLEASE HELP AS SOON AS POSSIBLE PLEASE!! ( one question, can whole numbers be classified as integers and rational numbers)

Answers

ANSWER

G. 10 and -2 only

EXPLANATION

-5/4 is a fraction that can't be simplified. Therefore it is not an integer.

1.25 has decimals, so it is not an integer either.

10 and -2 are are integers.

Surface are of the wood cube precision =0.00The weight of the woo cube precision =0.00 The volume was 42.87 in3

Answers

Given:

The volume of the cube is 42.87 cubic inches.

The volume of a cube is given as,

[tex]\begin{gathered} V=s^3 \\ 42.87=s^3 \\ \Rightarrow s=3.5 \end{gathered}[/tex]

The surface area of a cube is,

[tex]\begin{gathered} SA=6s^2 \\ SA=6\cdot(3.5)^2 \\ SA=73.5 \end{gathered}[/tex]

Answer: the surface area is 73.5 square inches ( approximately)

=Given f(x) = -0.4x – 10, what is f(-12)? If it does not exist,enter DNE.

Answers

We have the function:

[tex]f\mleft(x\mright)=-0.4x-10[/tex]

And we need to find its value when x = -12. So, replacing x with -12, we obtain:

[tex]f(-12)=-0.4(-12)-10=4.8-10=-5.2[/tex]

Notice that the product of two negative numbers is a positive number.

Therefore, the answer is -5.2.

I need help to find the indicated operation:g(x)= -x^2 +4xh(x)= -4x-1Find (3g-h)(-3)

Answers

We have the following functions:

[tex]\begin{gathered} g\mleft(x\mright)=-x^2+4x \\ h\mleft(x\mright)=-4x-1 \end{gathered}[/tex]

And we need to find:

[tex](3g-h)(-3)[/tex]

Step 1. Find 3g by multiplying g(x) by 3:

[tex]\begin{gathered} g(x)=-x^2+4x \\ 3g=3(-x^2+4x) \end{gathered}[/tex]

Use the distributive property to multiply 3 by the two terms inside the parentheses:

[tex]3g=-3x^2+12x[/tex]

Step 2. Once we have 3g, we subtract h(x) to it:

[tex]3g-h=-3x^2+12x-(-4x-1)[/tex]

Here we have 3g and to that, we are subtracting h which in parentheses.

Simplifying the expression by again using the distributive property and multiply the - sign by the two terms inside the parentheses:

[tex]3g-h=-3x^2+12x+4x+1[/tex]

Step 4. Combine like terms:

[tex]3g-h=-3x^2+16x+1[/tex]

What we just found is (3g-h)(x):

[tex](3g-h)(x)=-3x^2+16x+1[/tex]

Step 5. To find what we are asked for

[tex]\mleft(3g-h\mright)\mleft(-3\mright)​[/tex]

We need to evaluate the result from step 4, when x is equal to -3:

[tex](3g-h)(-3)=-3(-3)^2+16(-3)+1[/tex]

Solving the operations:

[tex](3g-h)(-3)=-3(9)^{}-48+1[/tex][tex](3g-h)(-3)=-27^{}-48+1[/tex][tex](3g-h)(-3)=-74[/tex]

Answer:

[tex](3g-h)(-3)=-74[/tex]

You go to the pet store with $25. You decide to buy 2 fish for $3.69 each and fish foos for $4.19. Rounded tanks are $11.48 square-shaped tanks are $14.89. Estimate your total cost to find which tank you can can buy. About how much money will you have left?

Answers

Answer: you will only have enough money for the rounded tank, after buying everything you will have 9 cents left

Step-by-step explanation: two $3.69 fish, $4.19 fish food. 2x3.69=7.38+4.19=11.57

25-11.57=13.43

13.43+11.48=24.91

25-24.91=0.09

You need to estimate the prices of the fish and food. I going to round to the whole amount. 3.69= 4.00; 4.19=4.00. 2 fish at 4.00 equals 8.00; plus the 4.00 for food equals 12.00. 25.-12=13.00. You will only have enough to buy the round tank at 11.48.
Even if you add the fish and food together minus the 25. You can still only get the round tank.

Find the exact solution to the exponential equation. (No decimal approximation)

Answers

Let's solve the equation:

[tex]\begin{gathered} 54e^{3x+3}=16 \\ e^{3x+3}=\frac{16}{54} \\ e^{3x+3}=\frac{8}{27} \\ \ln e^{3x+3}=\ln (\frac{8}{27}) \\ 3x+3=\ln (\frac{2^3}{3^3}) \\ 3x+3=\ln (\frac{2}{3})^3 \\ 3x+3=3\ln (\frac{2}{3}) \\ 3x=-3+3\ln (\frac{2}{3}) \\ x=-1+\ln (\frac{2}{3}) \\ x=-1+\ln 2-\ln 3 \end{gathered}[/tex]

Therefore the solution of the equation is:

[tex]x=-1+\ln 2-\ln 3[/tex]

In windy cold weather, the increased rate of heat loss makes the temperature feel colder than the actual temperature. To describe an equivalent temperature that more closely matches how it “feels,” weather reports often give a windchill index, WCI. The WCI is a function of both the temperature F(in degrees Fahrenheit) and the wind speed v (in miles per hour). For wind speeds v between 4 and 45 miles per hour, the WCI is given by the formula(FORMULA SHOWN IN PHOTO)A) What is the WCI for a temperature of 10 F in a wind of 20 miles per hour?B) A weather forecaster claims that a wind of 36 miles per hour has resulted in a WCI of -50 F. What is the actual temperature to the nearest degree?

Answers

Let's remember what the variables mean:

F= temperature (in Fahrenheit),

v= wind speed.

A) The formula "works" when the wind speed is between 4 and 45 miles per hour. The question asks for a wind speed of 20 miles per hour. Then, we can apply the formula. Here,

[tex]\begin{cases}F=10 \\ v=20\end{cases}[/tex]

Then,

[tex]\begin{gathered} WCI(10,20)=91.4-\frac{(10.45+6.69\cdot\sqrt[]{20}-0.447\cdot20)(91.4-10)}{22}\approx\ldots \\ \ldots91.4-116.2857=-24.8857 \end{gathered}[/tex]

Approximating, the answer is

[tex]-25F[/tex]

B) This question is just about to find F in the provided equation after replacing the given v and WCI. Let's do that:

[tex]\begin{gathered} -50=91.4-\frac{(10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36)(91.4-F)}{22}, \\ -141.4=-\frac{(10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36)(91.4-F)}{22}, \\ -3110.8=-(10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36)(91.4-F), \\ 3110.8=(10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36)(91.4-F), \\ \frac{3110.8}{10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36}=91.4-F, \\ F=91.4-\frac{3110.8}{10.45+6.69\cdot\sqrt[]{36}-0.447\cdot36}\approx1.2 \end{gathered}[/tex]

Then, the actual temperature is

[tex]1F[/tex]

ExpenseYearly costor rateGasInsuranceWhat is the cost permile over the course ofa year for a $20,000 carthat depreciates 20%,with costs shown in thetable, and that hasbeen driven for 10,000miles?$425.00$400.00$110,00$100.0020%OilRegistrationDepreciationB. $4.10 per mileA. $1.10 per mileC. $0.25 per mileD. $0.50 per mile

Answers

Step 1:

Find the depreciation

[tex]\begin{gathered} \text{Depreciation = 20\% of \$20,000} \\ \text{Depreciation = }\frac{20}{100}\text{ }\times\text{ \$20000} \\ \text{Depreciation = \$4000} \end{gathered}[/tex]

Step 2:

Total cost = $425 + $400 + $110 + $100 + $4000

Total cost = $5035

Final answer

[tex]\begin{gathered} \text{Cost per mile = }\frac{5035}{10000} \\ \text{Cost per mile = \$0.5035} \\ \text{Cost per mile = \$0.50} \end{gathered}[/tex]

Option D $0.50 per mile

Use an inequality to represent the corresponding Celsius temperature that is at or below 32° F.

Answers

Answer:

C ≤ 0

Explanations:

The given equation is:

[tex]F\text{ = }\frac{9}{5}C\text{ + 32}[/tex]

Make C the subject of the equation

[tex]\begin{gathered} F\text{ - 32 = }\frac{9}{5}C \\ 9C\text{ = 5(F - 32)} \\ C\text{ = }\frac{5}{9}(F-32) \end{gathered}[/tex]

At 32°F, substitute F = 32 into the equation above to get the corresponding temperature in °C

[tex]\begin{gathered} C\text{ = }\frac{5}{9}(32-32) \\ C\text{ = }\frac{5}{9}(0) \\ C\text{ = 0} \end{gathered}[/tex]

The inequality representing the corresponding temperature that is at or below 32°F is C ≤ 0

factor completely5r^3-10r^2+3r-6

Answers

You have the following polynomial:

5r³ - 10r² + 3r - 6

In order to factorize the given polynomial, use synthetic division:

5 -10 3 -6 | 2

10 0 6

5 0 3 0

The remainder is zero in the previous division, then, r - 2 is a factor of the given polynomial, the other factor is formed with the coefficients of the division, just as follow:

5r³ - 10r² + 3r - 6 = (r - 2)(5r² + 3)

Hence, the factor are (r - 2)(5r² + 3)

Answer:(r-2) x (5r^2+3)

Step-by-step explanation:

9. SAILING The sail on Milton's schooner is the shape of a 30°-60°-90°triangle. The length of the hypotenuse is 45 feet. Find the lengths of thelegs. Round to the nearest tenth.

Answers

The triangle is shown below:

Notice how this is an isosceles triangle.

We can find the lengths of the hypotenuse by using the trigonometric functions:

[tex]\sin \theta=\frac{\text{opp}}{\text{hyp}}[/tex]

Then we have:

[tex]\begin{gathered} \sin 45=\frac{21}{hyp} \\ \text{hyp}=\frac{21}{\sin 45} \\ \text{hyp}=29.7 \end{gathered}[/tex]

Therefore the hypotenuse is 29.7 ft.

Need answer if you could show work would be nice

Answers

(x^3 - 3x^2 - 5x + 39) = (x^2 - 6x + 13)(x + 3). [you can verify this by expanding the brackets]
x + 3 = 0 when x = -3

x^2 - 6x + 13 = 0
x^2 - 6x + 9 + 4 = 0
(x - 3)^2 = -4
This shows x^2 - 6x + 13 = 0 has no real roots
The function only has one real root at x = -3

Please help me no other tutor could or understand it

Answers

The equation

We must find the equation that models the amount of medication in the bloodstream as a function of the days passed from the initial dose. The initial dose is a and we are going to use x for the number of days and M for the amount of mediaction in the bloodstream. We are going to model this using an exponential function which means that the variable x must be in the exponent of a power:

[tex]M(x)=a\cdot b^x[/tex]

We are told that the half-life of the medication is 6 hours. This means that after 6 hours the amount of medication in the bloodstream is reduced to a half. If the initial dose was a then the amount after 6 hours has to be a/2. We are going to use this to find the parameter b but first we must convert 6 hours into days since our equation works with days.

Remember that a day is composed of 24 hours so 6 hours is equivalent to 6/24=1/4 day. This means that the amount of medication after 1/4 days is the half of the initial dose. In mathematical terms this means M(1/4)=M(0)/2:

[tex]\begin{gathered} \frac{M(0)}{2}=M(\frac{1}{4}) \\ \frac{a\cdot b^0}{2}=a\cdot b^{\frac{1}{4}} \\ \frac{a}{2}=a\cdot b^{\frac{1}{4}} \end{gathered}[/tex]

We can divide both sides of this equation by a:

[tex]\begin{gathered} \frac{\frac{a}{2}}{a}=\frac{a\cdot b^{\frac{1}{4}}}{a} \\ \frac{1}{2}=b^{\frac{1}{4}} \end{gathered}[/tex]

Now let's raised both sides of this equation to 4:

[tex]\begin{gathered} (\frac{1}{2})^4=(b^{\frac{1}{4}})^4 \\ \frac{1}{2^4}=b^{\frac{1}{4}\cdot4} \\ b=\frac{1}{16} \end{gathered}[/tex]

Which can also be written as:

[tex]b=16^{-1}[/tex]

Then the equation that models how much medication will be in the bloodstream after x days is:

[tex]M(x)=a\cdot16^{-x}[/tex]

Using this we must find how much medication will be in the bloodstream after 4 days for an initial dose of 500mg. This basically means that a=500mg, x=4 and we have to find M(4):

[tex]M(4)=500mg\cdot16^{-4}=0.00763mg[/tex]

So after 4 days there are 0.00763 mg of medication in the bloodstream.

Now we have to indicate how much more medication will be if the initial dose is 750mg instead of 500mg. So we take a=750mg and x=4:

[tex]M(4)=750mg\cdot16^{-4}=0.01144mg[/tex]

If we substract the first value we found from this one we obtained the required difference:

[tex]0.01144mg-0.00763mg=0.00381mg[/tex]

So the answer to the third question is 0.00381mg.

What would the answer be?
Nvm, I got it wrong

Answers

Applying the definition of similar triangles, the measure of ∠DEF = 85°.

What are Similar Triangles?

If two triangles are similar, then their corresponding angles are all equal in measure to each other.

In the image given, since E and F are the midpoint of both sides of triangle BCD, then it follows that triangles BCD and EFD are similar triangles.

Therefore, ∠DBC ≅ ∠DEF

m∠DBC = m∠DEF

Substitute

4x + 53 = -6x + 133

4x + 6x = -53 + 133

10x = 80

10x/10 = 80/10 [division property of equality]

x = 8

Measure of ∠DEF = -6x + 133 = -6(8) + 133

Measure of ∠DEF = 85°

Learn more about similar triangles on:

https://brainly.com/question/14285697

#SPJ1

Suppose the coordinate of p=2 and PQ=8. Whare are the possible midpoints for PQ?

Answers

The midpoint for segment PQ can be calculated as:

[tex]\frac{P+Q}{2}[/tex]

Then, the midpoint of PQ is:

[tex]\frac{2\text{ + Q}}{2}=1+0.5Q[/tex]

Additionally, PQ can be calculated as:

[tex]PQ=\left|Q-P\right|[/tex]

So:

[tex]\begin{gathered} \left|Q-P\right|=8 \\ \left|Q-2\right|=8 \end{gathered}[/tex]

It means that:

[tex]\begin{gathered} Q-2=8\text{ or } \\ 2\text{ - Q = 8} \end{gathered}[/tex]

Solving for Q, we get:

Q = 8 + 2 = 10 or Q = 2 - 8 = -6

Finally, replacing these values on the initial equation for the midpoint, we get:

If Q = 10, then:

midpoint = 1 + 0.5(10) = 1 + 5 = 6

If Q = -6, then:

midpoint = 1 + 0.5(-6) = 1 - 3 = -2

The possible midpoints for PQ are 6 and -2

A square has a perimeterof 8,000 centimeters. Whatis the length of each side ofthe of the square inmeters?

Answers

Answer:

20 meters

Explanation:

The formula for calculating the perimeter of a square is expressed as

perimeter = 4s

where

s is the length of each side of the square

From the information given,

perimeter = 8,000 centimeters

Recall,

1 cm = 0.01 m

8000cm = 8000 x 0.01 = 80 m

Thus,

80 = 4s

s = 80/4

s = 20

The length of each side of the square is 20 meters

Solve this equation 3n+8=20

Answers

Given the equation below

[tex]3n\text{ + 8 = 20}[/tex]

Step 1

Collect like terms.

[tex]\begin{gathered} 3n=20-8 \\ 3n=12 \end{gathered}[/tex]

Step 2

Divide both sides of the equation obtained, by the coefficient of the unknown.

[tex]\begin{gathered} \text{The unknown is n.} \\ \text{The co}efficient\text{ of n is 3.} \\ \text{Thus,} \\ \frac{3n}{3}=\frac{12}{3} \\ \Rightarrow n=4 \end{gathered}[/tex]

Hence, the value of n in the equation is 4

How much water must be evaporated from 8 grams of a 30% antiseptic solution to produce a 40% solution?

Answers

Answer:

Step-by-step explanation:

8 grams of 30% --> 2.4 grams of AS For 2.4 grams to be 40% --> 6 grams of solution Evaporate 2 grams of water

use prowers and multiplication to write the equation whose value is 10 to the 11th power

Answers

if we have

(10^9)(10^2)

adds the exponents

10^(9+2)

10^11

If you have

10^18/ 10^7

subtract the exponents

10^(18-7)

10^11

If you have

(10^6)^2/10

First multiply the exponents

10^(6*2)/10

10^12/10

subtract exponents

10^(12-1)

10^11

The cost, c(x) in dollars per hour of running a trolley at an amusement park is modelled by the function [tex]c(x) = 2.1x {}^{2} - 12.7x + 167.4[/tex]Where x is the speed in kilometres per hour. At what approximate speed should the trolley travel to achieve minimum cost? A. About 2km/h B about 3km/h C about 4km/D about 5km/hr

Answers

The equation is modelled by the function,

c(x) = 2.1x^2 - 12.7x + 167.4

The general form of a quadratic equation is expressed as

ax^2 + bx + c

The given function is quadratic and the graph would be a parabola which opens upwards because the value of a is positive

Since x represents the speed, the speed at which the he

Can a triangle be formed with side lengths 17, 9, and 8? Explain.

Yes, because 17 + 9 > 8
Yes, because 17 + 8 < 9
No, because 9 + 8 > 17
No, because 8 + 9 = 17

Answers

Answer:

  (d)  No, because 8 + 9 = 17

Step-by-step explanation:

You want to know if side lengths 8, 9, and 17 can form a triangle.

Triangle inequality

The triangle inequality requires the sum of the two short sides exceed the length of the longest side. For sides 8, 9, 17, this would require ...

  8 + 9 > 17 . . . . . . . not true; no triangle can be formed

The sum is 8+9 = 17, a value that is not greater than 17. The triangle inequality is not satisfied. So, no triangle can be formed.

<95141404393>

In the triangle below, suppose that mZW=(x+4)º, mZX=(5x-4)°, and mLY= (4x)".Find the degree measure of each angle in the triangle.

Answers

[tex]\begin{gathered} W+X+Y=180 \\ x+4+5x-4+4x=180 \\ 10x=180 \\ x=18 \end{gathered}[/tex][tex]\begin{gathered} \text{The angle W is,} \\ W=x+4 \\ W=18+4=22 \\ \text{The angle X is,} \\ X=5x-4 \\ X=5\times18-4=86 \\ \text{The angle Y is,} \\ Y=4x \\ Y=4\times18=72 \end{gathered}[/tex]

A Parks and Recreation department in a small city conducts a survey to determine what recreational activities for children it should offer. Of the 1200 respondents,400 parents wanted soccer offered625 parents wanted baseball/softball offered370 parents wanted tennis offered150 parents wanted soccer and tennis offered315 parents wanted soccer and baseball/softball offered230 parents wanted baseball/softball and tennis offered75 parents wanted all three sports offeredHow many parents didn’t want any of these sports offered?a) 155b) 75c) 0d) 425

Answers

There were 1200 respondents:

400 parents wanted soccer offered

370 parents wanted tennis offered

625 parents wanted baseball/softball offered

150 parents wanted soccer and tennis offered

315 parents wanted soccer and baseball/softball offered

230 parents wanted baseball/softball and tennis offered

75 parents wanted all three sports offered

Therefore:

We have to add all the options that were mixed with different sports:

150 + 315 + 230 = 695 - 75= 620 (We subtract 75 because it's already included in the other values as we can see in the diagram)

We have to add all the parents that chose only one sport:

400 + 370 + 625= 1395

We have to subtract 620 from 1395:

1395 - 620= 775 parents who chose any sport

Now:

1200 - 775 = 425 respondents who didn't want any.

Therefore, 425 parents didn't want any of the sports offered.

The answer is D) 425.

-27\sqrt(3)+3\sqrt(27), reduce the expression

Answers

[tex]-18\sqrt[]{3}[/tex]

Explanation

[tex]-27\sqrt[]{3}+3\sqrt[]{27}[/tex]

Step 1

Let's remember one propertie of the roots

[tex]\sqrt[]{a\cdot b}=\sqrt[]{a}\cdot\sqrt[]{b}[/tex]

hence

[tex]\sqrt[]{27}=\sqrt[]{9\cdot3}=\sqrt[]{9}\cdot\sqrt[]{3}=3\sqrt[]{3}[/tex]

replacing in the expression

[tex]\begin{gathered} -27\sqrt[]{3}+3\sqrt[]{27} \\ -27\sqrt[]{3}+3(3\sqrt[]{3}) \\ -27\sqrt[]{3}+9\sqrt[]{3} \\ (-27+9)\sqrt[]{3} \\ -18\sqrt[]{3} \end{gathered}[/tex]

therefore, the answer is

[tex]-18\sqrt[]{3}[/tex]

I hope this helps you

Can you please solve the last question… number 3! Thanks!

Answers

Let us break the shape into two triangles and solve for the unknowns.

The first triangle is shown below:

We will use the Pythagorean Theorem defined to be:

[tex]\begin{gathered} c^2=a^2+b^2 \\ where\text{ c is the hypotenuse and a and b are the other two sides} \end{gathered}[/tex]

Therefore, we can relate the sides of the triangles as shown below:

[tex]25^2=y^2+16^2[/tex]

Solving, we have:

[tex]\begin{gathered} y^2=25^2-16^2 \\ y^2=625-256 \\ y^2=369 \\ y=\sqrt{369} \\ y=19.2 \end{gathered}[/tex]

Hence, we can have the second triangle to be:

Applying the Pythagorean Theorem, we have:

[tex]22^2=x^2+19.2^2[/tex]

Solving, we have:

[tex]\begin{gathered} 484=x^2+369 \\ x^2=484-369 \\ x^2=115 \\ x=\sqrt{115} \\ x=10.7 \end{gathered}[/tex]

The values of the unknowns are:

[tex]\begin{gathered} x=10.7 \\ y=19.2 \end{gathered}[/tex]

Find the sum of the arithmetic series -1+ 2+5+8+... where n=7.A. 56B. 184C. 92D. 380Reset Selection

Answers

Answer:

Explanation:

The arithmetic series is:

-1 + 2 + 5 + 8 + .....

The first term, a = -1

The common difference, d = 2 - (-1)

d = 3

The number of terms, n = 7

Find the sum of the arithmetic series below

[tex]\begin{gathered} S_n=\frac{n}{2}[2a+(n-1)d] \\ \\ S_7=\frac{7}{2}[2(-1)+(7-1)(3)] \\ \\ S_7=\frac{7}{2}(-2+18) \\ \\ S_7=\frac{7}{2}(16) \\ \\ S_7=56 \end{gathered}[/tex]

Therefore, the sum of the arithmetic series = 56

The slope and y-intercept of the relation represented by the equation 12x-9y+12=0 are:

Answers

12x - 9y +12 =0

To find the slope and y intercept, we want to put the equation in slope intercept form

y = mx+b where m is the slope and b is the y intercept

Solve the equation for y

Add 9y to each side

12x - 9y+9y +12 =0+9y

12x+12 = 9y

Divide each side by 9

12x/9 +12/9 = 9y/9

4/3 x + 4/3 = y

Rewriting

y = 4/3x + 4/3

The slope is 4/3 and the y intercept is 4/3

determine if the following equations represent a linear function if so write it in standard form Ax+By=C9x+5y=102y+4=6x

Answers

9x + 5y = 10

is a linear equation because all variables are raised to exponent 1.

This equation is already written in standard form (A = 9, B = 5, C = 10)

2y + 4 = 6x​

is a linear equation because all variables are raised to exponent 1.

Subtracting 2y at both sides:

2y + 4 - 2y= 6x​ - 2y

4 = 6x​ - 2y

or

6x - 2y = 4

which is in standard form (A = 6, B = -2, C = 4)

Other Questions
how long is the hypotenuse of this right triangle?28 519023 the Missing Angles (plus angle review) Can someone please help me with this problem? Ive been struggling with it 65+ (blank) =18011x + (blank)=18011x =x = Yea thanks thank you for the info thanks I need help with the following question:USING THE FOLLOWING CONVERSION FACTOR:Conversions Longitude:1 degree= 52.505 miles1 minute= 4620.5 feetConversions for Latitude:1 degree= 69.005 miles1 minute= 6072.5 feetHow Do I convert these coordinates into feet?The length of side A (40 51.485' N, 74 12.080' W & 40 51.485' N, 74 11.883' W) = ------------- ftThe length of side B (40 51.485' N, 74 12.080' W & 40 51.800' N, 74 11.883' W) = ----------- ft Finding a final amount in a word problem on expA certain forest covers an area of 2600 km. Suppose thaUse the calculator provided and round your answer to the2.km? The last Prime Minister who was voted in only by national election was David Cameron in 2010. How is this different from how Liz Truss became Prime Minister?PLEASE ANSWER QUICKLY! what are the 12 labors of Hercules ESSAY: TRADE In the early years of human history, people traded goods with one another. This tradition continues in today's world. Many of the goods used every day were acquired as a result of trade. Today, trade remains very important to economic survival. For this project, you will be asked to make comparisons between trading practices in early empires and trading practices today. The graph of a function is shown below. find the following, g(10), g(-3) Which of the following are actions taken by Louis XIV to centralize his control over the French state after the death of Cardinal Mazarin? Select all that apply.He avoided attending administrative councils, choosing instead to require the councils to convene only with his approval.He required even minor government officials to provide detailed reports of their activities to his cabinet secretary.Required his Secretaries of State to seek his approval before appending their signatures to anything.He abolished the main treasury official, the Superintendant of Finances, and controlled the royal treasury directly.He did not appoint a new First Minister to replace Mazarin. find the slope that goes through the points (1, -4) and (-3, 8) Triangle CDE is translated down and to the right, forming triangle C'D'E'.EC'Which congruency statement is correct?O ADCE AD'E'C'~ADCE AD'C'E'AEDC AC'D'E'AEDC AC'E'D'D'E' "The Black Cat," by Edgar Allan Poe. Thenanswer the question.In the passage, why does the narrator slowly build up to the moment he killsthe cat? Find the equation of a line perpendicular to 4x+4y=32 that passes through the point (7,1) Need NowWrite an Essay with but not limited to 5 Transition Signals5 Linking Verbs/Action Verbs 5 Modal Verbs5 Adjectives (describing positive and negative emotions)5 Adverbs (expressing opinions) Date of Deadline: Monday October 24 5+10+15+...+100 write the series using summation notation How to factorize this?[tex]5x {}^{3} - 9x { }^{2} - 17x - 3[/tex] Sketch the vectors u and w with angle between them and sketch the resultant.|u|=20, |w|=50, =80