Solve for the series with center at 0 (Present up to 6th term): 1.1.e-2x 1.3. sin(2x – 1) 1 1.4. 1+3x2 1.2.cos(3x)

Answers

Answer 1

The series after solving the following term f(x) = [tex]e^{-2x}[/tex] is given as:

[tex]e^{-2x}[/tex] = 1 - 2x + 2x² - 4/3x³ + 2/3x⁴ - 4/15x⁵+....|x| < ∞.

The fundamental concepts in mathematics are series and sequence. A series is the total of all components, but a sequence is an ordered group of items in which repeats of any kind are permitted. One of the typical examples of a series or a sequence is a mathematical progression.

By using the formulae to solve issues, one may gain a deeper understanding of the principles. The main distinction between them and sets is that in a sequence, certain terms might appear again in different locations. A series can be finite or infinite in length and has length equal to the number of terms.

Given f(x) = [tex]e^{-2x}[/tex], center x = 0

f(x) = [tex]e^{-2x}[/tex] = [tex]1 - 2x + \frac{(2x)^2}{2!} +\frac{(2x)^3}{3!} +\frac{(2x)^4}{4!} +\frac{(2x)^5}{5!} +.....|x|[/tex]

[tex]e^{-2x}[/tex] = 1 - 2x + 4([tex]\frac{x^2}{2}[/tex]) - 8([tex]\frac{x^3}{6}[/tex]) + 16([tex]\frac{x^4}{24}[/tex]) - 35([tex]\frac{x^5}{100}[/tex])+.....|x| < ∞

[tex]e^{-2x}[/tex] = 1 - 2x + 2x² - 4/3x³ + 2/3x⁴ - 4/15x⁵+....|x| < ∞

Learn more about Series:

https://brainly.com/question/24643676

#SPJ4


Related Questions

60 by 90 dilated by scale factor of 3

Answers

The new dimensions of the shape that is being dilated by the scale factor of 3 would be = 180 by 270.

How to calculate new dimensions of a shape using a given scale factor?

To calculate the new dimensions of a shape, the formula for a scale factor can be used.

Scale factor = Bigger dimensions/smaller dimensions

Scale factor = 3

Length of bigger dimension = 60

width = 90

Dilated length = 60×3 = 180

width of dilated shape = 90×3= 270

Learn more about scale factor here:

https://brainly.com/question/25722260

#SPJ1

10) How many distinguishable permutations are there for the word “choice”

Answers

Answer: 720

Step-by-step explanation:

there are 6 letters in "choice"

and they must be permuted into 6 word letters:

6P6 = 720 distinct possibilities

Solve for x to make A||B. A 4x + 41 B 6x + 19 x = [ ? ]

Answers

Using the Alternate angles theorem, the value of x in the given diagram is 11

Alternate interior angles theorem: Calculating the value of x

From the question, we are to calculate the value of x that will make A || B

From the Alternate angles theorem which states that when two parallel lines are cut by a transversal, then the resulting alternate interior angles or alternate exterior angles are congruent.

In the given diagram,

The angle measures (4x + 41) and (6x + 19) are alternate interior angle measures

Thus.

For A to be parallel to B (A || B)

4x + 41 = 6x + 19

Solve for x

4x + 41 = 6x + 19

41 - 19 = 6x - 4x

22 = 2x

Divide both sides by 2

22 / 2 = x

11 = x

x = 11

Hence,

The value of x is 11

Learn more on Alternate interior angles theorem here: https://brainly.com/question/24839702

#SPJ1

A researcher designs a study where she goes to high schools throughout Oregon and measures the pulse rates of a group of female seniors, and then compares the averages of her sample at each school to the averages at other schools in Oregon.
a) What distribution would you expect the average pulse rates to follow?
From a previous study, it is known that the mean pulse rates of female high school seniors is 77.5 beats per minute (bpm), with a standard deviation of 11.6 bpm.
b) Find the percentiles P1 and P99 of the high school female pulse rates.
c) Estimate the mean and standard deviation of a sample of n = 36 female high school seniors.
d) Find the probability that a school's average female pulse rate is between 70 and 85, i.e. find the probability P(70 < x < 85) when the sample size is n = 25 female high school seniors. Shade in the area of interest on a normal probability curve.

Answers

P1 is 51.9 bpm and P99 is 103.1 bpm.

The probability that a school's average female pulse rate is between 70 and 85 bpm is approximately 1.

a) The distribution of the average pulse rates is expected to follow a normal distribution.

b) To find the percentiles P1 and P99, we can use the z-score formula:

z = (x - μ) / σ

where x is the pulse rate, μ is the population mean (77.5 bpm), and σ is the population standard deviation (11.6 bpm).

For P1, we want to find the pulse rate such that only 1% of the population has a lower pulse rate. Using a standard normal distribution table or calculator, we find that the z-score corresponding to the 1st percentile is -2.33. Thus,

-2.33 = (x - 77.5) / 11.6

Solving for x, we get:

x = 51.9 bpm

For P99, we want to find the pulse rate such that only 1% of the population has a higher pulse rate. Using the same method as above, we find that the z-score corresponding to the 99th percentile is 2.33. Thus,

2.33 = (x - 77.5) / 11.6

Solving for x, we get:

x = 103.1 bpm

Therefore, P1 is 51.9 bpm and P99 is 103.1 bpm.

c) The mean of a sample of n = 36 female high school seniors is estimated to be the same as the population mean of 77.5 bpm. The standard deviation of the sample is estimated to be:

s = σ / sqrt(n) = 11.6 / sqrt(36) = 1.933 bpm

d) To find the probability that a school's average female pulse rate is between 70 and 85 bpm when the sample size is n = 25, we first need to calculate the standard error of the mean:

SE = s / sqrt(n) = 1.933 / sqrt(25) = 0.387 bpm

Next, we find the z-scores for 70 and 85 bpm:

z1 = (70 - 77.5) / 0.387 = -19.34

z2 = (85 - 77.5) / 0.387 = 19.34

Using a standard normal distribution table or calculator, we find that the area to the left of z1 is essentially 0 and the area to the left of z2 is essentially 1. Therefore, the probability that a school's average female pulse rate is between 70 and 85 bpm is approximately 1.

Shading the area of interest on a normal probability curve would show the entire curve as it represents the entire population of high school female seniors, but the area of interest would be shaded in the middle of the curve.

To learn more about approximately visit:

https://brainly.com/question/26257968

#SPJ11

A savings account balance is compounded weekly. If the interest rate is 2% per year and the current balance is $1,527.00, what will the balance be 8 years from now?

Answers

The balance be 8 years from now will be :

A = $1,789.124

What Is Compound Interest?

Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from simple interest, where interest is not added to the principal while calculating the interest during the next period.

In this problem we are going to apply the compound interest formula

[tex]A= P(1+r)^t[/tex]

A = final amount

P = initial principal balance

r = interest rate

t = number of time periods elapsed

P= $1,527.00

R= 2%= 2/100= 0.02

T= 8 years

[tex]A = 1,527.00(1+0.02)^8[/tex]

A = $1,789.124

Learn more about Compound Interest at:

https://brainly.com/question/24182820

#SPJ1

These figures are congruent, what series of transformations move pentagon FGHIJ onto pentagon F’G’H’I’J’

Answers

The transformations that move the pentagon FGHIJ onto the pentagon F'G'H'I'J' includes a rotation and a reflection. The correct option therefore is the option C.

C. Rotation, reflection

What is a rotation transformation?

A rotation transformation is one in which a geometric figure is rotated about a fixed point or location, known as the center of rotation.

The coordinates of the image are; I(-5, 4), H(-2, 4), G(-1. 3), F(-2, 0), and J(-4, 1)

The coordinates of a point, (x, y), following a 90 degrees clockwise rotation are; (y, -x)

Therefore, the coordinates of the image of the after a 90 degrees rotation are; I'(4, 5), H'(4, 2), G'(3, 1), F'(0, 2), J'(1, 4)

The coordinates of the point on the preimage, (x, y), following a reflection over the y-axis is the point (x, -y), therefore;

The coordinates of the image of the figure F'G'H'I'J' after a reflection over the x-axis are;
I''(4, -5), H''(4, -2), G''(3, -1), F''(0, -2), and J''(1, -4)

The above points corresponds to the coordinates of the figure, F'G'H'I'J' in the diagram, therefore;

The series of transformations that maps the pentagon FGHIJ onto the pentagon F'G'H'I'J' is a 90 degrees clockwise rotation and a reflection over the y-axis. Option C is the correct option

Learn more on rotation transformation here: https://brainly.com/question/29788009

#SPJ1

What is the area of a regular polygon with perimeter
58 and apothem 10 ?

Answers

Let the length of each side be 2a.
Then perimeter
= 2an where n is the number of sides in the polygon.
So 2an = 58 and an = 29.
The number of triangles which make up the area of polygon = n and the area of
Of each triangle = apothem * a = 10a.

So, area of polygon = 10an = 10*29
= 290.

The diameter of the earth is 13,000,000 meters. Rewrite this number in scientific notation.

Answers

1.3 × 10^7 is the answer !
It should be 1.3x10^7. Hope this helps!

>T.5 Find a missing coordinate using slope 5C7
10
A line with a slope of passes through the points (j, 5) and (-10,-5). What is the value of j?

Answers

The value of j is equal to -9.

How to calculate or determine the slope of a line?

In Mathematics and Geometry, the slope of any straight line can be determined by using the following mathematical equation;

Slope (m) = (Change in y-axis, Δy)/(Change in x-axis, Δx)

Slope (m) = rise/run

Slope (m) = (y₂ - y₁)/(x₂ - x₁)

By substituting the given data points into the formula for the slope of a line, we have the following;

10 = (-5 - 5)/(-10 - j)

10(-10 - j) = -10

(-10 - j) = -1

j = -10 + 1

j = -9

Read more on slope here: brainly.com/question/3493733

#SPJ1

Complete Question:

A line with a slope of 10 passes through the points (j, 5) and (-10,-5). What is the value of j?

Question 3 (10 marks):
The ABC television network is deciding whether to launch a new show. It will earn $400K if the show is a hit and loses $100K on a flop. Of all the shows launched by the network, 25% turn out to be hit. For $40K, a market research firm will have an audience view pilot prospective of the show and give its view about whether the show will be a hit or flop. If the show is actually going to be a hit, there is 90% chance that the firm will predict the show a hit. If the show is actually going to be a flop, there is an 80% chance that the firm will predict flop.
Use decision tree to determine what ABC should do to max expected profits. What is the expected profit?
Hint: You need to obtain the following probabilities:
P(Hit Prediction), P(flop prediction)
P(Hit | Hit prediction), P(flop | hit prediction), P(Hit | flop prediction), P(flop | flop prediction)

Answers

The expected profit is $67.5K

To determine what ABC should do to maximize expected profits, we can use a decision tree to analyze the different possible outcomes and their probabilities.

First, let's define the events and their probabilities:

H: the show is a hit (P(H) = 0.25)

F: the show is a flop (P(F) = 0.75)

PH: the market research firm predicts a hit (P(PH|H) = 0.9, P(PH|F) = 0.2)

PF: the market research firm predicts a flop (P(PF|H) = 0.1, P(PF|F) = 0.8)

Using these probabilities, we can construct the following decision tree:

               / PH: P = 0.225 (0.25 * 0.9)

              /

             /

            /

    H: P = 0.25

           \

            \

             \ PF: P = 0.025 (0.25 * 0.1)

              \

               \

                \

                 \

                  \

                   \ PH: P = 0.15 (0.75 * 0.2)

                    \

                     \

                      F: P = 0.75

                     /

                    /

           PF: P = 0.6 (0.75 * 0.8)

starting from the top of the tree, we can calculate the expected profits for each decision:

If ABC launches the show without doing the market research, the expected profit is:

E1 = P(H) * $400K + P(F) * (-$100K) = $75K

If ABC does the market research and it predicts a hit, the expected profit is:

E2 = P(H and PH) * $400K - $40K + P(F and PH) * (-$40K) = $89K

If ABC does the market research and it predicts a flop, the expected profit is:

E3 = P(H and PF) * $400K - $40K + P(F and PF) * (-$100K - $40K) = -$52K

Therefore, the decision that maximizes expected profits is to do the market research and launch the show only if the market research predicts a hit.

The expected profit in this case is:

E = P(H and PH) * $400K - $40K + P(F and PH) * (-$40K) = 0.225 * $400K - $40K + 0.15 * (-$40K) = $67.5K

Therefore, the expected profit is $67.5K.

To know more about "Decision tree" refer here:

https://brainly.com/question/31669116#

#SPJ11

If it is known that the cardinality of the set A X A is 16. Then the cardinality of A is: Select one: a. None of them b. 512 c. 81 d. 4 e. 18

Answers

If it is known that the cardinality of the set A X A is 16. Then the cardinality of A is: option d. 4

Cardinality refers to the number of elements or values in a set. It represents the size or count of a set. In other words, cardinality is a measure of the "how many" aspect of a set. We know that the cardinality of A X A is 16, which means that there are 16 ordered pairs in the set A X A. Each ordered pair in A X A consists of two elements, one from A and one from A. So, the total number of possible pairs of elements in A is the square root of 16, which is 4. Therefore, the cardinality of A is 4. So, the answer is d. 4.

Learn more about: Cardinality - https://brainly.com/question/30425571

#SPJ11

Let y(x) be the solution of the initial value problem
dy/dx = 3x²y, y(2) = 3.
(a) Use Taylor series method of order three to estimate y(2.01) in one step.
(b) Estimate the local truncation error that incurred in the approximation of y(2.01) using the next term in the corresponding Taylor series.

Answers

The local truncation error incurred in the approximation of y(2.01) using the next term in the corresponding Taylor series is O(0.0001)

We can use the Taylor series method of order three to estimate y(2.01) in one step. Let's first write the Taylor series expansion of y(x) about x=2 up to the third derivative:

[tex]y(x) = y(2) + (x-2)y'(2) + \frac{(x-2)^{2} }{2!} y''(2) + \frac{(x-2)^{3} }{2!} y'''(2) + O((x-2)^{4} )[/tex]

where  [tex]y'(x) = 3x^{2} y(x), y''(x) = 6xy(x) + 3x^{2} y'(x), y'''(x) = 9x^{2} y'(x) + 18xy'(x) + 6x^{2} y''(x).[/tex]

(a) To estimate y(2.01) in one step, we need to evaluate the above expression at x=2.01. Using y(2) = 3 and [tex]y'(2) = 3(2)^{2} (3) = 36[/tex], we get:

[tex]y(2.01) = y(2) + (2.01-2)y'(2) + \frac{(2.01-2)^{2} }{2!} y''(2)[/tex]

[tex]= 3 + 0.01(36) + \frac{(0.01)^{2} }{2!} (6(2)(3) + 3(2)^{2} (3)(3))[/tex]

=3.1089

Therefore, y(2.01) =3.1089.

(b) The local truncation error is given by the next term in the Taylor series expansion, which is O((x-2)⁴) in this case. Evaluating this term at x=2.01, we get:

O((2.01-2)⁴) = O(0.0001)

Therefore, the local truncation error incurred in the approximation of y(2.01) using the next term in the corresponding Taylor series is O(0.0001).

To know more about "Taylor series" refer here:

https://brainly.com/question/28158012#

#SPJ11

In circle I I J = 9 and the area of shaded sector = 36π. Find m ∠JIK.

Answers

The measure of the central angle m ∠JIK is 160°.

Given that the circle I, in which IJ is the radius of 9 units, the area of shaded sector = 36π, we need to find the m ∠JIK, the central angle.

Area of the sector = central angle / 360° × π × radius²

∴ 36π = m ∠JIK / 360° × π × 9²

m ∠JIK = 360° × 4 / 9

m ∠JIK = 160°

Hence, the measure of the central angle m ∠JIK is 160°.

Learn more about central angles, click;

https://brainly.com/question/15698342

#SPJ1

how do i solve this

Answers

Answer: Y-intercept:

Axis of symmetry: X = - 1

Vertex: Y = 2(X + 1)^2-5

Maximum: -1

Minimum: - 5

Domain:

(−∞,∞),{x|x∈R}

Range:

[−5,∞),{y|y≥−5}

Step-by-step explanation:

may someone help please math is hard!!

Answers

Answer:

11

Step-by-step explanation:

Volume of right cone = (1/3) · π · r² · h

V = 968π

h = 24 units

Let's solve

968π = (1/3) · π · r² · 24

2904π =  π · r² · 24

121π = π · r²

121 = r²

r = 11

So, the radius is 11 units

Using the integral test, find the values of p� for which the series [infinity]∑n=21n(lnn)p∑�=2[infinity]1�(ln⁡�)� converges. For which values of p� does it diverge? Explain

Answers

The integral test states that if a series is a sum of terms that are positive and decreasing, and if the terms of the series can be expressed as the values of a continuous and decreasing function, then the series converges if and only if the corresponding improper integral converges.

Let's apply the integral test to the given series. We need to find a continuous, positive, and decreasing function f(x) such that the series is the sum of the values of f(x) for x ranging from 2 to infinity.

For the first series, we have:

∑n=2∞n(lnn)p

Let f(x) = x(lnx)p. Then f(x) is continuous, positive, and decreasing for x ≥ 2. Moreover, we have:

f'(x) = (lnx)p + px(lnx)p-1

f''(x) = (lnx)p-1 + p(lnx)p-2 + p(lnx)p-1

Since f''(x) is positive for x ≥ 2 and p > 0, f(x) is concave up and the trapezoidal approximation underestimates the integral. Therefore, we have:

∫2∞f(x)dx = ∫2∞x(lnx)pdx

Using integration by substitution, let u = lnx, then du = 1/x dx. Therefore:

∫2∞x(lnx)pdx = ∫ln2∞u^pe^udu

Since the exponential function grows faster than any power of u, the integral converges if and only if p < -1.

For the second series, we have:

∑n=2∞1/n(ln⁡n)²

Let f(x) = 1/(x(lnx)²). Then f(x) is continuous, positive, and decreasing for x ≥ 2. Moreover, we have:

f'(x) = -(lnx-2)/(x(lnx)³)

f''(x) = (lnx-2)²/(x²(lnx)⁴) - 3(lnx-2)/(x²(lnx)⁴)

Since f''(x) is negative for x ≥ 2, f(x) is concave down and the trapezoidal approximation overestimates the integral. Therefore, we have:

∫2∞f(x)dx ≤ ∑n=2∞f(n) ≤ f(2) + ∫2∞f(x)dx

where the inequality follows from the fact that the series is the sum of the values of f(x) for x ranging from 2 to infinity.

Using the comparison test, we have:

∫2∞f(x)dx = ∫ln2∞(1/u²)du = 1/ln2

Therefore, the series converges if and only if p > 1.

In summary, the series ∑n=2∞n(lnn)p converges if and only if p < -1, and the series ∑n=2∞1/n(ln⁡n)² converges if and only if p > 1. For values of p such that -1 ≤ p ≤ 1, the series diverges.
To find the values of p for which the series converges or diverges using the integral test, we will first write the series and then perform the integral test.

The given series is:

∑(n=2 to infinity) [1/n(ln(n))^p]

Now, let's consider the function f(x) = 1/x(ln(x))^p for x ≥ 2. The function is continuous, positive, and decreasing for x ≥ 2 when p > 0.

We will now perform the integral test:

∫(2 to infinity) [1/x(ln(x))^p] dx

To evaluate this integral, we will use the substitution method:

Let u = ln(x), so du = (1/x) dx.

When x = 2, u = ln(2).
When x approaches infinity, u approaches infinity.

Now the integral becomes:

∫(ln(2) to infinity) [1/u^p] du

This is now an integral of the form ∫(a to infinity) [1/u^p] du, which converges when p > 1 and diverges when p ≤ 1.

So, for the given series:

- It converges when p > 1.
- It diverges when p ≤ 1.

In conclusion, using the integral test, the series ∑(n=2 to infinity) [1/n(ln(n))^p] converges for values of p > 1 and diverges for values of p ≤ 1.

Learn more about trapezoidal here:- brainly.com/question/8643562

#SPJ11

Find the LCM for each polynomial.
1)5x^2-20 , 3x+6

2)9c-15 , 21c-35

Please step by step!

Answers

1) To find the LCM of 5x^2-20 and 3x+6, we first factor each polynomial. 5x^2-20 = 5(x^2-4) = 5(x+2)(x-2), and 3x+6 = 3(x+2). The LCM of these two polynomials is the product of the highest powers of all the factors. The factors are 3, 5, x+2, and x-2. Since the highest power of 3 is 3^1, the highest power of 5 is 5^1, the highest power of x+2 is (x+2)^1, and the highest power of x-2 is (x-2)^1, the LCM is 3*5*(x+2)*(x-2) = 15(x^2-4).

2) To find the LCM of 9c-15 and 21c-35, we first factor each polynomial. 9c-15 = 3(3c-5), and 21c-35 = 7(3c-5). The LCM of these two polynomials is the product of the highest powers of all the factors. The factors are 3 and 7, and 3c-5. Since the highest power of 3 is 3^1, the highest power of 7 is 7^1, and the highest power of 3c-5 is (3c-5)^1, the LCM is 3*7*(3c-5) = 21(3c-5).

Other than one what are the perfect square factors of 792

Answers

So the perfect square factors of 792 are 4, 9, 36, 144, 484, and 1089.

The prime factorization of 792 by dividing it by its smallest prime factor repeatedly:

792 ÷ 2 = 396

396 ÷ 2 = 198

198 ÷ 2 = 99

99 ÷ 3 = 33

33 ÷ 3 = 11

So the prime factorization of 792 is [tex]2^3 * 3^2 * 11.[/tex]

To find the perfect square factors, we can look for pairs of factors where both factors have even exponents.

The factors of 792 are: 1, 2, 3, 4, 6, 8, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 132, 198, 264, 396, and 792.

The perfect square factors of 792 are:

[tex]2^2 = 4\\2^2 * 3^2 = 36\\2^2 * 11^2 = 484\\3^2 = 93^2 * 4^2 = 144\\3^2 * 11^2 = 1089[/tex]

Learn more about perfect square visit: brainly.com/question/27307830

#SPJ4

3. Use slope and/or the distance formula to
determine the most precise name for the
figures A(-6, -7), B(-4,-2), C(2,-1), D(0,
[A] rectangle
[C] square
[B] quadrilateral
[D] rhombus

6. Use slope and/or the distance formula to
determine the most precise name for the
figure: A(-3,-5), B(4, -2), C(7, -9), D(0,-12).
[A] square
[C] trapezoid
[B] rhombus
[D] kite

Answers

3. Using  slope and/or the distance formula .The most precise name for the

figures A(-6, -7), B(-4,-2), C(2,-1), D(0) is: [A] rectangle.

4.  Using slope and/or the distance formula. The most precise name for the

figure: A(-3,-5), B(4, -2), C(7, -9), D(0,-12) is: [D] kite.

What is  the most precise name ?

3. We must look at the sides and angles characteristics to identify the figure's name. We can plot the four points on a graph to see how the figure appears since we have four points.

When we plot the points on a graph we can see that BC and AD and AB and CD have the same length. In addition every angle is 90 degrees. The figure is a rectangle.

Therefore the correct option is A.

4. Once more we can graph the points and analyze the sides and angles characteristics.

Since AB, BC, and CD have different lengths when the points are plotted on a graph the figure is neither a rhombus nor a square. The figure is a kite since the diagonals AC and BD both connect at a straight angle.

Therefore the correct option is D.

Learn more about rectangle here:https://brainly.com/question/25292087

#SPJ1

(a) What proportion of the time does Mrs. Starnes finish

an easy Sudoku puzzle in less than 3 minutes?

Answers

This is an incomplete question, please specify.

From the attachment, what is the missing side?

Answers

The value of x in the triangle is 21, option B is correct.

The given triangle is right triangle

We know that the sine function is the ratio of opposite side and hypotenuse

Opposite side =19

Hypotenuse =x

We have to find the value of x

Sin 65 = 19/x

0.91 =19/x

x=19/0.91

x=20.8

x=21

Hence, the value of x in the triangle is 21, option B is correct.

To learn more on trigonometry click:

https://brainly.com/question/25122835

#SPJ1

What is the value of S?

Answers

The value of S° in the given adjacent angles would be = 26.7°

What are adjacent angles?

Adjacent angles are those angles that are found on the same side of the plane and they share a common vertex.

The adjacent angles are different from the supplementary angles which are angles found in the same side but when measured together sums up to 180°.

The angles 41.6° and S° are two angles that share the same vertex with the sum of 68.3°

Therefore, S° which is the second part of the adjacent angles would be = 68.3+41.6 = 26.7°

Learn more about angles here;

https://brainly.com/question/28394984

#SPJ1

The mean per capita consumption of milk per year is 138 liters with a standard deviation of 28 liters. If a sample of 60 people is randomly selected, what is the probability that the sample mean would be less than 132. 25 liters? round your answer to four decimal places

Answers

The probability that the sample mean would be less than 132.25 liters is 0.0564 (or 5.64% when expressed as a percentage), rounded to four decimal places.

We can use the central limit theorem to approximate the distribution of the sample mean as normal with a mean of 138 liters and a standard deviation of 28/sqrt(60) liters.

z = (132.25 - 138) / (28 / sqrt(60)) = -1.5811

Using a standard normal distribution table or a calculator, we can find the probability of getting a z-score less than -1.5811. The probability is approximately 0.0564.

Therefore, the probability that the sample mean would be less than 132.25 liters is 0.0564 (or 5.64% when expressed as a percentage), rounded to four decimal places.

To know more about  probability, here

https://brainly.com/question/13604758

#SPJ4

(5) Determine all values ofpfor which the following series converges using the Integral Test. Make sure you justify why the integral test is applicable.n=3â[infinity]ân(ln(n))p+21â

Answers

The series converges for all values of p < -1, and diverges for all values of p ≥ -1.

To apply the Integral Test, we need to verify that the terms of the series are positive and decreasing for all n greater than some fixed integer. For this series, note that the terms are positive since both the base and the natural logarithm are positive. To show that the terms are decreasing, we take the ratio of successive terms:

[tex]a(n+1)/a(n) = [(n+1)ln(n+1)]^p / [nln(n)]^p[/tex]

[tex]= [(n+1)/n]^p * [(1+1/n)ln(1+1/n)]^p[/tex]

Since (n+1)/n > 1 and ln(1+1/n) > 0 for all n, it follows that the ratio is greater than 1 and therefore the terms are decreasing.

To use the Integral Test, we need to find a function f(x) such that f(n) = a(n) for all n and f(x) is positive and decreasing for x ≥ 3. A natural choice is [tex]f(x) = x(ln(x))^p[/tex]. Note that f(n) = a(n) for all n and f(x) is positive and decreasing for x ≥ 3. Then we have:

integral from 3 to infinity of f(x) dx = integral from 3 to infinity of x(ln(x))^p dx

To evaluate this integral, we use integration by substitution with u = ln(x):

[tex]du/dx = 1/x, dx = x du[/tex]

So the integral becomes:

integral from ln(3) to infinity of [tex]u^p e^u du[/tex]

This integral converges for p < -1, by the Integral Test for Improper Integrals.

Therefore, the series converges for all values of p < -1, and diverges for all values of p ≥ -1.

To know more about Integral Test for Improper Integrals refer here:

https://brainly.com/question/31402082

#SPJ11

PROBABILITY AND STATISTICS:
The random size distribution table is:
X
-4
-2
0
1
3
5
p
0,2
0,1
0,25
0,2
0,2
0,05
a) Write down the function of distribution of this random size by regions. A drawing, formula and detailed calculation are required for each area.
b) Express the result obtained as F (x) =***
c) Calculate the value of F(3) -F(0).
d) In which area is the probability of entering F (3) -F (0)? (Answer as region X ≤ 9 or -9 ≤ X ≤ 9
etc., think carefully about which endpoint of the area is included and which is not.)

Answers

The value of F(3) -F(0). d) In which area is the probability of entering F (3) -F (0) is "0 ≤ X < 3".

a) The function of distribution by regions is:

For x < -4: F(x) = 0

For -4 ≤ x < -2: F(x) = 0.2

For -2 ≤ x < 0: F(x) = 0.2 + 0.1 = 0.3

For 0 ≤ x < 1: F(x) = 0.3 + 0.25 = 0.55

For 1 ≤ x < 3: F(x) = 0.55 + 0.2 = 0.75

For 3 ≤ x < 5: F(x) = 0.75 + 0.2 = 0.95

For x ≥ 5: F(x) = 1

b) Expressing the result obtained as  F(x) =:

F(x) = {0, x < -4

0.2, -4 ≤ x < -2

0.3, -2 ≤ x < 0

0.55, 0 ≤ x < 1

0.75, 1 ≤ x < 3

0.95, 3 ≤ x < 5

1, x ≥ 5

c) F(3) - F(0) = 0.95 - 0.55 = 0.4

d) The probability of entering F(3) - F(0) is the probability of the random variable falling between 0 and 3. This can be expressed as:

P(0 ≤ X < 3) = F(3) - F(0) = 0.4

Therefore, the answer is "0 ≤ X < 3".

To learn more about distribution visit:

https://brainly.com/question/29062095

#SPJ11

2
Σ(-52 + n)
n=0

please help with this

Answers

The summation notation [tex]\sum\limits^{2}_{n = 0} (-52 + n)[/tex] when evaluated has a value of -153

Evaluating the summation notation

From the question, we have the following notation that can be used in our computation:

[tex]\sum\limits^{2}_{n = 0} (-52 + n)[/tex]

This means that we substitute 0 to 2 for n in the expression and add up the values

So, we have

[tex]\sum\limits^{2}_{n = 0} (-52 + n) = (-52 + 0) + (-52 + 1) + (-52 + 2)[/tex]

Evaluate the sum of the expressions

So, we have

[tex]\sum\limits^{2}_{n = 0} (-52 + n) = -153[/tex]

Hence, the solution is -153

Read more about summation notation at

https://brainly.com/question/15973233

#SPJ1

If our alternative hypothesis is mu < 1.2, and alpha is .05, where would our critical region be? a) In the lower and upper 2.5% of the null distribution
b) In the upper 5% of the null distribution c) In the lower and upper 2.5% of the alternative distribution d) In the lower 5% of the alternative distribution
e) In the lower 5% of the null distribution In the upper 5% of the alternative distribution

Answers

The critical region lies In the lower 5% of the null distribution.

Option E is the correct answer.

We have,
When our alternative hypothesis is mu < 1.2, it means we are testing if the population mean is less than 1.2.

The critical region is the area in the null distribution where we reject the null hypothesis.

Since our alternative hypothesis is a one-tailed test (less than), the critical region will be in the tail of the null distribution on the left side.

If alpha is .05, it means we want to reject the null hypothesis if the probability of observing our sample mean is less than 5% under the null distribution.

This corresponds to the lower 5% of the null distribution, which is our critical region.

Therefore, any sample mean that falls in the lower 5% of the null distribution will lead to rejection of the null hypothesis and acceptance of the alternative hypothesis that mu < 1.2.

Thus,

The critical region lies In the lower 5% of the null distribution.

Learn more about hypothesis testing here:

https://brainly.com/question/30588452?

#SP11

To add or subtract vectors in component form, you simply add or subtract the corresponding components. For example, to add two vectors u and v, you can use the formula u v

Answers

To include two vectors u and v in component shape, you include the comparing components. The equation is: u + v = (u₁ + v₁, u₂ + v₂, u₃ + v₃)

where u = (u₁, u₂, u₃) and v = (v₁, v₂, v₃) are the component vectors of u and v, separately.

So also, to subtract two vectors u and v in the component frame, you subtract the comparing components. The equation is:

u - v = (u₁ - v₁, u₂ - v₂, u₃ - v₃)

where u = (u₁, u₂, u₃) and v = (v₁, v₂, v₃) are the component vectors of u and v, separately.

For illustration, on the off chance that u = (1, 2, -3) and v = (4, -2, 5), at that point u + v = (1 + 4, 2 - 2, -3 + 5) = (5, 0, 2) and u - v = (1 - 4, 2 + 2, -3 - 5) = (-3, 4, -8). 

To learn about component vectors visit:

https://brainly.com/question/31589915

Complete Question: To add or subtract vectors in component form, you simply add or subtract the corresponding components, For example to add two vectors u and v, you can use the formula u v. Describe the component vectors of u and v.

#SPJ4

In a study of cell phone usage and brain hemispheric dominance, an Inte survey was e-mailed to 6585 subjects andomly sidected from an online group involved with ears. These were 1344 aury. Use a 0.01 significance level to test the claim that the retum rate is less than 20%. Use the Palue method and use the normal distribution as an approximation to the binomial distribution
Identify the null hypothesis and alternative hypothes
OA. He p>02
OB. Hg: p-02
OC. H₂ p<02
OD. H₂ p=0.2
OF H: 02

Answers

The null hypothesis is H₀: p ≥ 0.2 (the return rate is greater than or equal to 20%). The alternative hypothesis is H₁: p < 0.2 (the return rate is less than 20%).

We will first identify the null hypothesis (H₀) and alternative hypothesis (H₁). The null hypothesis represents the assumption that there is no significant difference or effect. In this case, the return rate is assumed to be equal to 20%. The alternative hypothesis represents the claim we want to test, which is that the return rate is less than 20%. So, the null hypothesis and alternative hypothesis are: H₀: p = 0.2 H₁: p < 0.2 Based on the provided options,

The correct answer is: OB. H₀: p = 0.2 OC. H₁: p < 0.2

Learn more about null hypothesis,

https://brainly.com/question/28040078

#SPJ11

PLSSSS HELP IF YOU TRULY KNOW THISSS

Answers

Answer:

No solution

Step-by-step explanation:

Simplifies to

15-12x=18-12x

15=18

No solution

no solution slsksksksk
Other Questions
In which of the following cases is it most likely that an increase in the size of a tax will increase tax revenue?A. The size of the tax before the increase was medium relative to the size of the market.B. **The size of the tax before the increase was small relative to the size of the market.**C. The size of the tax before the increase was large relative to the size of the market.D. An increase in the size of a tax will always increase tax revenue. Assume that the following method is called on 5 threads. How many times is the mutex locked/unlocked in the following code? using Guard = std::lock_guard; // This method is called from 5 threads void thrMain(int& x, std::mutex& m) { for (int i = 0; (i < 10); i++) { Guard lock(m); x++; } } It takes a team of 9 builders 10 days to build a wall. How many extra days will it take a team of 5 builders to build the same wall? Assume that all builders are working at the same rate. Optional working Answ extra days What diagnosis ofLoss of Consciousness (LOC) Physical Exam What do you understand about Count Draculas character from this excerpt? A. He is glad to have spent his life in familiar surroundings. B. He finds life in Transylvania to be quiet and peaceful. C. He is bored of the slow pace of Transylvania and wants a change. D. He is eager to practice his language skills with native speakers. Question 23 of 40 View Policies Current Attempt in Progress Consider the coordinate vectors [w]s = [ 8 ] , [q]s = [5] , [B]s = [-8][ -2] [2] [ 7][ 3 ] [4] [ 4][ 1](a) Find w if S is the basis in {(3, 1, 4), (2,5,6), (1, 4, 8)}. W = (?, ?, ?) (b) Find q if S is the basis in x^2 +1, x^2 1, 2x 1. q = ___ (c) Find B if S is the basis in [3 6] , [0 -1] , [0 -8] , [1 0][3 -6] [-1 0] [-12 -4] [-1 2]B = ( ? ) The patient is a 68-year-old male with urinary retention and enlarged prostate gland. He has failed conservative treatment and presents for TURP. What is the ICD-10-CM code(s)? the logic of the insertion sorting algorithm may reach a state where there exists only one value in the unsorted list. true or false Problem 1: A W14x99 of A992 steel is used as a beam with lateral support at 10 ft intervals. Assume that Cb=1. 0 and compute the nominal flexural strength 45 yo F presents with coffee-ground emesis for the last three days. Her stool is dark and tarry. She has a history of intermittent epigastric pain that is relieved by food and antacids. What the diagnose? When you have two or more similar ideas to express in writing, use parallelism toA) show that the ideas are related.B) show that the ideas are of unequal importance.C) show that the ideas are redundancies.D) eliminate overly long words and phrases.E) incorporate infinitives. A body part which lies closest to the point of attachment of an extremity is said to be PLEASE HELP! Explain why the equation y=5 is a function but x=5 is not a function. Why should you use a inoculating needle when making smears from solid media? An inoculating loop from liquid media? Which formula can be used to find the nth term of the following geometric sequence? 2 9 , 2 3 , 2, 6, 15.Marla and Kelly purchased flowers. Marlapurchased 7 roses for x dollars each and 10daisies for y dollars each. She spent $40.50 onthe flowers. Kelly bought 3 roses and 15daisies at the same cost as Marla. She spent$30.75 on her flowers. The system ofequations below represents this situation.7x+10y = 40.53x + 15y = 30.75Which statement below is correct? The circle below has center o and its radius is 7 yd. Given that m northouse points out that there are three principles related to the actions of ethical leaders; which of the following is not one of them? How is earths surface most likely to change in a cold place that experiences rainfall 58 yo M presents with bright red blood per rectum and chronic constipation. He consumes a low-fiber diet. What the diagnose?