The solution to the given differential equation is y = e^(2x + C1) - 2x - 1, where C1 is the constant of integration.
The given differential equation is (2x+y+1)y' = 1.
To solve this differential equation, we can use the method of separation of variables. Let's start by rearranging the equation:
(2x+y+1)y' = 1
dy/(2x+y+1) = dx
Now, we integrate both sides of the equation:
∫(1/(2x+y+1)) dy = ∫dx
The integral on the left side can be evaluated using substitution. Let u = 2x + y + 1, then du = 2dx and dy = du/2. Substituting these values, we have:
∫(1/u) (du/2) = ∫dx
(1/2) ln|u| = x + C1
Where C1 is the constant of integration.
Simplifying further, we have:
ln|u| = 2x + C1
ln|2x + y + 1| = 2x + C1
Now, we can exponentiate both sides:
|2x + y + 1| = e^(2x + C1)
Since e^(2x + C1) is always positive, we can remove the absolute value sign:
2x + y + 1 = e^(2x + C1)
Next, we can rearrange the equation to solve for y:
y = e^(2x + C1) - 2x - 1
In the final answer, the solution to the given differential equation is y = e^(2x + C1) - 2x - 1, where C1 is the constant of integration.
Learn more about differential equation here
https://brainly.com/question/1164377
#SPJ11
Find the area of the parallelogram with vertices \( P_{1}, P_{2}, P_{3} \) and \( P_{4} \). \[ P_{1}=(1,2,-1), P_{2}=(3,3,-6), P_{3}=(3,-3,1), P_{4}=(5,-2,-4) \] The area of the parallelogram is (Type
The area of the parallelogram with vertices P1, P2, P3, and P4 is approximately 17.38 square units.
The area of a parallelogram can be found using the cross product of two adjacent sides.
Let's consider the vectors formed by the vertices P1, P2, and P3.
The vector from P1 to P2 can be obtained by subtracting the coordinates:
v1 = P2 - P1 = (3, 3, -6) - (1, 2, -1) = (2, 1, -5).
Similarly, the vector from P1 to P3 is v2 = P3 - P1 = (3, -3, 1) - (1, 2, -1) = (2, -5, 2).
To find the area of the parallelogram, we calculate the cross product of v1 and v2: v1 x v2.
The cross product is given by the determinant of the matrix formed by the components of v1 and v2:
| i j k |
| 2 1 -5 |
| 2 -5 2 |
Expanding the determinant, we have:
(1*(-5) - (-5)2)i - (22 - 2*(-5))j + (22 - 1(-5))k = (-5 + 10)i - (4 + 10)j + (4 + 5)k
= 5i - 14j + 9k.
The magnitude of this vector gives us the area of the parallelogram:
Area = |5i - 14j + 9k| = √(5^2 + (-14)^2 + 9^2)
= √(25 + 196 + 81)
= √(302) ≈ 17.38.
Therefore, the area of the parallelogram with vertices P1, P2, P3, and P4 is approximately 17.38 square units.
To learn more about area visit:
brainly.com/question/28284595
#SPJ11
Jeff has 32,400 pairs of sunglasses. He wants to distribute them evenly among X people, where X is
a positive integer between 10 and 180, inclusive. For how many X is this possible?
Answer:
To distribute 32,400 pairs of sunglasses evenly among X people, we need to find the positive integer values of X that divide 32,400 without any remainder.
To determine the values of X for which this is possible, we can iterate through the positive integers from 10 to 180 and check if 32,400 is divisible by each integer.
Let's calculate:
Number of possible values for X = 0
For each value of X from 10 to 180, we check if 32,400 is divisible by X using the modulo operator (%):
for X = 10:
32,400 % 10 = 0 (divisible)
for X = 11:
32,400 % 11 = 9 (not divisible)
for X = 12:
32,400 % 12 = 0 (divisible)
...
for X = 180:
32,400 % 180 = 0 (divisible)
We continue this process for all values of X from 10 to 180. If the remainder is 0, it means that 32,400 is divisible by X.
In this case, the number of possible values for X is the count of the integers from 10 to 180 where 32,400 is divisible without a remainder.
After performing the calculations, we find that 32,400 is divisible by the following values of X: 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 90, 96, 100, 108, 120, 128, 135, 144, 150, 160, 180.
Therefore, there are 33 possible values for X between 10 and 180 (inclusive) for which it is possible to distribute 32,400 pairs of sunglasses evenly.
Hope it helps!