Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?

Answers

Answer 1

Answer:

   R = r_protón / 2

Explanation:

The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement

      F = m a

Since the magnetic force is perpendicular, the acceleration is centripetal.

       a = v² / R

       

the magnetic force is

       F = q v x B = q v B sin θ

the field and the speed are perpendicular so the sin 90 = 1

we substitute

          qv B = m v² / R

          R = q v B / m v²

in the exercise they indicate

the charge  q = 2 e

the mass     m = 4 m_protón

        R = 2e v B / 4m_protón v²

we refer the result to the movement of the proton

         R = (e v B / m_proton) 1/2

the data in parentheses correspond to the radius of the proton's orbit

         R = r_protón / 2


Related Questions

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.

Required:
In what directions is it possible that the wave is traveling?

Answers

Answer:

The wave is traveling in the y axis direction

Explanation:

Because the wave will always travel in a direction 90° to the magnetic and electric components

If an astronomer wants to find and identify as many stars as possible in a star cluster that has recently formed near the surface of a giant molecular cloud (such as the Trapezium cluster in the Orion Nebula), what instrument would be best for her to use

Answers

Answer:

Infrared telescope and camera

Explanation:

An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.

Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, Infrared images is better used, since they are able to penetrate the surrounding clouds of dust, and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.

A square coil of wire with side 8.0 cm and 50 turns sits in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is pulled quickly out of the magnetic field in 0.2 s. If the resistance of the coil is 15 ohm and a current of 12 mA is induced in the coil, calculate the value of the magnetic field.

Answers

Answer:

Explanation:

area of the coil  A = .08 x .08 = 64 x 10⁻⁴ m ²

flux through the coil Φ = area of coil x no of turns x magnetic field

= 64 x 10⁻⁴ x 50 x B where B is magnetic field

emf induced = dΦ / dt = ( 64 x 10⁻⁴ x 50 x B - 0 ) / .2

= 1.6 B

current induced = emf induced / resistance

12 x 10⁻³ = 1.6 B / 15

B = 112.5 x 10⁻³ T .

Astronauts increased in height by an average of approximately 40 mm (about an inch and a half) during the Apollo-Soyuz missions, due to the absence of gravity compressing their spines during their time in space. Does something similar happen here on Earth

Answers

Answer:

Yes. Something similar occurs here on Earth.

Explanation:

Gravity tends to pull objects perpendicularly to the ground. In space, the absence of this force means there is no compression on the spine due to gravity trying to pull it down. This means that astronauts undergo an increase in height in space.

Here on Earth, we experience gravity pull on our spine during the day. At night when we sleep, we lie down with our spine parallel to the ground, which means that our spine is no longer under compression from gravity force. The result is that we are a few centimetres taller in the morning when we wake up, than we are before going to bed at night. The increase is not much pronounced here on Earth because there is a repeated cycle of compression and decompression of our spine due to gravity, unlike when compared to that of astronauts that spend long duration in space, all the while without gravity forces on their spine

If the speed of a "cheetah" is 150 m / s. How long does it take to cover 800 m?

Answers

Answer:

5.33333... seconds

Explanation:

800 divided by 150 is equal to 5.33333... because it is per second that the cheetah moves at 150miles, the answer is 5.3333.....

At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm

Answers

Answer:

f = 500 x 10^12Hz

Explanation:

E=hc/wavelength

E=hf

hc/wavelength =hf

c/wavelength =f

f = 3 x 10^8 / 600 x 10^-9 = 500 x 10^12Hz

A 3.15-kg object is moving in a plane, with its x and y coordinates given by x = 6t2 − 4 and y = 5t3 + 6, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.15 s.

Answers

Answer:

206.67N

Explanation:

The sum of force along both components x and y is expressed as;

[tex]\sum Fx = ma_x \ and \ \sum Fy = ma_y[/tex]

The magnitude of the net force which is also known as the resultant will be expressed as [tex]R =\sqrt{(\sum Fx)^2 + (\sum Fx )^2}[/tex]

To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.

Given the position of the object along the x-component to be x = 6t² − 4;

[tex]a_x = \frac{d^2 x }{dt^2}[/tex]

[tex]a_x = \frac{d}{dt}(\frac{dx}{dt} )\\ \\a_x = \frac{d}{dt}(6t^{2}-4 )\\\\a_x = \frac{d}{dt}(12t )\\\\a_x = 12m/s^{2}[/tex]

Similarly,

[tex]a_y = \frac{d}{dt}(\frac{dy}{dt} )\\ \\a_y = \frac{d}{dt}(5t^{3} +6 )\\\\a_y = \frac{d}{dt}(15t^{2} )\\\\a_y = 30t\\a_y \ at \ t= 2.15s; a_y = 30(2.15)\\a_y = 64.5m/s^2[/tex]

[tex]\sum F_x = 3.15 * 12 = 37.8N\\\sum F_y = 3.15 * 64.5 = 203.18N[/tex]

[tex]R = \sqrt{37.8^2+203.18^2}\\ \\R = \sqrt{1428.84+41,282.11}\\ \\R = \sqrt{42.710.95}\\ \\R = 206.67N[/tex]

Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N

At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit is:

Answers

Answer:

Explanation:

The whole wave front may be divided into two halves , the upper half and the lower half . Waves coming from top of the slit or top of upper half and top of lower half or from the mid point of slit can form minima at given point only when there is phase difference of π radian or path difference of λ or one wavelength. Every other point in upper half and corresponding point in lower half will interfere destructively at that point and will form dark spot at the given point . In this way minima will be formed at that point

Hence the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit at first minima  is π radian .

A brick of mass M has been placed on a rubber cushion of mass m. Together they are sliding to the right at constant velocity on an ice-covered parking lot. (a) Draw a free-body diagram of the brick and identify each force acting on it. (b) Draw a free-body diagram of the cushion and identify each force acting on it. (c) Identify all of the action–reaction pairs of forces in the brick–cushion–planet system.

Answers

A) The free-body diagram of the forces acting on the brick is attached.

B) The free-body diagram of the forces acting on the rubber cushion is attached.

C) The action and reaction forces of the entire brick–cushion–planet system has been enumerated below.

A) The brick has a Mass M placed on top of a rubber cushion of mass m.

This means that there will be a normal force acting acting upwards on the brick and also a gravitational force acting downward. These forces are denoted as;

Normal force of rubber cushion acting on brick = [tex]n_{cb}[/tex]

Gravitational force acting on brick = Mg

Find attached the free body diagram.

B) The forces acting on the cushion will be;

Normal force of parking lot pavement on rubber cushion  = [tex]n_{pc}[/tex]

Gravitational force of earth acting on cushion = mg

Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

C)  The action pairs of forces are;

i) Force; Normal force of rubber cushion acting on brick  = [tex]n_{cb}[/tex]

Reaction Force; Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

ii) Action Force; Gravitational force acting on brick = Mg

Reaction; Gravitational force of brick acting on the earth

iii) Action Force; Normal force of parking lot pavement on rubber cushion = [tex]n_{pc}[/tex]

Reaction; Force of rubber cushion on parking lot pavement

iv) Action Force; Gravitational force of earth acting on rubber cushion = mg

Reaction Force; Gravitational force of rubber cushion on the earth.

Read more at; https://brainly.com/question/17747931

Jane is collecting data for a ball rolling down a hill. she measure out a set of different distances and then proceeds to use a stopwatch to find the time it takes the ball to roll each distance

Answers

Answer:

The Independent variable in this experiment is the time taken by the ball to roll down each distance.

The dependent variable is the distance  through which the ball rolls

The control variables are: slope of hill, weight, of the ball, size of ball, wind speed, surface characteristics of the ball.

Explanation:

The complete question is

Jane is collecting data for a ball rolling down a hill. She measures out a set of different distances and then proceeds to use a stop watch to find the time it takes the ball to roll. What are the independent, dependent, and control variables in this experiment?

Independent variable have their values not dependent on any other variable in the scope of the experiment. The time for the ball to roll down the hill is not dependent on any other variable in the experiment. Naturally, some common independent variables are time, space, density, mass, fluid flow rate.

A dependent variable has its value dependent on the independent variable in the experiment. The value of the distance the ball rolls depends on the time it takes to roll down the hill.

The relationship between the dependent and independent variables in an experiment is given as

y = f(x)

where y is the output or the dependent variable,

and x is the independent variable.

Control variables are those variable that if not held constant could greatly affect the results of an experiment. For an experiment to be more accurate, control variables should be confined to a given set of value throughout the experiment.

A 5.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of 1.60 s. Find the force constant of the spring.

Answers

Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.

N/m

Explanation:

A magnetic field is entering into a coil of wire with radius of 2(mm) and 200 turns. The direction of magnetic field makes an angle 25° in respect to normal to surface of coil. The magnetic field entering coil varies 0.02 (T) in every 2 seconds. The two ends of coil are connected to a resistor of 20 (Ω).
A) Calculate Emf induced in coil
B) Calculate the current in resistor
C) Calculate the power delivered to resistor by Emf

Answers

Answer:

a) 2.278 x 10^-5 volts

b) 1.139 x 10^-6 Ampere

c) 2.59 x 10^-11 W

Explanation:

The radius of the wire r = 2 mm = 0.002 m

the number of turns N = 200 turns

direction of the magnetic field ∅ = 25°

magnetic field strength B = 0.02 T

varying time = 2 sec

The cross sectional area of the wire = [tex]\pi r^{2}[/tex]

==> A = 3.142 x [tex]0.002^{2}[/tex] = 1.257 x 10^-5 m^2

Field flux Φ = BA cos ∅ = 0.02 x 1.257 x 10^-5 x cos 25°

==> Φ = 2.278 x 10^-7 Wb

The induced EMF is given as

E = NdΦ/dt

where dΦ/dt = (2.278 x 10^-7)/2 = 1.139 x 10^-7

E = 200 x 1.139 x 10^-7 = 2.278 x 10^-5 volts

b) If the two ends are connected to a resistor of 20 Ω, the current through the resistor is given as

[tex]I[/tex] = E/R

where R is the resistor

[tex]I[/tex] = (2.278 x 10^-5)/20 = 1.139 x 10^-6 Ampere

c) power delivered to the resistor is given as

P = [tex]I[/tex]E

P = (1.139 x 10^-6) x (2.278 x 10^-5) = 2.59 x 10^-11 W

Consider a long rod of mass, m, and length, l, which is thin enough that its width can be ignored compared to its length. The rod is connected at its end to frictionless pivot.
a) Find the angular frequency of small oscillations, w, for this physical pendulum.
b) Suppose at t=0 it pointing down (0 = 0) and has an angular velocity of 120 (that is '(t = 0) = 20) Note that 20 and w both have dimensions of time-1. Find an expression for maximum angular displacement for the pendulum during its oscillation (i.e. the amplitude of the oscillation) in terms of 20 and w assuming that the angular displacement is small.

Answers

Answer:

Explanation:

The rod will act as pendulum for small oscillation .

Time period of oscillation

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

angular frequency ω = 2π / T

= [tex]\omega=\sqrt{\frac{g}{l} }[/tex]

b )

ω = 20( given )

velocity = ω r = ω l

Let the maximum angular displacement in terms of degree be θ .

1/2 m v ² = mgl ( 1 - cosθ ) ,

[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]

.5 (  ω l )² = gl( 1 - cos θ )

.5 ω² l = g ( 1 - cosθ )

1 - cosθ  = .5 ω² l /g

cosθ = 1 - .5 ω² l /g

θ can be calculated , if value of l is given .

•• A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the sphere’s radius is 50.0 cm and it carries a total charge of (a) Calculate the potential of the sphere’s surface. (b)You want to draw equipotential surfaces at intervals of 500 V outside the sphere’s surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces. (c) What does the changing spacing of the surfaces tell you about the electric field?

Answers

Answer:

Explanation:

For this exercise we will use that the potential is created by the charge inside the equinoctial surface and just like in Gauss's law we can consider all the charge concentrated in the center.

Therefore the potential on the ferric surface is

        V = k Q / r

where k is the Coulomb constant, Q the charge of the sphere and r the distance from the center to the point of interest

a) On the surface the potential

        V = 9 10⁹ Q / 0.5

        V = 18 10⁹ Q

Unfortunately you did not write the value of the load, suppose a value to complete the calculations Q = 1 10⁻⁷ C, with this value the potential on the surfaces V = 1800 V

b) The equipotential surfaces are concentric spheres, let's look for the radii for some potentials

for V = 1300V let's find the radius

             r = k Q / V

             r = 9 109 1 10-7 / 1300

             r = 0.69 m

other values ​​are shown in the following table

V (V)      r (m)

1800     0.5

1300     0.69

 800      1,125

 300     3.0

In other words, we draw concentric spheres with these radii and each one has a potential difference of 500V

C) The spacing of the spheres corresponds to lines of radii of the electric field that have the shape

         E = k Q / r²

A proton that is initially at rest is accelerated through an electric potential difference of magnitude 500 V. What speed does the proton gain? (e = 1.60 × 10-19 C , mproton = 1.67 × 10-27 kg)

Answers

Answer:

[tex]3.1\times 10^{5}m/s[/tex]

Explanation:

The computation of the speed does the proton gain is shown below:

The potential difference is the difference that reflects the work done as per the unit charged

So, the work done should be

= Potential difference × Charge

Given that

Charge on a proton is

= 1.6 × 10^-19 C

Potential difference = 500 V

[tex]v= \sqrt{\frac{2.q.\Delta V}{m_{p}}} \\\\\\= \sqrt{\frac{2\times 1.6\times 10^{-19}\times 5\times 10^{2}}{1.67\times 10^{-27}}}[/tex]

[tex]v= \sqrt{9.58\times 10^{10}}m/s \\\\= 3.095\times 10^{5}m/s\\\\\approx 3.1\times 10^{5}m/s[/tex]

Simply we applied the above formulas

Estimate the distance (in cm) between the central bright region and the third dark fringe on a screen 6.3 m from two double slits 0.49 mm apart illuminated by 739-nm light. (give answer in millimeters)

Answers

Answer:

Explanation:

distance of third dark fringe

= 2.5 x λ D / d

where λ is wavelength of light , D is screen distance and d is slit separation

putting the given values

required distance = 2.5  x 739 x 10⁻⁹  x 6.3 / .49 x 10⁻³

= 23753.57 x 10⁻⁶

= 23.754 x 10⁻³ m

= 23.754 mm .

A piece of thin uniform wire of mass m and length 3b is bent into an equilateral triangle so that each side has a length of b. Find the moment of inertia of the wire triangle about an axis perpendicular to the plane of the triangle and passing through one of its vertices.

Answers

Answer:

Mb²/2

Explanation:

Pls see attached file

Two buses are moving in opposite directions with velocities of 36 km/hr and 108
km/hr. Find the distance between them after 20 minutes.

Answers

Explanation:

It is given that,

Speed of bus 1 is 36 km/h and speed of bus 2 is 108 km/h. We need to find the distance between bus 1 and 2 after 20 minutes.

Time = 20 minutes = [tex]\dfrac{20}{60}\ h=\dfrac{1}{3}\ h[/tex]

As the buses are moving in opposite direction, then the concept of relative velocity is used. So,

Distance, [tex]d=v\times t[/tex]

v is relative velocity, v = 108 + 36 = 144 km/h

So,

[tex]d=144\ km/h \times \dfrac{1}{3}\ h\\\\d=48\ km[/tex]

So, the distance between them is 48 km after 20 minutes.

The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional toA) the particle's charge.B) the particle's momentum.C) the particle's energy.D) the flux density of the field.E)All of these are correct

Answers

Answer:

B) the particle's momentum.

Explanation:

We know that

The centripetal force  on the particle when its moving in the radius R and velocity V

[tex]F_c=\dfrac{m\times V^2}{R}[/tex]

The magnetic force on the particle when the its moving with velocity V in the magnetic filed B and having charge q

[tex]F_m=q\times V\times B[/tex]

At the equilibrium condition

[tex]F_m=F_c[/tex]

[tex]q\times V\times B=\dfrac{m\times V^2}{R}[/tex]

[tex]R=\dfrac{m\times V}{q\times B}[/tex]

Momentum = m V

Therefore we can say that the radius of curvature is directly proportional to the particle momentum.

B) the particle's momentum.

In a shipping yard, a crane operator attaches a cable to a 1,390 kg shipping container and then uses the crane to lift the container vertically at a constant velocity for a distance of 33 m. Determine the amount of work done (in J) by each of the following.
a) the tension in the cable.
b) the force of gravity.

Answers

Answer:

a)  A = 449526  J,  b) 449526 J

Explanation:

In this exercise they do not ask for the work of different elements.

Note that as the box rises at constant speed, the sum of forces is chorus, therefore

           T-W = 0

           T = W

           T = m g

           T = 1,390 9.8

           T = 13622 N

Now that we have the strength we can use the definition of work

           W = F .d

            W = f d cos tea

       

a) In this case the tension is vertical and the movement is vertical, so the tension and displacement are parallel

              A = A  x

              A = 13622  33

               A = 449526  J

b) The work of the force of gravity, as the force acts in the opposite direction, the angle tea = 180

               W = T x cos 180

               W = - 13622 33

               W = - 449526 J

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

Tuning a guitar string, you play a pure 330 Hz note using a tuning device, and pluck the string. The combined notes produce a beat frequency of 5 Hz. You then play a pure 350 Hz note and pluck the string, finding a beat frequency of 25 Hz. What is the frequency of the string note?

Answers

Answer:

The  frequency is  [tex]F = 325 Hz[/tex]

Explanation:

From the question we are told that

    The frequency for the first note is  [tex]F_1 = 330 Hz[/tex]

     The  beat frequency of the first note is  [tex]f_b = 5 \ Hz[/tex]

     The  frequency for the second note is  [tex]F_2 = 350 \ H_z[/tex]

      The  beat frequency of the first note is [tex]f_a = 25 \ Hz[/tex]

Generally beat frequency is mathematically represented as

        [tex]F_{beat} = | F_a - F_b |[/tex]

Where [tex]F_a \ and \ F_b[/tex] are frequencies of two sound source

  Now in the case of this question

For the first note

     [tex]f_b = F_1 - F \ \ \ \ \ ...(1)[/tex]

Where  F is the frequency of the string note

For the second note  

      [tex]f_a = F_2 - F \ \ \ \ \ ...(2)[/tex]

Adding  equation 1 from 2

      [tex]f_b + f_a = F_1 + F_2 + ( - F) + (-F) )[/tex]

      [tex]f_b + f_a = F_1 + F_2 -2F[/tex]

substituting values

       [tex]5 +25 = 330 + 350 -2F[/tex]

=>     [tex]F = 325 Hz[/tex]

       

Need help understanding this. If anyone help, that would be greatly appreciated!

Answers

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

a) acceleration:

ā=v^2/r

ā=(15m/s)^2/27m

ā=225/27 m/s^2

ā=8.333 m/s^2

force:

F=mā. where the is equal to v^2/r

F=1000kg*8.3 m/s^2

F=8333.3 N

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope.

Answers

Answer:

1) on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

2)If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum

3) must be able to see the well-collimated light emission source

Explanation:

1) A diffraction grating (diffraction grating) is a surface on which a series of indentations are drawn evenly spaced.

These crevices or lines are formed by copying a standard metal net when the plastic is melted and after hardening is carefully removed, or if the nets used are a copy of the master net.

The network can be of two types of transmission or reflection, in teaching work the most common is the transmission network, on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

The number of lines per linear mm determines which range of the spectrum a common value can be observed to observe the range of viable light is 600 and 1200 lines per mm.

2) when looking through the diffraction grating what we can observe depends on the relative angle between the eye and the normal to the network.

If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum, if it is an incandescent lamp we see a continuum with all the colors in the visible range and if it is a gas lamp we see the characteristic emission lines of the gas.

3) Before mounting the grid on the spectrometer, we must be able to see the well-collimated light emission source, this means that it is clearly observed.

The spectrometers have several screws to be able to see the lamp clearly, this is of fundamental importance in optical experiments.

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.
PLZ HURRY WILL MARK BRAINLIEST IF CORRECT

Answers

Answer:

Option A

Explanation:

Acceleration will be obviously zero when Force = 0

That is how:

Force = Mass * Acceleration

So, If force = 0

0 = Mass * Acceleration.

Dividing both sides by Mass

Acceleration = 0/Mass

Acceleration = 0 m/s²

Answer:

[tex]\boxed{\mathrm{A. \: It \: will \: be \: 0 \: meters \: per \: second \: per \: second. }}[/tex]

Explanation:

[tex]\mathrm{force=mass \times acceleration}[/tex]

The force is given 0 newtons.

[tex]\mathrm{force=0 \: N}[/tex]

Plug force as 0.

[tex]\mathrm{0=mass \times acceleration}[/tex]

Divide both sides by mass.

[tex]\mathrm{\frac{0}{mass} =acceleration}[/tex]

[tex]\mathrm{0 =acceleration}[/tex]

[tex]\mathrm{acceleration= 0\: m/s/s}[/tex]

Describe the orientation of magnetic field lines by drawing a bar magnet, labeling the poles, and drawing several lines indicating the direction of the forces.

Answers

Answer:

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Explanation:

Suppose Young's double-slit experiment is performed in air using red light and then the apparatus is immersed in water. What happens to the interference pattern on the screen?

Answers

Answer:

The bright fringes will appear much closer together

Explanation:

Because λn = λ/n ,

And the wavelength of light in water is smaller than the wavelength of light in air. Given that the distance between bright fringes is proportional to the wavelength

Which scientist proved experimentally that a shadow of the circular object illuminated 18. with coherent light would have a central bright spot?
A. Young
B. Fresnel
C. Poisson
D. Arago

Answers

Answer:

Your answer is( D) - Arago

A container is filled with fluid 1, and the apparent depth of the fluid is 9.00 cm. The container is next filled with fluid 2, and the apparent depth of this fluid is 6.86 cm. If the index of refraction of the first fluid is 1.37, what is the index of refraction of the second fluid

Answers

Answer:

The refractive index of fluid 2 is 1.78

Explanation:

Refractive index , n = real depth/apparent depth

For the first fluid, n = 1.37 and apparent depth = 9.00 cm.

The real depth of the container is thus

real depth = n × apparent depth = 1.37 × 9.00 cm = 12.33 cm

To find the refractive index of fluid index of fluid 2, we use the relation  

Refractive index , n = real depth/apparent depth.

Now,the real depth = 12.33 cm and the apparent depth = 6.86 cm.

So, n = 12.33 cm/6.86 cm = 1.78

So the refractive index of fluid 2 is 1.78

Since the same container is used, real depth of fluid 1 is equal to the real depth of fluid 2. The index of refraction of the second fluid is 1.8

Given that a container is filled with fluid 1, and the apparent depth of the fluid is 9.00 cm. The container is next filled with fluid 2, and the apparent depth of this fluid is 6.86 cm. If the index of refraction of the first fluid is 1.37,

Then,

Index of refraction = [tex]\frac{Real depth}{Apparent depth}[/tex]

Real depth = Index of refraction x apparent depth

Since the same container is used, we can make an assumption that;

real depth of fluid 1 = real depth of fluid 2

That is,

1.37 x 9 = n x 6.86

Where n = Index of refraction for the second fluid.

make n the subject of formula

n = 12.33 / 6.86

n = 1.79

Therefore, the index of refraction of the second fluid is 1.8 approximately.

Learn more about refraction here: https://brainly.com/question/10729741

Three resistors, 6.0-W, 9.0-W, 15-W, are connected in parallel in a circuit. What is the equivalent resistance of this combination of resistors?

Answers

Answer:

2.9Ω

Explanation:

Resistors are said to be in parallel when they are arranged side by side such that their corresponding ends are joined together at two common junctions. The combined resistance in such arrangement of resistors is given by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

Where;

Req refers to the equivalent resistance and R1, R2, R3 .......Rn refers to resistance of individual resistors connected in parallel.

Note that;

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

Therefore;

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

The equivalent resistance of this combination of resistors is 2.9Ω.

Calculation of the equivalent resistance:

The combined resistance in such arrangement of resistors is provided by;

1/Req= 1/R1 + 1/R2 + 1/R3 .........+ 1/Rn

here.

Req means  the equivalent resistance and R1, R2, R3

.Rn means the resistance of individual resistors interlinked in parallel.

Also,

R1= 6.0Ω

R2 = 9.0Ω

R3= 15.0 Ω

So,

1/Req = 1/6 + 1/9 + 1/15

1/Req= 0.167 + 0.11 + 0.067

1/Req= 0.344

Req= (0.344)^-1

Req= 2.9Ω

learn more about resistance here: https://brainly.com/question/15047345

Other Questions
Which expression is equivalent to 6 cubed? 6 times 3 6 times 6 times 6 6 times 6 times 6 times 6 3 times 3 times 3 times 3 times 3 times 3 Mama is a sunrise Is from the story entitled .............. Arthur drops a ball from a height of 81 feet above the ground. Its height, h, is given by the equation h = 16t2 + 81, where t is the time in seconds. For which interval of time is the height of the ball less than 17 feet? In the early 1800s, at the time the Missouri territory requested statehood?A.) there were more slave states than free states. B.) there were more free states than slave states.C.) there was an equal number of slave and free states.D.) there was no longer a division over slavery. Carolina goes to a paintball field that charges an entrance fee of \$18$18dollar sign, 18 and \$0.08$0.08dollar sign, 0, point, 08 per ball. The field has a promotion that says, "Get \$10$10dollar sign, 10 off if you spend \$75$75dollar sign, 75 or more!" Carolina wonders how many paintballs she needs to buy along with the entrance fee to get the promotion.Let BBB represent the number of paintballs that Carolina buys.1) Which inequality describes this scenario?Choose 1 answer:Choose 1 answer:(Choice A)A18+0.08B \leq 7518+0.08B7518, plus, 0, point, 08, B, is less than or equal to, 75(Choice B)B18+0.08B \geq 7518+0.08B7518, plus, 0, point, 08, B, is greater than or equal to, 75(Choice C)C18+0.08B \leq 1018+0.08B1018, plus, 0, point, 08, B, is less than or equal to, 10(Choice D)D18+0.08B \geq 1018+0.08B1018, plus, 0, point, 08, B, is greater than or equal to, 102) What is the smallest number of paintballs that Carolina can buy along with the entrance fee to get the promotion? paintballs Your Spanish friend Sebastin loves to collect currency from different countries and eras. Sebastvalued at one thousand. Sebastin especially loves how the bills and coins have many interestingBased on the text information and what you learned from the lesson, what currency is the text referring to?1.000 euros2.000 euros2.000 pesos1.000 pesosHelp plzzz I watched the ospreys swoop down gracefully down into the lake behind the house. one by one, they would first hover as if magically suspended over the water and then drop into a dive with remarkable speed and accuracy. Not a moment later, they'd break through the surface of the water with a fish, a reward for their patience and precision.a) She admires them and sees them as powerful and agileb) She dislikes them and sees them as predatory and heartlessc) She dismisses them and sees them as irrelevant and unimportantd) She enjoys them and sees them as entertaining and humorous Which sustainable practice is paired correctly with its impact on the environment? Using bamboo results in an increased use of forest trees. Practicing contour plowing results in a need for more land. Setting irrigation systems to run longer results in a reduction of water use. Building more wind farms results in a reduction of fossil fuel use. What is the port representing buy above symbol? Larry recalls his first memory of riding a red tricycle at the age of 4. Larrys memory is: True False What is the measure of XBC? mXBC = mBAC + mBCA 3p 6 = p + 4 + 84 3p 6 = p + 88 2p 6 = 88 2p = 94 mXBC muscle tissue is strained because it contains Barry walks from one end to the other of a 30-meter long moving walkway at a constant rate in 30 seconds, assisted by the walkway. When he reaches the end, he reverses direction and continue walking with the same speed, but this time it takes him 120 seconds because he is traveling against the direction of the moving walkway. If the walkway were to stop moving, how many seconds would it take Barry to walk from one end of the walkway to the other what converts solar energy (sunlight) into chemical energy through photosynthesis If the average rate of the reaction A --->2B C is 1M/s, what is the average rate of formation (in M/s) of B over that same period of time Which of the following is not an advantage that glycogen provides to muscle cells in which it is stored? Group of answer choices It is available for quick energy spurts. It requires no energy to mobilize the glucose residues for metabolism. It gives anaerobic metabolism a boost. Solve for x: ex = 5.2 the name for geographically wide-ranging group of peoples and states ruled by a single government is a please help. create five word expressions that will need to be translated into an algebraic expression also provide a value for the variable mentioned in the expression. a number is one more than twice the other number. their product is 36. what are the numbers