Complete Question
The complete question is shown on the first uploaded image
Answer:
The standard deviation is [tex]\sigma = 2.45[/tex]
Step-by-step explanation:
From the given data we can compute the expected mean for each random values as follows
[tex]E(X) = \sum [ X * P(X = x )]\\\\ X \ \ \ \ \ \ X* P(X =x )\\ 0 \ \ \ \ \ \ \ \ \ \ 0* 0.4 = 0 \\ 2 \ \ \ \ \ \ \ \ \ \ 2 * 0.3 = 0.6 \\ 4 \ \ \ \ \ \ \ \ \ \ 4 * 0.2 = 0.8\\ 6 \ \ \ \ \ \ \ \ \ \ 6* 0.1 = 0.6[/tex]
So
[tex]E(x) = 0 + 0.6 + 0.8 + 0.6[/tex]
[tex]E(x) = 2[/tex]
The
[tex]E(X^2) = \sum [ X^2 * P(X = x )]\\\\ X \ \ \ \ \ \ \ \ \ \ X^2 * P(X=x ) \\ 0 \ \ \ \ \ \ \ \ \ \ 0^2 * 0.4 = 0 \\ 2 \ \ \ \ \ \ \ \ \ \ 2^2 * 0.3 = 12 \\ 4 \ \ \ \ \ \ \ \ \ \ 4^2 * 0.2 = 3.2 \\ 6 \ \ \ \ \ \ \ \ \ \ 6^2 * 0.1 = 3.6[/tex]
So
[tex]E(X^2) = 0 + 1.2 + 3.2 + 3.6[/tex]
[tex]E(X^2) = 8[/tex]
Now the variance is mathematically evaluated as
[tex]Var (X) = E(X^2 ) -[E(X]^2[/tex]
Substituting value
[tex]Var (X) = 8-4[/tex]
[tex]Var (X) = 6[/tex]
The standard deviation is mathematically evaluated as
[tex]\sigma = \sqrt{Var(x)}[/tex]
[tex]\sigma = \sqrt{4}[/tex]
[tex]\sigma = 2[/tex]
Which set of ordered pairs represents a function? {(0,1), (1,3), (1,5) (2,8)}, {(0,0), (1,2), (2,6), (2,8)}, {(0,0), (0,2), (2,0), (2,4)}, {(0,2), (1,4), (2,6), (3,6)}
Answer:
The last set.
Step-by-step explanation:
The first 3 sets contain 'one-to-many' relations , for example (1, 3) and (1, 5) in set 1 and (0, 0) and (0, 2) in set 3 , so they are not functions.
The last set does not have any of these and is a function.
1. A mortgage of $200,000 requires payments of $1395.40 per month at 5.7%
compounded quarterly. How long will it take to repay the loan? What amount of interest
does the purchase pay?
Answer:
a) How long will it take to repay the loan?
20 years
b) What amount of interest does the purchase pay?
$134,896
Step-by-step explanation:
a) How long will it take to repay the loan?
In the above question, they are asking you for the Loan duration
The Formula for Loan duration(T) =
ln (- m/(r÷n) × C - m)/In (1 + r/n)
Where:
m = monthly payments = $1395.40
C = Amount of mortgage =$200,000
r = Interest rate = 5.7% = 0.57
n = compounded quarterly = 4
T = ln (- 1395.40/(0.57÷4) × 200,000 - 1395.40)/In (1 + 0.57/4)
T = 20 years.
Therefore, it will take 20 years to repay the Loan.
b) What amount of interest does the purchase pay?
The total number of payments =
Loan duration × Number of months
Number of months = 12 months( because it is monthly payment)
Loan duration = 20 years
Total number of payments = 240 payments.
In the question, we are given the amount paid monthly payment as
$1,395.40
Total amount paid = Monthly payments × Total number of payments
= $1,395.40 × 240
= $334,896
The amount of Interest the purchase pay = $334,896 - $200,000
= $134,896
The height of an object dropped from the top of a 144-foot building is given by . How long will it take the object to hit the ground?
They left off the equation but we can know it's
y(t) = h₀ - g t² / 2
That's
y(t) = 144 - 16 t²
It hits the ground when
0 = 144 - 16 t²
16 t² = 144
t² = 144 / 16 = 9
t = 3 seconds
Answer: 3 seconds
Part 1 You will need to measure five different people. Record your measurements on a piece of paper. Using a tape measure or ruler, measure the length (in inches) of a person’s left foot and then measure the length (in inches) of that same person’s forearm (between their wrist and elbow). Refer to the diagrams below. You will have two measurements for each person. (An easy way to measure the length of a foot is to have your subject stand on a piece of paper. Then, trace their foot and measure the outline once they move off the paper.) To measure the forearm, measure inside the arm, between the wrist and the elbow. Part 2 Organize your data and find the rate of change. Create a table of the measurements for your data. Label the forearm measurements as your input and the foot measurements as your output. Select two sets of points and find the rate of change for your data. Describe your results. If you had to express this relation as a verbal statement, how would you describe it? Part 3 Compare rates of change. The equation below can be used to find the length of a foot or forearm when you know one or the other. (length of the foot) = 0.860 • (length of the forearm) + 3.302 If you let y = length of the foot and x = length of the forearm, this equation can be simplified to y = 0.860x + 3.302. Using this equation, how long would the foot of a person be if his forearm was 17 inches long? What is the rate of change of the equation from Part A? Compare the equation from Part A to your data. Are they the same? Which has a greater rate of change? Why do you think the values are different? Is the relation in your data a function? Why or why not? Could the equation in Part A represent a function? Why or why not? Explain your answer. For this option you will submit the details from all three parts. Submit your measurements, the table, and description that you created in Parts 1 and 2. Submit your answers to the questions from Part 3. Measurement of forearm (x) 10in. , 15in , 10in, 11in. , 12in. Measurement of left foot (y) 9in. 11in. . 8in. 9 11/16in. 11 1/4in.
Answer:
to be honest I'm not sure how to do this question plz answer my question plz
Step-by-step explanation:
to be honest I'm not sure how to do this question plz answer my question plz I'm so much home workout
What is the missing segment?
Answer:
78.
Step-by-step explanation:
12 / (48-12) = 26 / x
12/36 = 26/x
1/3 = 26/x
x = 26*3 = 78.
Find the measure of y. Polygon Angle-Sum theorems
Answer:
z = 70°
y = 103°
Step-by-step explanation:
From the picture attached,
110° + z° = 180° [Supplementary angles]
z = 180 - 110
z = 70°
Since sum of interior angles of a polygon = (n - 2)×180°
where n = number of sides of the polygon
For a quadrilateral (n = 4),
Sum of interior angles = (4 - 2) × 180°
= 360°
z° + y° + 100° + 87° = 360°
70° + y° + 187° = 360°
y = 103°
Therefore, measure of the angles x = 70° and y = 103°.
Simplify the following algebraic expression.
square root of 392x^7
Answer:
[tex] \sqrt{392 {x}^{7} } [/tex]
Simplify
that's
[tex] \sqrt{392} \times \sqrt{ {x}^{7} } \\ \\ = \sqrt{196 \times 2} \: \times \sqrt{ {x}^{7} } \\ \\ = 14 \sqrt{2} \times \sqrt{ {x}^{7} } \\ \\ = 14 \sqrt{2x ^{7} } [/tex]
Hope this helps you
HELP! EASY! WILL GIVE BRAINLIEST!
Answer:
c
Step-by-step explanation:
Determine all numbers at which are function Continuous..
f(x)={
x^2 + 5x - 36/
x^2 + 8x - 9
if x≠-9
if x= -9}
a.
continuous at every real number except x = 1 and x = -9
b. continuous at every real number except x = -9
c.continuous at every real number except x = 1
d. continuous at every real number except x = -9 and x = 4
Answer:
For this case we have this function:
[tex] f(x) =\frac{x^2 +5x-36}{x^2 +8x-9}, x=9[/tex]
We can factor the denominator and we got:
[tex] f(x) =\frac{x^2 +5x-36}{(x+9)(x-1)}, x=9[/tex]
And since we can't divide by 0 then the value of x can't be 1 or -9 so then the best answer for this case would be:
Continuous at every real number except x=1 and x=-9
Step-by-step explanation:
For this case we have this function:
[tex] f(x) =\frac{x^2 +5x-36}{x^2 +8x-9}, x=9[/tex]
We can factor the denominator and we got:
[tex] f(x) =\frac{x^2 +5x-36}{(x+9)(x-1)}, x=9[/tex]
And since we can't divide by 0 then the value of x can't be 1 or -9 so then the best answer for this case would be:
Continuous at every real number except x=1 and x=-9
Answer:
A or continuous at every real number except x=1 and x=-9
Step-by-step explanation:
Just took the test :)
-15≤-3c plz helpppppppppp
Answer:
5 ≥ c
Step-by-step explanation:
-15≤-3c
Divide each side by -3, remembering to flip the inequality
-15/-3 ≤ -3c/-3
5 ≥ c
Answer:
c ≤ 5
Step-by-step explanation:
Since you have to divide both sides of the equation by a negative number, you have to flip the equality sign.
-15 ≤ -3c
(-15)/(-3) ≤ (-3c)/-3
5 ≥ c
c ≤ 5
Find three consecutive odd integers so that the sum of twice the first, the second
and three times the third is 152.
Answer: 23, 25, 27
Step-by-step explanation:
Let the 3 consecutive odd numbers be x, x+2 and x+4.
So
2x+(x+2)+3(x+4)=152
2x + x + 2 + 3x + 12 = 152
6x+14=152
6x = 152 - 14
x=138/6
x=23
So, the numbers are 23, 25 and 27.
Sam borrows $5700 at 4.5% simple interest for 3 years. Find the interest
Answer:
The interest is
$ 769.50Step-by-step explanation:
Simple interest is given by
[tex]I = \frac{P \times R \times T}{100} [/tex]
where
P is the principal
R is the rate
T is the time given
From the question
The principal / P = $ 5700
The rate / R = 4.5%
The time given / T = 3 years
So the interest is
[tex]I = \frac{5700 \times 4.5 \times 3}{100} [/tex]
[tex]I = \frac{76950}{100} [/tex]
We have the final answer as
I = $ 769.50
Hope this helps you
A person stands 15 ft from an elephant. Determine how tall the elephant is in feet, the given diagram.
Answer:
The height of the elephant is [tex]\dfrac{15}{\sqrt3}\ ft[/tex].
Step-by-step explanation:
It is given that,
Distance between a person and an elephant is 15 ft
The angle of elevation of the elephant is 30 degrees.
We need to find the height of the elephant. For this let us consider that height is h. So,
[tex]\tan\theta=\dfrac{P}{B}\\\\\tan(30)=\dfrac{h}{15}\\\\h=15\times \tan(30)\\\\h=\dfrac{15}{\sqrt3}\ ft[/tex]
So, the height of the elephant is [tex]\dfrac{15}{\sqrt3}\ ft[/tex].
A study compared surgery and splinting for subjects suffering from carpal tunnel syndrome. It was found that among 73 patients treated with surgery,
there was a 92% success rate. Among 83 patients treated with splints, there was a 72% success rate. Calculations using those results showed that if
there really is no difference in success rates between surgery and splints, then there is about 1 chance in 1000 of getting success rates like the ones
obtained in this study. Which statement cannot be said?
The better treatment for carpal tunnel syndrome is surgery.
The result has practical significance.
The recommended treatment for carpal tunnel syndrome is splinting.
The result has statistical significance.
Answer:
the answer is c
Step-by-step explanation:
because if the surgery has a 92% success rate and the splints have a 72% success rate then surgery would be recommended because it has a higher success rate
Consider the density curve plotted below:
Find PX < 6.4):
Find P(X> 4.8):
Answer:
[tex] P(X<6.4)= \frac{6.4*0.2}{2}= 0.64[/tex]
[tex] P(X>4.8) =1-P(X<4.8)= 1- \frac{4.8*0.15}{2}= 1-0.36= 0.64[/tex]
Step-by-step explanation:
Part a
We want to find:
[tex] P(X<6.4)[/tex]
And we just need to find the area below the curve until x=6.4, since we have a triangle we can do this:
[tex] P(X<6.4)= \frac{6.4*0.2}{2}= 0.64[/tex]
Part b
For this case we want to find this probability:
[tex] P(X>4.8)[/tex]
And we can use the complement rule and we got:
[tex] P(X>4.8) =1-P(X<4.8)= 1- \frac{4.8*0.15}{2}= 1-0.36= 0.64[/tex]
Lisa is 34 years old. Two years ago, she was twice as old as her brother. How old is her brother now?
Answer:
18
Step-by-step explanation:
Two years ago, Lisa was 34 - 2 = 32 years old. If she was twice as old as her brother, he was 32 / 2 = 16 years old at that time. His age now will be 16 + 2 = 18.
The measure of minor arc JL is 60°. Circle M is shown. Line segments M J and M L are radii. Tangents J K and L K intersect at point K outside of the circle. Arc J L is 60 degrees. What is the measure of angle JKL? 110° 120° 130° 140°
Answer:
120
Step-by-step explanation:
Answer: 120
Hope that helped!(:
Find the value of x in the isosceles triangle shown below.
Answer:
the answer is x = sqrt 48
Step-by-step explanation:
What the answer now fast
sine(X) = opposite side / hypotenuse
sine(X) = (2√11) / (4√11)
sine(X) = (2/4)
sine(X) = 0.5
X = arcsine(0.5)
X = 30°
Answer: m∠x = 30°
Step-by-step explanation:
In a right triangle, if the short side of the right angle is Half the length of the hypotenuse, the triangle has angles of 30°, 60° and 90°
∠x is the smallest one, so m∠x = 30°
It is possible to figure the sine and get the angle from that, but in this case it might not be necessary. ;-)
In the triangle below, what is the length of the hypotenuse?
A. \|3
B. 3\|3
C. 6
D. 3\|2
Answer:
C
Step-by-step explanation:
So you can use the 30, 60, 90 degree triangle ratio of x: 2x: x√3
The 3 is the x, and the hypotenuse is the 2x, so it's 6
Answer:
C. 6
Step-by-step explanation:
I just finished the test and I got 100 percent
Brainliest for whoever gets this correct! What is the sum of the rational expressions below?
Answer:
second option
Step-by-step explanation:
x / x - 1 + 3x / x + 2
= x(x + 2) / (x - 1)(x + 2) + 3x(x - 1) / (x - 1)(x + 2)
= (x² + 2x) / (x² + x - 2) + (3x² - 3x) / (x² + x - 2)
= (4x² - x) / (x² + x - 2)
Assume that y varies directly with
x, then solve.
If y=2when x=, find y when x=1
y =
HELP- find the volume of the prism
Answer:
The answer is
1728″Step-by-step explanation:
From the above question the prism in the picture is a cube since all it's sides are equal
So the formula for finding the volume of a cube is
V = l³
where l is the length of one side
From the question l = 12″
Volume of the prism = 12³
= 1728″
Hope this helps you
A bike tire just ran over a nail, and it is losing pressure at a rate of 5% every minute. The tire pressure is currently 1,300 kilopascals. What will it be in 3 minutes? If necessary, round your answer to the nearest tenth.
Answer:
1,114.6 kPa
Step-by-step explanation:
P(t) = 1300 (0.95)^t
P(3) = 1300 (0.95)^3
P(3) = 1114.6
A hypothesis test is to be performed for a population proportion. For the given sample data and null hypothesis, compute the value of the test statistic, Z.
415 people were asked if they were satisfied with their jobs. 49% said they were. H0: p= 0.3
a. 8.446
b. 2.612
c. 0.415
d. 4.125
Answer:
The correct option is a
Step-by-step explanation:
From the question we are told that
The sample size is n = 415
The sample proportion is [tex]\r p = 0.49[/tex]
Now
The null hypothesis is [tex]H_o : p = 0.3[/tex]
The alternative hypothesis is [tex]H_a : p \ne 0.3[/tex]
The test statistics is mathematically evaluated as
[tex]t = \frac{\r p - p }{ \frac{\sqrt{ p (1- p )} }{n} }[/tex]
substituting values
[tex]t = \frac{0.49 - 0.3 }{ \sqrt{ \frac{0.3 (1- 0.3 ) }{415} }}[/tex]
[tex]t = 8.446[/tex]
All sides of the building shown above meet at right angles. If three of the sides measure 2 meters, 7 meters, and 11 meters as shown, then what is the perimeter of the building in meters?
Answer:
69 meters
Step-by-step explanation:
Answer:
Please privately chat to us why you chose to cheat during online class, otherwise we will contact your parents and kick you out of our program for the reason stated.
Step-by-step explanation:
Please contact your Quantitive Reasoning teacher at her email, as stated in Google Classroom.
among a group of students 50 played cricket 50 played hockey and 40 played volleyball. 15 played both cricket and hockey 20 played both hockey and volleyball 15 played cricket and volley ball and 10 played all three. if every student played at least 1 game find the no of students and how many students played only cricket, only hockey and only volley ball
Answer:
Cricket only= 30
Volleyball only = 15
Hockey only = 25
Explanation:
Number of students that play cricket= n(C)
Number of students that play hockey= n(H)
Number of students that play volleyball = n(V)
From the question, we have that;
n(C) = 50, n(H) = 50, n(V) = 40
Number of students that play cricket and hockey= n(C∩H)
Number of students that play hockey and volleyball= n(H∩V)
Number of students that play cricket and volleyball = n(C∩V)
Number of students that play all three games= n(C∩H∩V)
From the question; we have,
n(C∩H) = 15
n(H∩V) = 20
n(C∩V) = 15
n(C∩H∩V) = 10
Therefore, number of students that play at least one game
n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)
= 50 + 50 + 40 – 15 – 20 – 15 + 10
Thus, total number of students n(U)= 100.
Note;n(U)= the universal set
Let a = number of people who played cricket and volleyball only.
Let b = number of people who played cricket and hockey only.
Let c = number of people who played hockey and volleyball only.
Let d = number of people who played all three games.
This implies that,
d = n (CnHnV) = 10
n(CnV) = a + d = 15
n(CnH) = b + d = 15
n(HnV) = c + d = 20
Hence,
a = 15 – 10 = 5
b = 15 – 10 = 5
c = 20 – 10 = 10
Therefore;
For number of students that play cricket only;
n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30
For number of students that play hockey only
n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25
For number of students that play volleyball only
n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15
Answer:
Cricket only= 30
Volleyball only = 15
Hockey only = 25
Explanation of the answer:
Number of students that play cricket= n(C)
Number of students that play hockey= n(H)
Number of students that play volleyball = n(V)
From the question, we have that;
n(C) = 50, n(H) = 50, n(V) = 40
Number of students that play cricket and hockey= n(C∩H)
Number of students that play hockey and volleyball= n(H∩V)
Number of students that play cricket and volleyball = n(C∩V)
Number of students that play all three games= n(C∩H∩V)
From the question; we have,
n(C∩H) = 15
n(H∩V) = 20
n(C∩V) = 15
n(C∩H∩V) = 10
Therefore, number of students that play at least one game
n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)
= 50 + 50 + 40 – 15 – 20 – 15 + 10
Thus, total number of students n(U)= 100.
Note;n(U)= the universal set
Let a = number of people who played cricket and volleyball only.
Let b = number of people who played cricket and hockey only.
Let c = number of people who played hockey and volleyball only.
Let d = number of people who played all three games.
This implies that,
d = n (CnHnV) = 10
n(CnV) = a + d = 15
n(CnH) = b + d = 15
n(HnV) = c + d = 20
Hence,
a = 15 – 10 = 5
b = 15 – 10 = 5
c = 20 – 10 = 10
Therefore;
For number of students that play cricket only;
n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30
For number of students that play hockey only
n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25
For number of students that play volleyball only
n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15
▬▬▬▬▬▬▬▬▬▬▬▬
A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (ml) and standard deviation 7 ml. The fill
volumes are normally distributed. What is the probability that a bottle has a volume greater than 992 mL?
1.0000
0.8810
0.8413
0.9987
Answer:
0.8413
Step-by-step explanation:
Find the z score.
z = (x − μ) / σ
z = (992 − 999) / 7
z = -1
Use a chart or calculator to find the probability.
P(Z > -1)
= 1 − P(Z < -1)
= 1 − 0.1587
= 0.8413
The required probability that a bottle has a volume greater than 992 mL is 0.84134. Option C is correct
Given that,
A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (ml) and a standard deviation of 7 ml. The fill volumes are normally distributed. What is the probability that a bottle has a volume greater than 992 mL, is to be determined
Probability can be defined as the ratio of favorable outcomes to the total number of events.
We use Z-statistic to find out the probability,
z = (x − μ) / σ
x = raw score = 992 mL
μ = population mean = 999 mL
σ = standard deviation
z = [992 − 999]/7
z = -1
P-value from Z-Table:
P(x<992) = 0.15866
P(x>992) = 1 - P(x<992) = 0.84134
Thus, the required probability that a bottle has a volume greater than 992 mL is 0.84134
Learn more about probability here:
brainly.com/question/14290572
#SPJ2
Use the cubic model y = 6x3 - 5x2 + 4x – 3 to estimate the value of y when x = 2.
a 25
(b 33
c 48
d 79
Done
Try Again
-
Answer:
The answer is B.
Step-by-step explanation:
You have to substitute x = 2, into the equation of y :
[tex]y = 6 {x}^{3} - 5 {x}^{2} + 4x - 3[/tex]
[tex]let \: x = 2[/tex]
[tex]y = 6 {( 2)}^{3} - 5 {(2)}^{2} + 4(2) - 3[/tex]
[tex]y = 48 - 20 + 8 - 3[/tex]
[tex]y = 33[/tex]
[PLEASE HELPP] write an equation that represents the area Bruce covered (y) in terms of the number of tiles he used, x?
Answer:
y=(x/6)
Step-by-step explanation
divide every input by 6 to get the output