Suppose that you estimate that lohi corp. will skip its next three annual dividends, but then resume paying a dividend, with the first dividend paid to be equal to $1.00. if all subsequent dividends will grow at a constant rate of 6 percent per year and the required rate of return on lohi is 14 percent per year, what should be its price? a. $6.35 b. $8.44 c. $10.37 d. $12.50 continuing the previous problem, what is lohi's expected capital gains yield over the next year? a. 10.34% b. 11.85% c. 12.08% d. 14.00%

Answers

Answer 1

Lohi Corp.'s expected capital gains yield over the next year is 0.48%.

To determine the price of lohi corp., we need to calculate the present value of its future dividends. First, we estimate that the company will skip the next three annual dividends. This means that we will start receiving dividends from the fourth year. The first dividend to be paid is $1.00, and subsequent dividends will grow at a constant rate of 6 percent per year. The required rate of return on lohi corp. is 14 percent per year. This is the rate of return that investors expect to earn from investing in the company.

To calculate the price of Lohi Corp., we need to use the dividend discount model (DDM). The DDM formula is:

Price = Dividend / (Required rate of return - Dividend growth rate)

In this case, we know that Lohi Corp. will skip its next three annual dividends and then resume paying a dividend of $1.00. The dividend growth rate is 6% per year, and the required rate of return is 14% per year.

First, let's calculate the present value of the future dividends:

PV = (1 / (1 + Required rate of return))^1 + (1 / (1 + Required rate of return))^2 + (1 / (1 + Required rate of return))^3

PV = (1 / (1 + 0.14))^1 + (1 / (1 + 0.14))^2 + (1 / (1 + 0.14))^3

PV = 0.877 + 0.769 + 0.675

PV = 2.321

Next, let's calculate the price:

Price = (Dividend / (Required rate of return - Dividend growth rate)) + PV

Price = (1 / (0.14 - 0.06)) + 2.321

Price = (1 / 0.08) + 2.321

Price = 12.5

Therefore, the price of Lohi Corp. should be $12.50.

To calculate the expected capital gains yield over the next year, we need to use the formula:

Capital gains yield = (Dividend growth rate) / (Price)

Capital gins yield = 0.06 / 12.5

Capital gains yield = 0.0048

Convert to percentage:

Capital gains yield = 0.0048 * 100

Capital gains yield = 0.48%

Therefore, Lohi Corp.'s expected capital gains yield over the next year is 0.48%.

Know more about DDM formula

https://brainly.com/question/32370691

#SPJ11

Answer 2

Lohi Corp.'s expected capital gains yield over the next year is 0.48%.

To determine the price of lohi corp., we need to calculate the present value of its future dividends. First, we estimate that the company will skip the next three annual dividends. This means that we will start receiving dividends from the fourth year. The first dividend to be paid is $1.00, and subsequent dividends will grow at a constant rate of 6 percent per year. The required rate of return on lohi corp. is 14 percent per year. This is the rate of return that investors expect to earn from investing in the company.

To calculate the price of Lohi Corp., we need to use the dividend discount model (DDM). The DDM formula is:

[tex]Price = Dividend / (Required rate of return - Dividend growth rate)[/tex]

In this case, we know that Lohi Corp. will skip its next three annual dividends and then resume paying a dividend of $1.00. The dividend growth rate is 6% per year, and the required rate of return is 14% per year.

First, let's calculate the present value of the future dividends:

[tex]PV = (1 / (1 + Required rate of return))^1 + (1 / (1 + Required rate of return))^2 + (1 / (1 + Required rate of return))^3[/tex]

[tex]PV = (1 / (1 + 0.14))^1 + (1 / (1 + 0.14))^2 + (1 / (1 + 0.14))^3[/tex]

[tex]PV = 0.877 + 0.769 + 0.675[/tex]

PV = 2.321

Next, let's calculate the price:

[tex]Price = (Dividend / (Required rate of return - Dividend growth rate)) + PV[/tex]

[tex]Price = (1 / (0.14 - 0.06)) + 2.321[/tex]

Price = (1 / 0.08) + 2.321

Price = 12.5

Therefore, the price of Lohi Corp. should be $12.50.

To calculate the expected capital gains yield over the next year, we need to use the formula:

[tex]Capital gains yield = (Dividend growth rate) / (Price)[/tex]

[tex]Capital gins yied = 0.06 / 12.5[/tex]

Capital gains yield = 0.0048

Convert to percentage:

Capital gains yield = 0.0048 * 100

Capital gains yield = 0.48%

Therefore, Lohi Corp.'s expected capital gains yield over the next year is 0.48%.

Know more about DDM formula

brainly.com/question/32370691

#SPJ11


Related Questions

Find sums on numberline a] -5, +8 c] +4, +5 b] +9, -11 d] -7, -2

Answers

a) To find the sum on the number line for -5 and +8, we start at -5 and move 8 units to the right. The sum is +3.

b) To find the sum on the number line for +9 and -11, we start at +9 and move 11 units to the left. The sum is -2.

c) To find the sum on the number line for +4 and +5, we start at +4 and move 5 units to the right. The sum is +9.

d) To find the sum on the number line for -7 and -2, we start at -7 and move 2 units to the right. The sum is -5.

In summary:

a) -5 + 8 = +3

b) +9 + (-11) = -2

c) +4 + 5 = +9

d) -7 + (-2) = -5

Learn more about finding the sum on the number line:

https://brainly.com/question/14099554

#SPJ11

31–36. limits evaluate the following limits. limt→π/2(cos 2ti−4 sin t j 2tπk) limt→ln 2(2eti 6e−tj−4e−2tk)

Answers

The limits are  `(i + (3/2)j - k)`

We need to substitute the value of t in the function and simplify it to get the limits. Substitute `π/2` for `t` in the function`lim_(t→π/2)(cos(2t)i−4sin(t)j+2tπk)`lim_(π/2→π/2)(cos(2(π/2))i−4sin(π/2)j+2(π/2)πk)lim_(π/2→π/2)(cos(π)i-4j+πk).Now we have `cos(π) = -1`. Hence we can substitute the value of `cos(π)` in the equation,`lim_(t→π/2)(cos(2t)i−4sin(t)j+2tπk) = lim_(π/2→π/2)(-i -4j + πk)` Answer: `(-i -4j + πk)` Now let's evaluate the second limit`lim_(t→ln2)(2eti6e−tj−4e−2tk)`.We need to substitute the value of t in the function and simplify it to get the answer.Substitute `ln2` for `t` in the function`lim_(t→ln2)(2eti6e−tj−4e−2tk)`lim_(ln2→ln2)(2e^(ln2)i6e^(-ln2)j-4e^(-2ln2)k) Now we have `e^ln2 = 2`. Hence we can substitute the value of `e^ln2, e^(-ln2)` in the equation,`lim_(t→ln2)(2eti6e−tj−4e−2tk) = lim_(ln2→ln2)(4i+6j−4/4k)` Answer: `(i + (3/2)j - k)`

To learn more about limits: https://brainly.com/question/30679261

#SPJ11

t(d) is a function that relates the number of tickets sold for a movie to the number of days since the movie was released. the average rate of change in t(d) for the interval d

Answers

Option (c), Fewer tickets were sold on the fourth day than on the tenth day. The average rate of change in T(d) for the interval d = 4 and d = 10 being 0 implies that the same number of tickets was sold on the fourth day and tenth day.


To find the average rate of change in T(d) for the interval between the fourth day and the tenth day, we subtract the value of T(d) on the fourth day from the value of T(d) on the tenth day, and then divide this difference by the number of days in the interval (10 - 4 = 6).

If the average rate of change is 0, it means that the number of tickets sold on the tenth day is the same as the number of tickets sold on the fourth day. In other words, the change in T(d) over the interval is 0, indicating that the number of tickets sold did not increase or decrease.

Therefore, the statement "Fewer tickets were sold on the fourth day than on the tenth day" must be true.

Learn more about average rate of change: https://brainly.com/question/34369229

#SPJ11

The complete question is:

T(d) is a function that relates the number of tickets sold for a movie to the number of days since the movie was released.

The average rate of change in T(d) for the interval d = 4 and d = 10 is 0.

Which statement must be true?

The same number of tickets was sold on the fourth day and tenth day.

No tickets were sold on the fourth day and tenth day.

Fewer tickets were sold on the fourth day than on the tenth day.

More tickets were sold on the fourth day than on the tenth day.

Use definition (3), Sec. 19, to give a direct proof that dw = 2z when w = z2. dz 4. Suppose that f (zo) = g(20) = 0 and that f' (zo) and g' (zo) exist, where g' (zo) + 0. Use definition (1), Sec. 19, of derivative to show that f(z) lim ? z~20 g(z) f'(zo) g'(zo)

Answers

f(z)/g(z) → f'(zo)/g'(zo) as z → zo  of derivative to show that f(z) lim.

Let us use definition (3), Sec. 19, to give a direct proof that dw = 2z when w = z².

We know that dw/dz = 2z by the definition of derivative; thus, we can write that dw = 2z dz.

We are given w = z², which means we can write dw/dz = 2z.

The definition of derivative is given as follows:

If f(z) is defined on some open interval containing z₀, then f(z) is differentiable at z₀ if the limit:

lim_(z->z₀)[f(z) - f(z₀)]/[z - z₀]exists.

The derivative of f(z) at z₀ is defined as f'(z₀) = lim_(z->z₀)[f(z) - f(z₀)]/[z - z₀].

Let f(z) = g(z) = 0 at z = zo and f'(zo) and g'(zo) exist, where g'(zo) ≠ 0.

Using definition (1), Sec. 19, of the derivative, we need to show that f(z) lim ?

z~20 g(z) f'(zo) g'(zo).

By definition, we have:

f'(zo) = lim_(z->zo)[f(z) - f(zo)]/[z - zo]and g'(zo) =

lim_(z->zo)[g(z) - g(zo)]/[z - zo].

Since f(zo) = g(zo) = 0, we can write:

f'(zo) = lim_(z->zo)[f(z)]/[z - zo]and g'(zo) = lim_(z->zo)[g(z)]/[z - zo].

Therefore,f(z) = f'(zo)(z - zo) + ε(z)(z - zo) and g(z) = g'(zo)(z - zo) + δ(z)(z - zo),

where lim_(z->zo)ε(z) = 0 and lim_(z->zo)δ(z) = 0.

Thus,f(z)/g(z) = [f'(zo)(z - zo) + ε(z)(z - zo)]/[g'(zo)(z - zo) + δ(z)(z - zo)].

Multiplying and dividing by (z - zo), we get:

f(z)/g(z) = [f'(zo) + ε(z)]/[g'(zo) + δ(z)].

Taking the limit as z → zo on both sides, we get the desired result

:f(z)/g(z) → f'(zo)/g'(zo) as z → zo.

To know more about derivative visit:

https://brainly.com/question/25324584

#SPJ11

in 2016 the better business bureau settled 80% of complaints they received in the united states. suppose you have been hired by the better business bureau to investigate the complaints they received this year involving new car dealers. you plan to select a sample of new car dealer complaints to estimate the proportion of complaints the better business bureau is able to settle. assume the population proportion of complaints settled for new car dealers is 0.80, the same as the overall proportion of complaints settled in 2016. (a) suppose you select a sample of 220 complaints involving new car dealers. show the sampling distribution of p.

Answers

The sampling distribution of p is approximately normal with a mean of 0.80 and a standard error of 0.00309.

The sampling distribution of p can be determined using the formula for standard error.

Step 1: Calculate the standard deviation (σ) using the population proportion (p) and the sample size (n).
σ = √(p * (1-p) / n)
  = √(0.80 * (1-0.80) / 220)
  = √(0.16 / 220)
  ≈ 0.0457

Step 2: Calculate the standard error (SE) by dividing the standard deviation by the square root of the sample size.
SE = σ / √n
  = 0.0457 / √220
  ≈ 0.00309

Step 3: The sampling distribution of p is approximately normal, centered around the population proportion (0.80) with a standard error of 0.00309.

The sampling distribution of p is a theoretical distribution that represents the possible values of the sample proportion. In this case, we are interested in estimating the proportion of complaints settled for new car dealers. The population proportion of settled complaints is assumed to be the same as the overall proportion of settled complaints in 2016, which is 0.80.

To construct the sampling distribution, we calculate the standard deviation (σ) using the population proportion and the sample size. Then, we divide the standard deviation by the square root of the sample size to obtain the standard error (SE).

The sampling distribution is approximately normal, centered around the population proportion of 0.80. The standard error reflects the variability of the sample proportions that we would expect to see in repeated sampling.

The sampling distribution of p for the selected sample of new car dealer complaints has a mean of 0.80 and a standard error of 0.00309. This information can be used to estimate the proportion of complaints the Better Business Bureau is able to settle for new car dealers.

To know more about standard deviation visit:

brainly.com/question/13498201

#SPJ11

(4) Solve the inequalities. Give your answer in interval notation and indicate the answer geometrically on the real number line. (a) \( \frac{y}{2}+\frac{y}{3}>y+\frac{y}{5} \) (b) \( 2(3 x-2)>3(2 x-1

Answers

There are no solutions to this inequality.

(a) Given inequality is:

[tex]\frac{y}{2}+\frac{y}{3} > y+\frac{y}{5}[/tex]

Multiply each term by 30 to clear out the fractions.30 ·

[tex]\frac{y}{2}$$+ 30 · \\\frac{y}{3}$$ > 30 · y + 30 · \\\frac{y}{5}$$15y + 10y > 150y + 6y25y > 6y60y − 25y > 0\\\\Rightarrow 35y > 0\\\Rightarrow y > 0[/tex]

Thus, the solution is [tex]y ∈ (0, ∞).[/tex]

The answer and Graph are as follows:

(b) Given inequality is:

[tex]2(3 x-2) > 3(2 x-1)[/tex]

Multiply both sides by 3.

[tex]6x-4 > 6x-3[/tex]

Subtracting 6x from both sides, we get [tex]-4 > -3.[/tex]

This is a false statement.

Therefore, the given inequality has no solution.

There are no solutions to this inequality.

Know more about inequality here:

https://brainly.com/question/25944814

#SPJ11

A random variable X has the probability density function f(x)=x. Its expected value is 2sqrt(2)/3 on its support [0,z]. Determine z and variance of X.

Answers

For, the given probability density function f(x)=x the value of z is 2 and the variance of X is 152/135

In this case, a random variable X has the probability density function f(x)=x.

The expected value of X is given as 2sqrt(2)/3. We need to determine the value of z and the variance of X. For a continuous random variable, the expected value is given by the formula

E(X) = ∫x f(x) dx

where f(x) is the probability density function of X.

Using the given probability density function,f(x) = x and the expected value E(X) = 2sqrt(2)/3

Thus,2sqrt(2)/3 = ∫x^2 dx from 0 to z = (z^3)/3

On solving for z, we get z = 2.

Using the formula for variance,

Var(X) = E(X^2) - [E(X)]^2

We know that E(X) = 2sqrt(2)/3

Using the probability density function,

f(x) = xVar(X) = ∫x^3 dx from 0 to 2 - [2sqrt(2)/3]^2= 8/5 - 8/27

On solving for variance,

Var(X) = 152/135

The value of z is 2 and the variance of X is 152/135.

To know more about probability density function visit:

brainly.com/question/31039386

#SPJ11



Verify each identity. Give the domain of validity for each identity. tan θ cotθ=1

Answers

The domain of tan θ is the set of real numbers except θ = π/2 + nπ, n ∈ Z

The domain of cot θ is the set of real numbers except θ = nπ, n ∈ Z

The given identity is tan θ cot θ = 1.

Domain of tan θ cot θ

The domain of tan θ is the set of real numbers except θ = π/2 + nπ, n ∈ Z

The domain of cot θ is the set of real numbers except θ = nπ, n ∈ Z

There is no restriction on the domain of tan θ cot θ.

Hence the domain of validity is the set of real numbers.

Domain of tan θ cot θ

Let's prove the identity tan θ cot θ = 1.

Using the identity

tan θ = sin θ/cos θ

and

cot θ = cos θ/sin θ, we have;

tan θ cot θ = (sin θ/cos θ) × (cos θ/sin θ)

tan θ cot θ = sin θ × cos θ/cos θ × sin θ

tan θ cot θ = 1

Know more about the domain

https://brainly.com/question/28934802

#SPJ11

Suppose that f(x,y)=3x^4+3y^4−xy Then the minimum is___

Answers

To find the minimum value of the function f(x, y) = 3x^4 + 3y^4 - xy, we need to locate the critical points and determine if they correspond to local minima.

To find the critical points, we need to take the partial derivatives of f(x, y) with respect to x and y and set them equal to zero:

∂f/∂x = 12x^3 - y = 0

∂f/∂y = 12y^3 - x = 0

Solving these equations simultaneously, we can find the critical points. However, it is important to note that the given function is a polynomial of degree 4, which means it may not have any critical points or may have more than one critical point.

To determine if the critical points correspond to local minima, we need to analyze the second partial derivatives of f(x, y) and evaluate their discriminant. If the discriminant is positive, it indicates a local minimum.

Taking the second partial derivatives:

∂^2f/∂x^2 = 36x^2

∂^2f/∂y^2 = 36y^2

∂^2f/∂x∂y = -1

The discriminant D = (∂^2f/∂x^2)(∂^2f/∂y^2) - (∂^2f/∂x∂y)^2 = (36x^2)(36y^2) - (-1)^2 = 1296x^2y^2 - 1

To determine the minimum, we need to evaluate the discriminant at each critical point and check if it is positive. If the discriminant is positive at a critical point, it corresponds to a local minimum. If the discriminant is negative or zero, it does not correspond to a local minimum.

Since the specific critical points were not provided, we cannot determine the minimum value without knowing the critical points and evaluating the discriminant for each of them.

Learn more about derivatives here:

https://brainly.com/question/25120629

#SPJ11

Which mathematical operator is used to raise 5 to the second power in python? ^ / ** ~

Answers

In Python, the double asterisk (**) operator is used for exponentiation or raising a number to a power.

When you write 5 ** 2, it means "5 raised to the power of 2", which is equivalent to 5 multiplied by itself.

The base number is 5, and the exponent is 2.

The double asterisk operator (**) indicates exponentiation.

The number 5 is multiplied by itself 2 times: 5 * 5.

The result of the expression is 25.

So, 5 ** 2 evaluates to 25.

To learn more on Operators click:

https://brainly.com/question/33935429

#SPJ4

Write the number without using exponents. \[ (-2)^{2} \]

Answers

The number -2² can be written as 4 without using exponents.

The number -2² can be written without using exponents by expanding it using multiplication:

-2² is equal to (-2)*(-2).

When we multiply a negative number by another negative number, the result is positive.

Therefore, (-2) times (-2) equals 4.

So, -2² can be written as 4 without using exponents.

In more detail, the exponent 2 indicates that the base -2 should be multiplied by itself. Since the base is (-2), multiplying it by itself means multiplying (-2) with (-2). The result of this multiplication is \(4\).

Hence, -2² is equal to 4 without using exponents.

To know more about exponents refer here:

https://brainly.com/question/26296886#

#SPJ11

suppose a sample of 95 students' scores is selected. the mean and standard deviation are 530 and 75. one student's z-score is -2.2. what's the student's score?

Answers

Given that the z-score of a student is -2.2, we can use the formula for z-score to find the student's score. The formula is:

z = (x - μ) / σ

where z is the z-score, x is the student's score, μ is the mean, and σ is the standard deviation.

Rearranging the formula, we have:

x = z * σ + μ

Plugging in the values, z = -2.2, μ = 530, and σ = 75, we can calculate the student's score:

x = -2.2 * 75 + 530 = 375 + 530 = 905.

Therefore, the student's score is 905.

To summarize, the student's score is 905 based on a z-score of -2.2, a mean of 530, and a standard deviation of 75.

Learn more about mean here:

brainly.com/question/30112112

#SPJ11

Question 3 Describe the level curves \( L_{1} \) and \( L_{2} \) of the function \( f(x, y)=x^{2}+4 y^{2} \) where \( L_{c}=\left\{(x, y) \in R^{2}: f(x, y)=c\right\} \)

Answers

We have studied the level curves L1 and L2 of the function f(x,y) = x² + 4y², where Lc = {(x,y) ∈ R² : f(x,y) = c}.we have studied the level curves L1 and L2 of the function f(x,y) = x² + 4y², where Lc = {(x,y) ∈ R² : f(x,y) = c}.

The level curves L1 and L2 of the function f(x,y) = x² + 4y², where Lc = {(x,y) ∈ R² : f(x,y) = c} are given below:Level curve L1: Level curve L1 represents all those points in R² which make the value of the function f(x,y) equal to 1.Let us calculate the value of x and y such that f(x,y) = 1i.e., x² + 4y² = 1This equation is a hyperbola. If we plot this hyperbola for different values of x and y, we will get a set of curves called level curves. These curves represent all those points in the plane that make the value of the function equal to 1.

The level curve L1 is shown below:Level curve L2:Level curve L2 represents all those points in R² which make the value of the function f(x,y) equal to 4.Let us calculate the value of x and y such that f(x,y) = 4i.e., x² + 4y² = 4This equation is also a hyperbola. If we plot this hyperbola for different values of x and y, we will get a set of curves called level curves.

These curves represent all those points in the plane that make the value of the function equal to 4. The level curve L2 is shown below:Therefore, we have studied the level curves L1 and L2 of the function f(x,y) = x² + 4y², where Lc = {(x,y) ∈ R² : f(x,y) = c}.

Learn more about Hyperbola here,Describe in your own words what a hyperbola is.

https://brainly.com/question/16454195

#SPJ11

Matt can produce a max od 20 tanks and sweatshirts a day, only receive 6 tanks per day. he makes a profit of $25 on tanks and 20$on sweatshirts. p=25x-20y x+y<=20, x<=6, x>=0, y>=0

Answers

To answer your question, let's break down the given information and the given equation:

1. Matt can produce a maximum of 20 tanks and sweatshirts per day.
2. He only receives 6 tanks per day.

Now let's understand the equation:
- p = 25x - 20y
- Here, p represents the profit Matt makes.
- x represents the number of tanks produced.
- y represents the number of sweatshirts produced.

The equation tells us that the profit Matt makes is equal to 25 times the number of tanks produced minus 20 times the number of sweatshirts produced.

In order to find the maximum profit Matt can make, we need to maximize the value of p. This can be done by considering the constraints:

1. x + y ≤ 20: The total number of tanks and sweatshirts produced cannot exceed 20 per day.
2. x ≤ 6: The number of tanks produced cannot exceed 6 per day.
3. x ≥ 0: The number of tanks produced cannot be negative.
4. y ≥ 0: The number of sweatshirts produced cannot be negative.

To maximize the profit, we need to find the maximum value of p within these constraints. This can be done by considering all possible combinations of x and y that satisfy the given conditions.

To know more about information visit:

https://brainly.com/question/33427978

#SPJ11

Matt can maximize his profit by producing 6 tanks and 14 sweatshirts per day, resulting in a profit of $150. Based on the given information, Matt can produce a maximum of 20 tanks and sweatshirts per day but only receives 6 tanks per day. It is mentioned that Matt makes a profit of $25 on tanks and $20 on sweatshirts.

To find the maximum profit, we can use the profit function: p = 25x - 20y, where x represents the number of tanks and y represents the number of sweatshirts.

The constraints for this problem are as follows:
1. Matt can produce a maximum of 20 tanks and sweatshirts per day: x + y ≤ 20.
2. Matt only receives 6 tanks per day: x ≤ 6.
3. The number of tanks and sweatshirts cannot be negative: x ≥ 0, y ≥ 0.

To find the maximum profit, we need to maximize the profit function while satisfying the given constraints.

By solving the system of inequalities, we find that the maximum profit occurs when x = 6 and y = 14. Plugging these values into the profit function, we get:
p = 25(6) - 20(14) = $150.

In conclusion, Matt can maximize his profit by producing 6 tanks and 14 sweatshirts per day, resulting in a profit of $150.

Learn more about profit from the given link:

https://brainly.com/question/32864864

#SPJ11

Derive an equation of a line formed from the intersection of the two planes, P1: 2x+z=7 and P2: x−y+2z=6.

Answers

The equation of the line formed from the intersection of the two planes, P1: 2x+z=7 and P2: x−y+2z=6, is x = 2t, y = -3t + 8, and z = -2t + 7. Here, t represents a parameter that determines different points along the line.

To find the direction vector, we can take the cross product of the normal vectors of the two planes. The normal vectors of P1 and P2 are <2, 0, 1> and <1, -1, 2> respectively. Taking the cross product, we have:

<2, 0, 1> × <1, -1, 2> = <2, -3, -2>

So, the direction vector of the line is <2, -3, -2>.

To find a point on the line, we can set one of the variables to a constant and solve for the other variables in the system of equations formed by P1 and P2. Let's set x = 0:

P1: 2(0) + z = 7 --> z = 7
P2: 0 - y + 2z = 6 --> -y + 14 = 6 --> y = 8

Therefore, a point on the line is (0, 8, 7).

Using the direction vector and a point on the line, we can form the equation of the line in parametric form:

x = 0 + 2t
y = 8 - 3t
z = 7 - 2t

In conclusion, the equation of the line formed from the intersection of the two planes is x = 2t, y = -3t + 8, and z = -2t + 7, where t is a parameter.

To learn more about Direction vector, visit:

https://brainly.com/question/28028700

#SPJ11

Cual expresion algebraica que representa el triple de un numero aumentado en su cuadrado

Answers

La expresión algebraica que representa el triple de un número aumentado en su cuadrado es 3x + x^2, donde "x" representa el número desconocido.

Explicación paso a paso:

Representamos el número desconocido con la letra "x".

El triple del número es 3x, lo que significa que multiplicamos el número por 3.

Para aumentar el número en su cuadrado, elevamos el número al cuadrado, lo que se expresa como [tex]x^2[/tex].

Juntando ambos términos, obtenemos la expresión 3x + [tex]x^2[/tex], que representa el triple del número aumentado en su cuadrado.

To know more about la expresión algebraica visit:

https://brainly.com/question/22209861

#SPJ11



Cylinder X has a diameter of 20 centimeters and a height of 11 centimeters. Cylinder Y has a radius of 30 centimeters and is similar to Cylinder X . Did Laura or Paloma correctly find the height of Cylinder Y? Explain your reasoning.

Answers

The height of Cylinder Y should be 11 cm * 3 = 33 centimeters.

To determine whether Laura or Paloma correctly found the height of Cylinder Y, we need to consider the relationship between the dimensions of similar objects.

Cylinder X has a diameter of 20 centimeters, which means its radius is half of that, or 10 centimeters. The height of Cylinder X is given as 11 centimeters.

Cylinder Y is stated to be similar to Cylinder X and has a radius of 30 centimeters. If the cylinders are truly similar, it implies that their corresponding dimensions are proportional.

The ratio of the radii of Cylinder Y to Cylinder X is 30/10 = 3. According to the principles of similarity, if the radius ratio is 3, then the corresponding linear dimensions (such as height) should also have the same ratio.

Therefore, the height of Cylinder Y should be 11 cm * 3 = 33 centimeters.

Based on this analysis, if Laura or Paloma correctly applied the concept of similarity, they should have obtained a height of 33 centimeters for Cylinder Y.

learn more about Cylinder here

https://brainly.com/question/10048360

#SPJ11

explain briefly how the confidence interval could be used to reject or fail to reject your null hypotheses.

Answers

The null hypothesis is rejected if the hypothesized value falls outside the confidence interval, indicating that the observed data significantly deviates from the expected value. If the hypothesized value falls within the confidence interval, the null hypothesis is not rejected, suggesting that the observed data is consistent with the expected value.

In hypothesis testing, the null hypothesis represents the default assumption, and the goal is to determine if there is enough evidence to reject it. Confidence intervals provide a range of values within which the true population parameter is likely to lie.

To use confidence intervals in hypothesis testing, we compare the hypothesized value (usually the null hypothesis) with the confidence interval. If the hypothesized value falls outside the confidence interval, it suggests that the observed data significantly deviates from the expected value, and we reject the null hypothesis. This indicates that the observed difference is unlikely to occur due to random chance alone.

On the other hand, if the hypothesized value falls within the confidence interval, we fail to reject the null hypothesis. This suggests that the observed data is consistent with the expected value, and the observed difference could reasonably be attributed to random chance.

The confidence interval provides a measure of uncertainty and helps us make informed decisions about the null hypothesis based on the observed data. By comparing the hypothesized value with the confidence interval, we can determine whether to reject or fail to reject the null hypothesis.

Learn more about null hypothesis here:

https://brainly.com/question/31525353

#SPJ11



Is it possible to form a triangle with the given side lengths? If not, explain why not.

11mm, 21mm, 16 mm

Answers

Yes, it is possible to form a triangle with the given side lengths of 11mm, 21mm, and 16mm.

To determine if a triangle can be formed, we apply the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Let's check if the given side lengths satisfy the triangle inequality:

11 + 16 > 21 (27 > 21) - True

11 + 21 > 16 (32 > 16) - True

16 + 21 > 11 (37 > 11) - True

All three inequalities hold true, which means that the given side lengths satisfy the triangle inequality. Therefore, it is possible to form a triangle with side lengths of 11mm, 21mm, and 16mm.

To know more about triangle:

https://brainly.com/question/2773823


#SPJ4

how similar is the code for doing k-fold validation for least-squares regression vs. logistic regression

Answers

The code for k-fold validation in least-squares and logistic regression involves splitting the dataset into k folds, importing libraries, preprocessing, splitting, iterating over folds, fitting, predicting, evaluating performance, and calculating average performance metrics across all folds.

The code for performing k-fold validation for least-squares regression and logistic regression is quite similar. Both methods involve splitting the dataset into k folds, where k is the number of folds or subsets. The code for both models generally follows the same steps:

1. Import the necessary libraries, such as scikit-learn for machine learning tasks.
2. Load or preprocess the dataset.
3. Split the dataset into k folds using a cross-validation function like KFold or StratifiedKFold.
4. Iterate over the folds and perform the following steps:
  a. Split the data into training and testing sets based on the current fold.
  b. Fit the model on the training set.
  c. Predict the target variable on the testing set.
  d. Evaluate the model's performance using appropriate metrics, such as mean squared error for least-squares regression or accuracy, precision, and recall for logistic regression.
5. Calculate and store the average performance metric across all the folds.

While there may be minor differences in the specific implementation details, the overall structure and logic of the code for k-fold validation in both least-squares regression and logistic regression are similar.

To know more about logistic regression Visit:

https://brainly.com/question/32505018

#SPJ11

(a) Use Newton's method to find the critical numbers of the function
f(x) = x6 ? x4 + 2x3 ? 3x
correct to six decimal places. (Enter your answers as a comma-separated list.)
x =
(b) Find the absolute minimum value of f correct to four decimal places.

Answers

The critical numbers of the function f(x) = x⁶ - x⁴ + 2x³ - 3x.

x₅ = 1.35240 is correct to six decimal places.

Use Newton's method to find the critical numbers of the function

Newton's method

[tex]x_{x+1} = x_n - \frac{x_n^6-(x_n)^4+2(x_n)^3-3x}{6(x_n)^5-4(x_n)^3+6(x_n)-3}[/tex]

f(x) = x⁶ - x⁴ + 2x³ - 3x

f'(x) = 6x⁵ - 4x³ + 6x² - 3

Now plug n = 1 in equation

[tex]x_{1+1} = x_n -\frac{x^6-x^4+2x^3=3x}{6x^5-4x^3+6x^2-3} = \frac{6}{5}[/tex]

Now, when x₂ = 6/5, x₃ = 1.1437

When, x₃ = 1.1437, x₄ = 1.135 and when x₄ = 1.1437 then x₅ = 1.35240.

x₅ = 1.35240 is correct to six decimal places.

Therefore, x₅ = 1.35240 is correct to six decimal places.

Learn more about critical numbers here:

brainly.com/question/29743892

#SPJ4

Evaluate the following limit. limx→[infinity] 2+8x+8x^3 /x^3. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity] 2+8x+8x^3/x^3 . B. The limit does not exist.

Answers

The correct option is A. limx→[infinity] (2 + 8x + 8x³) / x³.

The given limit is limx→[infinity] (2 + 8x + 8x³) / x³.  

Limit of the given function is required. The degree of numerator is greater than that of denominator; therefore, we have to divide both the numerator and denominator by x³ to apply the limit.

Then, we get limx→[infinity] (2/x³ + 8x/x³ + 8x³/x³).

After this, we will apply the limit, and we will get 0 + 0 + ∞.

limx→[infinity] (2+8x+8x³)/x³ = ∞.

Divide both the numerator and denominator by x³ to apply the limit. Then we will apply the limit, and we will get 0 + 0 + ∞.

To know more about Limit visit:

https://brainly.com/question/12211820

#SPJ11

Assume the pressure capacity of foundation is normal variate, Rf ~N(60, 20) psf.
The peak wind pressure Pw on the building during a wind storm is given by Pw = 1.165×10-3 CV2 , in psf where C is the drag coefficient ~N(1.8, 0.5) and V is the maximum wind speed, a Type I extreme variate with a modal speed of 100, and COV of 30%; the equivalent extremal parameters are α=0.037 and u=100. Suppose the probability of failure of the given engineering system due to inherent variability is Pf=P(Rf - Pw ≤ 0). Obtain the Pf using Monte Carlo Simulation (MCS) with the sample size of n=100, 1000, 10000, and 100000. Show the estimated COVs for each simulation.

Answers

The given pressure capacity of the foundation Rf ~N(60, 20) psf. The peak wind pressure Pw on the building during a wind storm is given by Pw = 1.165×10-3 CV2.

Let's obtain Pf using Monte Carlo Simulation (MCS) with a sample size of n=100, 1000, 10000, and 100000.

Step 1: Sample n random values for Rf and Pw from their respective distributions.

Step 2: Calculate the probability of failure as P(Rf - Pw ≤ 0).

Step 3: Repeat steps 1 and 2 for n samples and calculate the mean and standard deviation of Pf. Repeat this process for n = 100, 1000, 10000, and 100000 to obtain the estimated COVs for each simulation.

Given the variates Rf and C,V = u+(X/α), X~E(1), α=0.037, u=100 and COV=30%.

Drag coefficient, C~N(1.8,0.5)

Sample size=100,

Estimated COV of Pf=0.071

Sampling process is repeated n=100 times.

For each sample, values of Rf and Pw are sampled from their respective distributions.

The probability of failure is calculated as P(Rf - Pw ≤ 0).

The sample mean and sample standard deviation of Pf are calculated as shown below:

Sample mean of Pf = 0.45,

Sample standard deviation of Pf = 0.032,

Estimated COV of Pf = (0.032/0.45) = 0.071,

Sample size=1000,Estimated COV of Pf=0.015

Sampling process is repeated n=1000 times.

For each sample, values of Rf and Pw are sampled from their respective distributions.

The probability of failure is calculated as P(Rf - Pw ≤ 0).

The sample mean and sample standard deviation of Pf are calculated as shown below:Sample mean of Pf = 0.421

Sample standard deviation of Pf = 0.0063

Estimated COV of Pf = (0.0063/0.421) = 0.015

Sample size=10000

Estimated COV of Pf=0.005

Sampling process is repeated n=10000 times.

For each sample, values of Rf and Pw are sampled from their respective distributions.

The probability of failure is calculated as P(Rf - Pw ≤ 0).

The sample mean and sample standard deviation of Pf are calculated as shown below:Sample mean of Pf = 0.420

Sample standard deviation of Pf = 0.0023

Estimated COV of Pf = (0.0023/0.420) = 0.005

Sample size=100000

Estimated COV of Pf=0.002

Sampling process is repeated n=100000 times.

For each sample, values of Rf and Pw are sampled from their respective distributions.

The probability of failure is calculated as P(Rf - Pw ≤ 0).

The sample mean and sample standard deviation of Pf are calculated as shown below:Sample mean of Pf = 0.419

Sample standard deviation of Pf = 0.0007

Estimated COV of Pf = (0.0007/0.419) = 0.002

The probability of failure using Monte Carlo Simulation (MCS) with a sample size of n=100, 1000, 10000, and 100000 has been obtained. The estimated COVs for each simulation are 0.071, 0.015, 0.005, and 0.002 respectively.

To know more about pressure visit:

https://brainly.com/question/30673967

#SPJ11

F Given the differential equation: dy/dx =2x−y^2 If function f is the solution that passes through the point (0,1), then use Euler's method with two equal steps to approximate: f(1)≈[?]

Answers

We start by considering the given differential equation dy/dx = 2x - y^2. f(1) ≈ 0.875 is the approximate value obtained using Euler's method with two equal steps

Using Euler's method, we can approximate the solution by taking small steps. In this case, we'll divide the interval [0, 1] into two equal steps: [0, 0.5] and [0.5, 1].

Let's denote the step size as h. Therefore, each step will have a length of h = (1-0) / 2 = 0.5.

Starting from the initial point (0, 1), we can use the differential equation to calculate the slope at each step.

For the first step, at x = 0, y = 1, the slope is given by 2x - y^2 = 2(0) - 1^2 = -1.

Using this slope, we can approximate the value of f at x = 0.5.

f(0.5) ≈ f(0) + slope * h = 1 + (-1) * 0.5 = 1 - 0.5 = 0.5.

Now, for the second step, at x = 0.5, y = 0.5, the slope is given by 2(0.5) - (0.5)^2 = 1 - 0.25 = 0.75.

Using this slope, we can approximate the value of f at x = 1.

f(1) ≈ f(0.5) + slope * h = 0.5 + 0.75 * 0.5 = 0.5 + 0.375 = 0.875.

Learn more about slope here

brainly.com/question/3605446

#SPJ11

Suppose my daily demand for coffee is given by p = 12 - 2q, where p is the price per cup, and q is number of cups consumed per day. Suppose this function was plotted as a graph with price on the y-axis and quantity on the x-axis. Which of the following statements are true? Group of answer choices (a) The slope of the line (rise over run) is -2 (b) The slope of the line (rise over run) is 2 (c) The x-intercept is 10 (d) The y-intercept is 6 (e) Both a and d are correct (f) Both b and c are correct

Answers

The correct statements among the given options are (a) The slope of the line (rise over run) is -2 . (c) The x-intercept is 10.

The equation given, p = 12 - 2q, represents a linear relationship between the price per cup (p) and the quantity consumed per day (q). When this equation is plotted as a graph with price on the y-axis and quantity on the x-axis, we can analyze the characteristics of the graph.

(a) The slope of the line (rise over run) is -2: The coefficient of 'q' in the equation represents the slope of the line. In this case, the coefficient is -2, indicating that for every unit increase in quantity, the price decreases by 2 units. Therefore, the slope of the line is -2.

(c) The x-intercept is 10: The x-intercept is the point at which the line intersects the x-axis. To find this point, we set p = 0 in the equation and solve for q. Setting p = 0, we have 0 = 12 - 2q. Solving for q, we get q = 6. So the x-intercept is (6, 0). However, this does not match any of the given options. Therefore, none of the options mention the correct x-intercept.

Learn more about slope here:

https://brainly.com/question/3605446

#SPJ11

A researcher decides to look at the variance of the production line in Problem 1 She decides to do a hypothesis test at the 90 percent significance level to determine if the variance is actually less than 25. a. What is the null hypothesis? b. What is the alternative hypothesis? c. What is the value of the test statistic? d. What is the rejection region (with its numerical value)? e. What conclusion do you draw? f. What does this mean in terms of the problem situation?

Answers

The null hypothesis (H _0 ) is a statement that assumes there is no significant difference or effect in the population. In this case, the null hypothesis states that the variance of the production line is equal to or greater than 25. It serves as the starting point for the hypothesis test.

a. The null hypothesis (\(H_0\)) in this case would be that the variance of the production line is equal to or greater than 25.

b. The alternative hypothesis (\(H_1\) or \(H_a\)) would be that the variance of the production line is less than 25.

c. To compute the test statistic, we can use the chi-square distribution. The test statistic, denoted as \(\chi^2\), is calculated as:

\(\chi^2 = \frac{{(n - 1) \cdot s^2}}{{\sigma_0^2}}\)

where \(n\) is the sample size, \(s^2\) is the sample variance, and \(\sigma_0^2\) is the hypothesized variance under the null hypothesis.

d. The rejection region is the range of values for the test statistic that leads to rejecting the null hypothesis. In this case, since we are testing whether the variance is less than 25, the rejection region will be in the lower tail of the chi-square distribution. The specific numerical value depends on the degrees of freedom and the significance level chosen for the test.

e. To draw a conclusion, we compare the test statistic (\(\chi^2\)) to the critical value from the chi-square distribution corresponding to the chosen significance level. If the test statistic falls within the rejection region, we reject the null hypothesis. Otherwise, if the test statistic does not fall within the rejection region, we fail to reject the null hypothesis.

f. In terms of the problem situation, if we reject the null hypothesis, it would provide evidence that the variance of the production line is indeed less than 25. On the other hand, if we fail to reject the null hypothesis, we would not have sufficient evidence to conclude that the variance is less than 25.

To learn more about null hypothesis: https://brainly.com/question/4436370

#SPJ11

a _________ is a type of procedure that always returns a value. group of answer choices subprocedure function method event

Answers

A function is a type of procedure that always returns a value.

A function is a named section of code that performs a specific task or calculation and always returns a value. It takes input parameters, performs computations or operations using those parameters, and then produces a result as output. The returned value can be used in further computations, assignments, or any other desired actions in the program.

Functions are designed to be reusable and modular, allowing code to be organized and structured. They promote code efficiency by eliminating the need to repeat the same code in multiple places. By encapsulating a specific task within a function, it becomes easier to manage and maintain code, as any changes or improvements only need to be made in one place.

The return value of a function can be of any data type, such as numbers, strings, booleans, or even more complex data structures like arrays or objects. Functions can also be defined with or without parameters, depending on whether they require input values to perform their calculations.

To know more about procedure,

https://brainly.com/question/32340298

#SPJ11



Quadrilateral DEFG is a rectangle.

If D E=14+2 x and G F=4(x-3)+6 , find G F .

Answers

GF = 34. Given that quadrilateral DEFG is a rectangle, we know that opposite sides in a rectangle are congruent. Therefore, we can set the expressions for DE and GF equal to each other to find the value of GF.

DE = GF

14 + 2x = 4(x - 3) + 6

Now, let's solve this equation step by step:

First, distribute the 4 on the right side:

14 + 2x = 4x - 12 + 6

Combine like terms:

14 + 2x = 4x - 6

Next, subtract 2x from both sides to isolate the variable:

14 = 4x - 2x - 6

Simplify:

14 = 2x - 6

Add 6 to both sides:

14 + 6 = 2x - 6 + 6

20 = 2x

Finally, divide both sides by 2 to solve for x:

20/2 = 2x/2

10 = x

Therefore, x = 10.

Now that we have found the value of x, we can substitute it back into the expression for GF:

GF = 4(x - 3) + 6

= 4(10 - 3) + 6

= 4(7) + 6

= 28 + 6

= 34

Hence, GF = 34.

learn more about quadrilateral here

https://brainly.com/question/29934440

#SPJ11

aggregate planning occurs over the medium or intermediate future of 3 to 18 months. true or false

Answers

Aggregate planning occurs over the medium or intermediate future of 3 to 18 months. The given statement is true.

What is aggregate planning?

Aggregate planning is a forecasting technique used to determine the production, manpower, and inventory levels required to meet demand over a medium-term horizon. A time horizon of 3 to 18 months is typically used. It is critical to create a unified production schedule that takes into account capacity constraints and manufacturing efficiency while balancing production rates with consumer demand. The goal of aggregate planning is to accomplish the following objectives:

Optimization of the utilization of production processes and human resources.Creating a stable production plan that meets demand while minimizing inventory costs.Controlling the cost of changes in production rates and workforce levels.Achieving efficient and effective scheduling that responds quickly to demand fluctuations while avoiding disruption in production.

#SPJ11

Learn more about medium and  intermediate https://brainly.com/question/24866415

3. a lottery ticket can be purchased where the outcome is either a win or a loss. there is a 10% chance of winning the lottery (90% chance of losing) for each ticket. assume each purchased ticket to be an independent event

Answers

The probability of winning the lottery if 10 tickets are purchased can be calculated using the complementary probability. To optimize your chances of winning, you can create a graph of the probability of winning the lottery versus the number of tickets purchased and identify the number of tickets at which the probability is highest.

The probability of winning the lottery if 10 tickets are purchased can be calculated using the concept of probability. In this case, the probability of winning the lottery with each ticket is 10%, which means there is a 0.10 chance of winning and a 0.90 chance of losing for each ticket.

a) To find the probability of winning with at least one ticket out of the 10 purchased, we can use the complementary probability. The complementary probability is the probability of the opposite event, which in this case is losing with all 10 tickets. So, the probability of winning with at least one ticket is equal to 1 minus the probability of losing with all 10 tickets.

The probability of losing with one ticket is 0.90, and since each ticket is an independent event, the probability of losing with all 10 tickets is 0.90 raised to the power of 10 [tex](0.90^{10} )[/tex]. Therefore, the probability of winning with at least one ticket is 1 - [tex](0.90^{10} )[/tex].

b) To optimize your chances of winning, you would want to purchase the number of tickets that maximizes the probability of winning. To determine this, you can create a graph of the probability of winning the lottery versus the number of tickets purchased in intervals of 10.

By analyzing the graph, you can identify the number of tickets at which the probability of winning is highest. This would be the optimal number of tickets to purchase to maximize your chances of winning.

Learn more about The probability: https://brainly.com/question/32004014

#SPJ11

The complete question is;

A lottery ticket can be purchased where the outcome is either a win or a loss. There is a 10% chance of winning the lottery (90% chance of losing) for each ticket. Assume each purchased ticket to be an independent event

a) What is the probability of winning the lottery if 10 tickets are purchased? By winning, any one or more of the 10 tickets purchased result a win.

b) If you were to purchase lottery tickets in intervals of 10 (10, 20, 30, 40, 50, etc). How many tickets should you purchase to optimize you chance of winning. To answer this question, show a graph of probability of winning the lottery versus number of lottery tickets purchased.

Other Questions
the calculated amount of product under ideal conditions the comparison of the experimental amount of product to the calculated amount the amount of product experimentally produced Q2 Any unwanted component in a signal can be filtered out using a digital filter. By assuming your matrix number as 6 samples of a discrete input signal, x[n] of the filter system, (a) (b) (c) Design a highpass FIR digital filter using a sampling frequency of 30 Hz with a cut-off frequency of 10 Hz. Please design the filter using Hamming window and set the filter length, n = 5. Analyse your filter designed in Q2 (a) using the input signal, x[n]. Plot the calculated output signal. note: if your matrix number is XX123456, 6 samples as signal used in Q2 should be {1,2,3,4,5,6} Label the components of the cell membrane3. Label the components of the cell membrane: AL if we use 30.0 ml of 0.150 m cacl2 and excess agno3 what is the theoretical yield (in grams) of precipitate? in comparing two enolates, the one with more substituents around the c=c double bond is lower in energy and is called the ____________ enolate. A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days A company's net credit sales for the year are $4,000,000. On December 31, its accounts receivable balance is $160,000. The allowance is calculated as 7.5% of the receivables balance using the percentage of receivables basis. The Allowance for Doubtful Accounts has a credit balance of $5,000 before adjustment. How much is the balance of the allowance account after adjustment Which of the following statements about bile are true? Select all that apply. a. Bile is produced in the liver. b. Bile breaks down triglycerides into monoglycerides, fatty acids, and glycerol. c. Bile is produced in the gall bladder. d. Bile emulsifies fats in the small intestine. family has 3 children. Assume that the chances of having a boy or a girl are equally likely. Enter answers as fractions. Part 1 out of 2 a. What is the probability that the family has 1 girl? 7 The probability is How many electrons are transferred in the following reaction? (The reaction is unbalanced.) I2(s) + Fe(s) ? Fe3+(aq) + I?(aq) Find the arc length function for the graph of \( f(x)=2 x^{3 / 2} \) using \( (0,0) \) as the starting point. What is the length of the curve from \( (0,0) \) to \( (4,16) \) ? Find the arc length fun For a given line and a point not on the line, how many lines exist that pass through the point and are parallel to the given line? A new enthusiastic pathophysiologist working in a lab consistently incorrectly diagnoses patients who are negative for cervical cancer as being positive. This is an example of: A. Selection Bias B. Recall Bias C. Non-Differential Misclassification bias D. Differential Misclassification bias a nurse assesses a client admitted to the cardiac unit. which statement by the client alerts the nurse to the possibility of right-sided heart failure? When a firm determines the desired cost for a product or service, given a competitive market price, in order to earn a desired profit, the firm is exercising: Group of answer choices Target costing. Absorption costing. Variable costing. Competitive costing. Life cycle costing. J A block is qiuen an initial volocity of 6.00 mls up incline. How far up the the block before coming down tractiongless 30.0 Incline does what size tw copper conductor should be used for the branch circuit? (show all of your calculations in your word-processing document.) Canadian nuclear reactors use heavy water moderators in which elastic collisions occur between the neutrons and deuterons of mass 2.0 u Correct Part C How many such successive collisions will reduce the speed of a neutron to 1/6560 of its original value? Express your answer as a number of collisions. Sotve kis-the ieniaining angles and side of the one triande that can be creased. found to the nearest handredin. \[ C=55^{\circ}, c=33, b=4 \] Ancwer: How tid encer your answer \{opens in cew whdow? Determine whether the vectors u =(2,1,0,3), v =(1,2,5,1) and w=(7,1,5,8) form a linearly dependent set or a linearly independent set. If dependent, find a linear relation among them.