Answer:
If the magnitude of the field is decreasing with time the direction of the induced magnetic field is CLOCKWISE
Explanation
This is because If the magnetic field decreases with time, the electric field will be produced in order to oppose the change in line with lenz law. Thus The right hand rule can be applied to find that the direction of electric field is in the clockwise direction.
The 2-Mg truck is traveling at 15 m/s when the brakes on all its wheels are applied, causing it to skid for 10 m before coming to rest. The total mass of the boat and trailer is 1 Mg. Determine the constant horizontal force developed in the coupling C, and the friction force developed between the tires of the truck and the road during this time.
Answer:
constant horizontal force developed in the coupling C = 11.25KN
the friction force developed between the tires of the truck and the road during this time is 33.75KN
Explanation:
See attached file
The friction force between the tires of the truck and the road is 22500 N.
Calculating the friction force:It is given that a 2 Mg truck ( m = 2000 Kg) is initially moving with a speed of u = 15 m/s.
Distance traveled before coming to rest, s = 10m
The final velocity of the truck will be zero, v = 0
When the breaks are applied, only the frictional force is acting on the truck and it is opposite to the motion of the truck.
The frictional force is given by:
f = -ma
the acceleration of the truck = -a
The negative sign indicates that the acceleration is opposite to the motion.
Applying the third equation of motion we get:
v² = u² -2as
0 = 15² - 2×a×10
225 = 20a
a = 11.25 m/s²
So the magnitude of frictional force is:
f = ma = 2000 × 11.25 N
f = 22500 N
Learn more about friction force:
https://brainly.com/question/1714663?referrer=searchResults
A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.
Answer:
New location at time 3.01 is given by: (7.49, 2.11)
Explanation:
Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:
[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]
With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:
[tex]distance=v\,*\, t[/tex]
[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]
Therefore, adding these displacements in component form to the original particle's position, we get:
New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)