Answer:
5
Step-by-step explanation:
We know that we have to add all numbers then divide it by how many numbers there are. So, 10 + 6 + 9 + 2 + 0 + 3 = 30. 30/6 = 5.
Solve the formula for the perimeter of a rectangle, with width w and length I,
for the length.
P= 2W + 2/
Answer:
( P -2w) /2 = l
Step-by-step explanation:
P= 2W + 2l
Subtract 2W from each side
P= 2W -2W + 2l
P -2W = 2l
Divide by 2
( P -2w) /2 = l
Answer:
A. [tex]\frac{P - 2w}{2} = l[/tex]
Step-by-step explanation:
Well in,
P = 2w + 2l
to solve for l we need to single it out.
P = 2w + 2l
-2w
P - 2w = 2l
divide everything by 2
[tex]\frac{P - 2w}{2} = l[/tex]
Thus,
the answer is A.
Hope this helps :)
Assume that a sample is used to estimate a population proportion p. Find the margin of error E that corresponds to the given statistics and confidence level. Round the margin of error to four decimal places. 95% confidence; n = 349, x = 42
Answer:
0.5705Step-by-step explanation:
Margin of error is expressed as M.E = [tex]z * \sqrt{\frac{\sigma}{n} }[/tex] where;
z is the z score at 95% confidence
[tex]\sigma[/tex] is the standard deviation
n is the sample size
Given n = 349, [tex]\sigma = 42[/tex] and z score at 95% confidence = 1.645
Substituting this values into the formula above we will have;
M.E = [tex]1.645*\sqrt{\frac{42}{349} }[/tex]
[tex]M.E = 1.645*\sqrt{0.1203} \\\\M.E = 1.645*0.3468\\\\M.E = 0.5705 (to\ four\ dp)[/tex]
6x-5<2x+11. plz helpppppp
Answer:
x < 4 or x = ( -∞, 4)
Step-by-step explanation:
6x - 5 < 2x + 116x - 2x < 11 + 54x < 16 x < 16/4x < 4or
x = ( -∞, 4)
[tex]\text{Solve the inequality for x:}\\\\6x-5<2x+11\\\\\text{Subtract 2x from both sides}\\\\4x-5<11\\\\\text{Add 5 to both sides}\\\\4x<16\\\\\text{Divide both sides by 4}\\\\\boxed{x<4}[/tex]
A pyramid shaped building is 311 feet tall and has a square base with sides of 619 ft. The sides of the building are made from reflective glass. what is the surface area of the reflective glass
Answer:
Surface area of the reflective glass is 543234.4 square feet.
Step-by-step explanation:
Given that: height = 311 feet, sides of square base = 619 feet.
To determine the slant height, we have;
[tex]l^{2}[/tex] = [tex]311^{2}[/tex] + [tex]309.5^{2}[/tex]
= 96721 + 95790.25
= 192511.25
⇒ l = [tex]\sqrt{192511.25}[/tex]
= 438.761
The slant height, l is 438.8 feet.
Considering one reflecting surface of the pyramid, its area = [tex]\frac{1}{2}[/tex] × base × height
area = [tex]\frac{1}{2}[/tex] × 619 × 438.8
= 135808.6
= 135808.6 square feet
Since the pyramid has four reflective surfaces,
surface area of the reflective glass = 4 × 135808.6
= 543234.4 square feet
A car dealership earns a portion of its profit on the accessories sold with a car. The dealer sold a Toyota Camry loaded with accessories for $24,000. The total cost of the car was 8 times as much as the accessories. How much did the accessories cost? Cost of Accessories
Answer:
y = 2666.67
Step-by-step explanation:
Well to solve this we can make a system of equations.
x = cost of car alone
y = cost of accesories,
[tex]\left \{ {{x+y=24000} \atop {x=8y}} \right.[/tex]
So now we plug in 8y for x in x + y = 24000.
(8y) + y = 24000
9y = 24000
Divide both sides by 9
y = 2666.666666
or 2666.67 rounded to the nearest hundredth.
Now that we have y we can plug that in for y in x=8y.
x = 8(2.666.67)
x = 21,333.33 rounded to the nearest hundredth.
Thus,
accessories "y" cost around 2666.67.
Hope this helps :)
need help thankssssss
Answer:
301.44
Step-by-step explanation:
V=π r² h
V=π (4)² (12)
V= 603.19
divide by 2 to find half full: ≈ 301
301.44
the petit chef co has 11.7 percent coupon bonds on the market with elven years left to maturtiy. The bonds make annuly payments and have a par value of 1000. If the bonds curtently sell for 1153.60 what is tje ytm
Answer:
9.40%
Step-by-step explanation:
Given:
Annual coupon rate = 11%
Time left to maturity = 11 years
Par value of bond = 1000
Present value of bond = 1153.60
Required: Find Yeild to Maturity (YTM)
To find the yield to maturity, use the formula below:
YTM = [Annual coupon+(Face value-Present value)/time to maturity]/(Face value+Present value)/2
where annual coupon = 1000 * 11% = 110
Thus,
[tex]YTM = \frac{\frac{110+(1000-1139.59}{9}}{\frac{(1000+1139.59)}{2}}[/tex]
YTM = 9.40%
Therefore the approximate YTM is 9.40%
Find f. (Use C for the constant of the first antiderivative and D for the constant of the second antiderivative.)
f ''(x)= 6x +sinx
Answer:
[tex]f(x) = x^3 -sinx +Cx+D[/tex]
Step-by-step explanation:
Given that:
[tex]f ''(x)= 6x +sinx[/tex]
We are given the 2nd derivative of a function f(x) and we need to find f(x) from that.
We will have to integrate it twice to find the value of f(x).
Let us have a look at the basic formula of integration that we will use in the solution:
[tex]1.\ \int {(a\pm b)} \, dx =\int {a} \, dx + \int {b} \, dx \\2.\ \int {x^n} \, dx = \dfrac{x^{n+1}}{n+1}+C\\3.\ \int {sinx} \, dx = -cosx+C\\4.\ \int {cosx} \, dx = sinx+C[/tex]
[tex]\int\ {f''(x)} \, dx =\int\ {(6x +sinx)} \, dx \\\Rightarrow \int\ {6x} \, dx + \int\ {sinx} \, dx \\\\\Rightarrow 6\dfrac{x^2}{2} -cosx +C\\\Rightarrow 3{x^2} -cosx +C\\\Rightarrow f'(x)=3{x^2} -cosx +C\\[/tex]
Now, integrating it again to find f(x):
[tex]f(x) =\int {f'(x)} \, dx =\int{(3{x^2} -cosx +C)} \, dx \\\Rightarrow \int{3{x^2}} \, dx -\int{cosx} \, dx +\int{C} \, dx\\\Rightarrow 3\times \dfrac{x^3}{3} -sinx +Cx+D\\\Rightarrow x^3 -sinx +Cx+D\\\\\therefore f(x) = x^3 -sinx +Cx+D[/tex]
144 + h^2 = 225 WHAT THE HECK DOES ^ MEAN!???
Answer:
h^2 means h²
(h squared)
Step-by-step explanation:
Step 1: Write equation
144 + h² = 225
Step 2: Subtract 144 on both sides
h² = 81
Step 3: Take square root
√h² = √81
h = 9
The graph of an exponential function has a y-intercept of 4 and contains the point (3,500). Construct the exponential function that describes the graph.
Answer:
The "formula" for an exponential function is f(x) = a * bˣ where a is the initial value / y-intercept. Therefore, a = 4 so f(x) = 4 * bˣ. To solve for b, we can plug in the values x = 3 and f(x) = 500 which becomes:
500 = 4 * b³
125 = b³
b = 5 so the answer is f(x) = 4 · 5ˣ.
Answer:
f(x)=4(5)x
Step-by-step explanation:
An exponential equation in the form y=a(b)x has initial value a and common ratio b. The initial value is the same as the y-intercept, 4, so the equation is in the form y=4(b)x. Substituting the point (3,500) gives 500=4(b)3. Solve for b to find that the common ratio is 5.
What is 24-(-6) because in confused
Answer:
30
Step-by-step explanation:
24 - (-6)
Apply rule : -(-a) = a
Negative (-) times a negative (-) is positive (+).
24 + 6
= 30
Answer:
-6 is in parentheses because it is a negative number. this prevents the equation from looking like a too long subtraction sign (24--6); therefore it is written as 24 - (-6).
this simplifies to 24 + 6 = 30
to negatives = a positive
the perimeter of a square flower bed is 100 feet. what is the area of the flower bed in sqaure feet
Answer:
A =625 ft^2
Step-by-step explanation:
The perimeter of a square is
P = 4s where s is the side length
100 =4s
Divide each side by 4
100/4 = 4s/4
25 = s
A = s^2 for a square
A = 25^2
A =625
A submarine is moving parallel to the surface of the ocean at a depth of 626 m. It begins a
constant ascent so that it will reach the surface after travelling a distance of 4420 m.
a) What angle of ascent, to the nearest tenth of a degree, did the submarine make? (3
marks)
b) How far did the submarine travel horizontally, to the nearest metre, during its ascent to
the surface? (3 marks)
Answer:
a) the angle of ascent is 8.2°
b) the horizontal distance traveled is 4375 m
Step-by-step explanation:
depth of ocean = 626 m
distance traveled in the ascent = 4420 m
This is an angle of elevation problem with
opposite side to the angle = 626 m
hypotenuse side = 4420 m
a) angle of ascent ∅ is gotten from
sin ∅ = opp/hyp = 626/4420
sin ∅ = 0.142
∅ = [tex]sin^{-1}[/tex] 0.142
∅ = 8.2° this is the angle of ascent of the submarine.
b) The horizontal distance traveled will be gotten from Pythagoras theorem
[tex]hyp^{2}[/tex] = [tex]opp^{2}[/tex] + [tex]adj^{2}[/tex]
The horizontal distance traveled will be the adjacent side of the right angle triangle formed by these distances
[tex]4420^{2}[/tex] = [tex]626^{2}[/tex] + [tex]adj^{2}[/tex]
adj = [tex]\sqrt{4420^{2}-626^{2} }[/tex]
adj = 4375 m this is the horizontal distance traveled.
67.805 what is the value of the 0 help please asap!
Answer:
hundreths
Step-by-step explanation:
After the decimal there is tenths, hundreths thousandnths, tens of thousands e.t.c
Answer:
Hello! The answer will be hundredths.
Step-by-step explanation:
The 5 means the thousandths.
The 0 means the hundredths.
The 8 means the tenths.
The 7 means the ones
And the 6 means the tens.
Hope this helps! :)
( below I attached a picture, which might be helpful.)
Sketch the region that corresponds to the given inequality. HINT [See Example 1.] 2x + y ≤ 10 Say whether the region is bounded or unbounded. The region is bounded. The region is unbounded. Find the coordinates of all corner points (if any). (If an answer does not exist, enter DNE.)
Answer:
See the attachment for sketch
Thr region is unbounded
DNE
Step-by-step explanation:
y≤ -2x + 10
The inequality is a straight line and region marked by the inequality. It has no boundaries. The boundaries extend to infinity. So the region is unbounded. Unbounded region has no corner points.
Construct the cumulative frequency distribution for the given data.
Age (years) of Best Actress when award was won Frequency
20-29 28
30-39 37
40-49 14
50-59 3
60-69 4
70-79 1
80-89 1
Age (years) of Best Actress when award was won Cumulative Frequency
Less than 30
Less than 40
Less than 50
Less than 60
Less than 70
Less than 80
Less than 90
Answer:
Age Frequency Cumulative Frequency
Less than 30 28 28
Less than 40 37 28 + 37 = 65
Less than 50 1 4 65 + 14 = 79
Less than 60 3 79 + 3 = 82
Less than 70 4 82 + 4 = 86
Less than 80 1 86 + 1 = 87
Less than 90 1 87 + 1 = 88
Step-by-step explanation:
Given:
The Frequency Distribution table of ages of best actresses when award was won
To find:
Construct the cumulative frequency distribution
Solution:
In order to construct cumulative frequency distribution for the given data, each frequency from above table is added to the sum of the previous frequencies. For example, frequency for Less than 40 is 37 and the previous frequency (less than 30) is 28 so in order to calculate cumulative frequency 28 i.e. previous frequency is added to 37 (frequency of less than 30) and the cumulative frequency is 65. The complete table is given above.
if 5x - 17 = -x +7, then x =
Answer:
x=4
Step-by-step explanation:
5x - 17 = -x +7
Add x to each side
5x+x - 17 = -x+x +7
6x -17 = 7
Add 17 to each side
6x-17+17 = 7+17
6x =24
Divide each side by 6
6x/6 = 24/6
x = 4
Answer:
4
Step-by-step explanation:
5x - 17 = -x + 7
Add x on both sides.
5x - 17 + x = -x + 7 + x
6x - 17 = 7
Add 17 on both sides.
6x - 17 + 17 = 7 + 17
6x = 24
Divide both sides by 6.
(6x)/6 = 24/6
x = 4
Find the Slope of the line
-4
1
1/4
4
Answer:
Hey there!
The slope is rise over run, or 1/-4.
This gives us the slope, which is -1/4.
Hope this helps :)
Answer:
1/4
Step-by-step explanation:
( i mean i think it is - 1/4 but that isn't an answer choice- )
Slope (m) =
ΔY overΔX= -1 over 4 = -0.25
subtract x^1 and x^2 also y^1 and y^2
and put the answer of y' s over the answer of x 's
divide and you got your answer!
h(x)=-4+16 find x when h(x)=48 Plz don't say it is incomplete
Answer:
x = -8
Step-by-step explanation:
When h(x) = 48, you can simply just plug it back into the first equation. Don't let the h(x) confuse you!
Think of it like saying y = -4x + 16, y = 48.
48 = - 4x + 16
32 = - 4x
8 = -x
Divide by -1 both sides.
-8 = x
A psychologist is studying the effects of lack of sleep on the performance of various perceptual-motor tasks. After a given period of sleep deprivation, a measurement of reaction time to an auditory stimulus was taken for each of 36 adult male subjects.The mean and standard deviation of the reaction times (in seconds) for the fifty adult male subjects were 1.82 seconds and 0.28 seconds respectively. Previous psychological studies have shown that the true mean reaction time for non-sleep-deprived male subjects is 1.70 seconds. Does the sample evidence indicate that the mean reaction time for sleep-deprived adult males is longer than that of non-sleep-deprived adult males.
A. H0:μ=1.82;Ha:μ<1.82
B. H0:μ=1.70;Ha:μ<1.70
C. H0:μ=1.82;Ha:μ>1.82
D. H0:μ=1.70;Ha:μ>1.70
E. None of the above
Answer:
D. [tex]H_{0}[/tex] : μ = 1.70, [tex]H_{a}[/tex] : μ > 1.70
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence to test a hypothesis
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value.
PLEASE HELPPP ITS TIMED Consider the following functions. f(x) = x2 – 4 g(x) = x – 2 What is (f(x))(g(x))? a.(f(x))(g(x)) = x + 2; x ≠ 2 b.(f(x))(g(x)) = x + 2; all real numbers c.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbers
Answer:
d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbersStep-by-step explanation:
(f(x))(g(x)) = (x²- 4)*(x-2) =x³ - 2x² - 4x + 8Choice d. is correct
a.(f(x))(g(x)) = x + 2; x ≠ 2 incorrectb.(f(x))(g(x)) = x + 2; all real numbers incorrectc.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 incorrectd(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numberscorrectAnswer:
D
Step-by-step explanation:
A group of 59 randomly selected students have a mean score of 29.5 with a standard deviation of 5.2 on a placement test. What is the 95% confidence interval for the mean score, , of all students taking the test
Answer:
The 95% confidence interval for the mean score, , of all students taking the test is
[tex]28.37< L\ 30.63[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 59[/tex]
The mean score is [tex]\= x = 29.5[/tex]
The standard deviation [tex]\sigma = 5.2[/tex]
Generally the standard deviation of mean is mathematically represented as
[tex]\sigma _{\= x} = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{5.2 }{\sqrt{59} }[/tex]
[tex]\sigma _{\= x} = 0.677[/tex]
The degree of freedom is mathematically represented as
[tex]df = n - 1[/tex]
substituting values
[tex]df = 59 -1[/tex]
[tex]df = 58[/tex]
Given that the confidence interval is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha =[/tex]5%
[tex]\alpha = 0.05[/tex]
Now the critical value at this significance level and degree of freedom is
[tex]t_{df , \alpha } = t_{58, 0.05 } = 1.672[/tex]
Obtained from the critical value table
So the the 95% confidence interval for the mean score, , of all students taking the test is mathematically represented as
[tex]\= x - t*(\sigma_{\= x}) < L\ \= x + t*(\sigma_{\= x})[/tex]
substituting value
[tex](29.5 - 1.672* 0.677) < L\ (29.5 + 1.672* 0.677)[/tex]
[tex]28.37< L\ 30.63[/tex]
From past records it is known that 10% of items from a production
line are defective. If two items are selected at random, what is the
probability that only one is defective?
Answer: 0.18
Step-by-step explanation:
P(1 unit is defective)= C2 1* P^1*Q^1
C2 1= 2!/(1!*(2-1)!)=2
P=0.1 - probability that items from a production line are defective
Q=1-0.1=0.9 - probability that items from a production line are functional.
P(1 unit is defective)= 2*0.1*0.9=0.18
solve the rational equation 5/x = 4x+1/x^2
Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
The average college lecture hall (auditorium) can seat 60 students with a standard deviation of 21. Assume that a total of 60 lecture halls are selected for a sample. What is the standard deviation for the sample mean?
Answer:
The standard deviation of the sample mean is [tex]\sigma _ {\= x } = 2.711[/tex]
Step-by-step explanation:
From the question we are told that
The mean is [tex]\= x = 60[/tex]
The standard deviation is [tex]\sigma = 21[/tex]
The sample size is [tex]n = 60[/tex]
Generally the standard deviation of the sample mean is mathematically represented as
[tex]\sigma _ {\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _ {\= x } = \frac{ 21 }{\sqrt{60} }[/tex]
[tex]\sigma _ {\= x } = 2.711[/tex]
[URGENT] (25 points) Ryan randomly drew a marble out of a bag of marbles, then put it back. He did
this 25 times. Of the 25 times he drew a red marble 6 times. He concluded
that the probability of drawing a red marble was
6/25
Answer:
Unpredictable
Step-by-step explanation:
Cuz if u look at it it is also random and u cant predict a random thing, so its quite simply unpredictable
assume the carrying capacity of the earth is 21 billion. use the 1960s peak annual growth rate of 2.1% and population of 3 billion to predict the base growth rate and current growth rate with a logistic model. Assume a current population of 6.8 billion. How does the predicted growth rate compare to the actual growth rate of about 1.2% per year?
Answer:
current population growth rate would be -3.1%
Step-by-step explanation:
We have to:
Growth rate = r * (1 - population / carrying capacity)
for 1960,
we have carrying capacity = 21 billion
population = 3 billion
r = Growth rate 1960 / (1 - population / carrying capacity)
replacing:
r = 0.021 / (1 - 3/21)
r = 0.0245
that is to say r = 2.45%
Now the current population would be:
= 0.0245 * (1 - carrying population / carrying capacity)
we replace:
= 0.0245 * (1 - 6.8 / 3)
= -0.031
current population growth rate would be -3.1%
The predicted growth rate compare to the actual growth rate of about 1.2% per year is -3.1% and this can be determined by using the formula of growth rate.
Given :
Assume the carrying capacity of the earth is 21 billion. Use the 1960s peak annual growth rate of 2.1% and population of 3 billion to predict the base growth rate and current growth rate with a logistic model. Assume a current population of 6.8 billion.The growth rate is given by the formula:
[tex]\rm Growth \;Rate = r\times \left(1-\dfrac{Populatuion}{Carrying\;Capacity}\right)[/tex]
Given that the carrying capacity of the earth is 21 billion. The growth rate in 1960 is 2.1%. So, put the known values in the equation (1).
[tex]\rm 0.021 = r\times \left(1-\dfrac{3}{21}\right)[/tex]
[tex]0.021=r\times \dfrac{18}{21}[/tex]
0.0245 = r
So, r = 2.45%.
Now, the growth rate of the current population is:
[tex]\rm Growth \;Rate = 0.0245\times \left(1-\dfrac{6.8}{3}\right)[/tex]
[tex]\rm Growth\; Rate = 0.0245 \times \dfrac{-3.8}{3}[/tex]
0.031 = Growth Rate
So, the growth rate is -3.1%.
For more information, refer to the link given below:
https://brainly.com/question/2096984
Can you draw the reflection Across the y-axis of the attached image.
Answer:
see graph
Step-by-step explanation:
A reflection across the y-axis means the point is equal but opposite distance from the y-axis. This has no change on the y-value of the point, because no matter the y-value, the point will still be the same distance from the y-axis. Long story short, if you're reflecting across the y-axis, change the sign of the x-coordinate. If you're reflecting across the x- axis, change the sign of the y-coordinate.
A circular chicken house has an area of 40m². What length of chicken wire is required to fence the house without any wire left over?
Given f(x) and g(x) = f(x) + k, use the graph to determine the value of k. A) 2 B) 3 C) 4 D) 5 IF YOU ANSWER IN 5 MINUTES I WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!
Ans k = 4
Step-by-step explanation:
Here g(x) =[tex]\frac{-1}{3}x + 1[/tex] and
f(x) = [tex]\frac{-1}{3} x -3[/tex]
Now, g(x) = f(x) + k
or, [tex]\frac{-1}{3}x + 1[/tex] = [tex]\frac{-1}{3} x -3 + k[/tex]
or, 1 + 3 = k
So, k = 4 Answer.