Answer:
Kenyan French Roast coffee x=6
Sumatran coffee y=14
Step-by-step explanation:
x+y=20 blend coffee
8x+7y=7.3(20) selling price
x+y=20 ⇒ x=20-y
substitute in the equation:
8x+7y=7.3(20)
8(20-y)+7y=7.3(20) for 20 pound blend
160-8y+7y=146
-y=146-160
y=14 pond
x+y=20
x=20-14=6
check : 14*7+6(8)=146/7.3=20 pound
The price of the Kenyan French Roast coffee is $6 and the price of Sumatran coffee is $14.
Two equations can be derived from the question:
8x + 7y = 20(7.3)
8x + 7y = 146 equation 1
x + y = 20 equation 2
Where: x
x = Kenyan French Roast coffee
y = Sumatran coffee.
To determine the value of y, multiply equation 2 by 8
8x + 8y = 160 equation 3
Subtract equation 1 from 3
y = 14
Substitute for y in equation 2
x + 14 = 20
x = 20 - 14
x = 6
To learn more about simultaneous equations, please check: brainly.com/question/23589883
What is the five number summary for this data set?
3, 8, 14, 19, 22, 29, 33, 37, 43, 49
Assume the numbers in each answer choice are listed in this order: min, Q1,
median, Q3, max
Answer:
see explanation
Step-by-step explanation:
The median is the middle value of the data set in ascending order. If there is no exact middle then the median is the average of the values either side of the middle.
Given
3 8 14 19 22 29 33 37 43 49
↑ middle is between 22 and 29
median = [tex]\frac{22+29}{2}[/tex] = [tex]\frac{51}{2}[/tex] = 25.5
The upper quartile [tex]Q_{3}[/tex] is the middle value of the data to the right of the median.
29 33 37 43 49
↑
[tex]Q_{3}[/tex] = 37
The lower quartile [tex]Q_{1}[/tex] is the middle value of the data to the left of the median.
3 8 14 19 22
↑
[tex]Q_{1}[/tex] = 14
The min is the smallest value in the data set, that is 3
The max is the largest value in the data set, that is 49
The 5 number summary is
3, 14, 25.5, 37, 49
Gamal spent $12.50 at the book store. The difference between the amount he spent at the video game store and the amount he spent at the book store was $17. The equation d minus 12.50 = 17 can be used to represent this situation, where d is the amount Gamal spent at the video game store. Which equation is an equivalent equation that can be used to find the amount Gamal spent at the video game store?
Answer:
d - 12.50 = 17
add 12.50 to both sides to get d alone.
d = 12.50 + 17
Answer:
It's B d= 17 + 12.50
Step-by-step explanation:
Got it right on edg
If C(x) is the cost of producing x units of a commodity, then the average cost per unit is c(x) = C(x)/x. Consider the cost function C(x) given below. C(x) = 54,000 + 130x + 4x3/2 (a) Find the total cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ (b) Find the average cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (c) Find the marginal cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (d) Find the production level that will minimize the average cost. (Round your answer to the nearest whole number.) units (e) What is the minimum average cost? (Round your answer to the nearest dollar.) $ per unit
Answer:
Step-by-step explanation:
Given that:
If C(x) = the cost of producing x units of a commodity
Then;
then the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
We are to consider a given function:
[tex]C(x) = 54,000 + 130x + 4x^{3/2}[/tex]
And the objectives are to determine the following:
a) the total cost at a production level of 1000 units.
So;
If C(1000) = the cost of producing 1000 units of a commodity
[tex]C(1000) = 54,000 + 130(1000) + 4(1000)^{3/2}[/tex]
[tex]C(1000) = 54,000 + 130000 + 4( \sqrt[2]{1000^3} )[/tex]
[tex]C(1000) = 54,000 + 130000 + 4(31622.7766)[/tex]
[tex]C(1000) = 54,000 + 130000 + 126491.1064[/tex]
[tex]C(1000) = $310491.1064[/tex]
[tex]\mathbf{C(1000) \approx $310491.11 }[/tex]
(b) Find the average cost at a production level of 1000 units.
Recall that :
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
SO;
[tex]c(x) =\dfrac{(54,000 + 130x + 4x^{3/2})}{x}[/tex]
Using the law of indices
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
[tex]c(1000) = \dfrac{54000}{1000}+ 130 + {4(1000)^{1/2}}[/tex]
c(1000) =$ 310.49 per unit
(c) Find the marginal cost at a production level of 1000 units.
The marginal cost is C'(x)
Differentiating C(x) = 54,000 + 130x + 4x^{3/2} to get C'(x) ; we Have:
[tex]C'(x) = 0 + 130 + 4 \times \dfrac{3}{2} \ x^{\dfrac{3}{2}-1}[/tex]
[tex]C'(x) = 0 + 130 + 2 \times \ {3} \ x^{\frac{1}{2}}[/tex]
[tex]C'(x) = 0 + 130 + \ {6}\ x^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 0 + 130 + \ {6} \ (1000)^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 319.7366596[/tex]
[tex]\mathbf{C'(1000) = \$319.74 \ per \ unit}[/tex]
(d) Find the production level that will minimize the average cost.
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
the production level that will minimize the average cost is c'(x)
differentiating [tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex] to get c'(x); we have
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{4}{2 \sqrt{x} }[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{2}{ \sqrt{x} }[/tex]
Also
[tex]c''(x)= \dfrac{108000}{x^3} -x^{-3/2}[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + \dfrac{4}{2 \sqrt{x} } = 0[/tex]
[tex]x^2 = 27000\sqrt{x}[/tex]
[tex]\sqrt{x} (x^{3/2} - 27000) =0[/tex]
x= 0; or [tex]x= (27000)^{2/3}[/tex] = [tex]\sqrt[3]{27000^2}[/tex] = 30² = 900
Since production cost can never be zero; then the production cost = 900 units
(e) What is the minimum average cost?
the minimum average cost of c(900) is
[tex]c(900) =\dfrac{54000}{900} + 130 + 4(900)^{1/2}[/tex]
c(900) = 60 + 130 + 4(30)
c(900) = 60 +130 + 120
c(900) = $310 per unit
Construct the confidence interval for the population mean mu. c = 0.90, x = 16.9, s = 9.0, and n = 45. A 90% confidence interval for mu is:______.
Answer:
The 90% confidence interval for population mean is [tex]14.7 < \mu < 19.1[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 16.9[/tex]
The confidence level is [tex]C = 0.90[/tex]
The sample size is [tex]n = 45[/tex]
The standard deviation
Now given that the confidence level is 0.90 the level of significance is mathematically evaluated as
[tex]\alpha = 1-0.90[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the standardized normal distribution table. The values is [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
The reason we are obtaining critical values for [tex]\frac{\alpha }{2}[/tex] instead of that of [tex]\alpha[/tex] is because [tex]\alpha[/tex] represents the area under the normal curve where the confidence level 1 - [tex]\alpha[/tex] (90%) did not cover which include both the left and right tail while [tex]\frac{\alpha }{2}[/tex] is just considering the area of one tail which is what we required calculate the margin of error
Generally the margin of error is mathematically evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 1.645* \frac{ 9 }{\sqrt{45} }[/tex]
[tex]MOE = 2.207[/tex]
The 90% confidence level interval is mathematically represented as
[tex]\= x - MOE < \mu < \= x + MOE[/tex]
substituting values
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]14.7 < \mu < 19.1[/tex]
Please answer this correctly without making mistakes
Answer:
3/11
Step-by-step explanation:
There are eleven equal parts.
So the denominator is 11.
He copies 8 parts on Sunday.
11-8=3.
He copied 3 parts on Saturday.
Hope this helps ;) ❤❤❤
Solve for x −ax + 2b > 8
Answer:
x < -( 8-2b) /a a > 0
Step-by-step explanation:
−ax + 2b > 8
Subtract 2b from each side
−ax + 2b-2b > 8-2b
-ax > 8 -2b
Divide each side by -a, remembering to flip the inequality ( assuming a>0)
-ax/-a < ( 8-2b) /-a
x < -( 8-2b) /a a > 0
Answer: [tex]x<\frac{-8+2b}{a}[/tex]
[tex]a>0[/tex]
Step-by-step explanation:
[tex]-ax+2b>8[/tex]
[tex]\mathrm{Subtract\:}2b\mathrm{\:from\:both\:sides}[/tex]
[tex]-ax>8-2b[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]
[tex]\left(-ax\right)\left(-1\right)<8\left(-1\right)-2b\left(-1\right)[/tex]
[tex]ax<-8+2b[/tex]
[tex]\mathrm{Divide\:both\:sides\:by\:}a[/tex]
[tex]\frac{ax}{a}<-\frac{8}{a}+\frac{2b}{a};\quad \:a>0[/tex]
[tex]x<\frac{-8+2b}{a};\quad \:a>0[/tex]
(SAT Prep) In the given figure, a║b. What is the value of x? A. 70° B. 45° C. 80° D. 65° I NEED THIS FAST PLZZZZZZ!!!!!!!!!!!!
Answer:
70
Step-by-step explanation:
You have to find the vertical of x. To the right of the vertical, we see that there is an angle of 25 (since the 25 up top corresponds to that blank angle). Once you add 25 + 85 + x = 180 (since this is a straight line), we see that x is 70, and its vertical is also 70.
The ratio of boys to girls in Jamal's class is 3:2. If four more girls join the class, there will be the same number of boys and girls. What is the number of boys in the class?
Answer:
4 boys
Step-by-step explanation:
Let x represent boys and y represent girls
Hence, x : y = 3 : 2
x/y = 3/2
2x = 3y ------ (1)
x/y + 4 = 3/3
3x = 3(y + 4)
3x = 3y + 12 --------- (2)
From (1): x = 3y/2
Substitute x into (2) we have:
9y/2 = 3y + 12
9y = 6y + 24
9y - 6y = 24
3y = 24
∴ y = 8
From (2) : 3x = 24 - 12 = 12
∴ x = 4
Hence there Four boys
2x + 3 + 7x = – 24, what is the value of x?
14x + 3 = - 24
theeeeen I get stuck, HELP!
Answer:
-3
Step-by-step explanation:
2x + 3 +7x = -24
Add the X together
9x +3 = -24
Bring over the +3. [when you bring over change the sign]
9x = -24 -3
9x = -27
-27 divide by 9 to find X
therefore answer is
x= -3.
Hope this helps
Answer:
x = -3
Step-by-step explanation:
question is
2x + 3 + 7x = -24
First you combine the like terms
2x and 7x you can add them so it will be 9x
so it will then it will be like this:
9x + 3 = -24
now you take the 3 and send it to the other side, and right now the 3 is positive so when it goes to the other side it will turn into -3
so
9x = -24 -3
again now you combine the like terms
-24 -3 = - 27
now you have
9x = -27
now just divide each side by 9
x = -27/9
x = -3
Sorry if this doesnt help
Calculate the side lengths a and b to two decimal places
A. a= 10.92 b=14.52 <--- My answer
B. a= 11 b= 15
C. a=4.18 b=3.15
D. a= 11.40 b=13.38
Answer:
Option (D)
Step-by-step explanation:
In the picture attached,
An obtuse angle triangle ABC has been given.
By applying Sine rule in the triangle,
[tex]\frac{\text{SinB}}{b}=\frac{\text{SinA}}{a}=\frac{\text{SinC}}{c}[/tex]
Since, m∠A + m∠B + m∠C = 180°
45° + 110° + m∠C = 180°
m∠C = 180°- 155° = 25°
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=\frac{\text{Sin25}}{7}[/tex]
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=0.060374[/tex]
[tex]\frac{\text{Sin110}}{b}=0.060374[/tex]
b = [tex]\frac{\text{Sin110}}{0.060374}[/tex]
b = 15.56
b ≈ 15.56
[tex]\frac{\text{Sin45}}{a}=0.060374[/tex]
a = [tex]\frac{\text{Sin45}}{0.060374}[/tex]
a = 11.712
a = 11.71
Therefore, Option (D) will be the answer.
Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases.
a. Central area = 0.95, df = 10
b. Central area = 0.95, df = 20
c. Central area = 0.99, df = 20
d. Central area = 0.99, df = 60
e. Upper-tail area = 0.01, df = 30
f. Lower-tail area = 0.025, df = 5
Answer:
a) Central area = 0.95, df = 10 t = (-2.228, 2.228)
(b) Central area = 0.95, df = 20 t= (-2.086, 2.086)
(c) Central area = 0.99, df = 20 t= ( -2.845, 2.845)
(d) Central area = 0.99, df = 60 t= (-2.660, 2.660)
(e) Upper-tail area = 0.01, df = 30 t= 2.457
(f) Lower-tail area = 0.025, df = 5 t= -2.571
Step-by-step explanation:
In this question, we are to determine the t critical value that will capture the t-curve area in the cases below;
We can use the t-table for this by using the appropriate confidence interval with the corresponding degree of freedom.
The following are the answers obtained from the table;
a) Central area = 0.95, df = 10 t = (-2.228, 2.228)
(b) Central area = 0.95, df = 20 t= (-2.086, 2.086)
(c) Central area = 0.99, df = 20 t= ( -2.845, 2.845)
(d) Central area = 0.99, df = 60 t= (-2.660, 2.660)
(e) Upper-tail area = 0.01, df = 30 t= 2.457
(f) Lower-tail area = 0.025, df = 5 t= -2.571
You are hiking and are trying to determine how far away the nearest cabin is, which happens to be due north from your current position. Your friend walks 205 yards due west from your position and takes a bearing on the cabin of N 23.9°E. How far are you from the cabin? asap would be great also running out of points srry
Answer:
462.61 yards.
Step-by-step explanation:
To solve, you need to find the measurement of the angle that forms a 90 degree angle with the 23.9 degree angle.
90 - 23.9 = 66.1 degrees.
Now that you have the angle, you can use TOA to solve for x (TOA = Tangent; Opposite over Adjacent).
tan(66.1) = x / 205
x / 205 = tan(66.1)
x = tan(66.1) * 205
x = 2.256628263 * 205
x = 462.6087939
So, you are about 462.61 yards from the cabin.
Hope this helps!
What are the expressions for length, width, and height?
Volume = length width height
V = _____ _____ _____
For odyyseyware
Answer:
[tex]\boxed{V=lwh}[/tex]
Step-by-step explanation:
The formula for volume of a cuboid is:
[tex]V=lwh[/tex]
[tex]volume = length \times width \times height[/tex]
Answer:
V = l w h
Step-by-step explanation:
Volume of a Cuboid = Length × Width × Height
Where l = length, w = width and h = height
Simplify the expression . 39*x / 13
Answer:
3x
Step-by-step explanation:
39*x / 13
39/13 * x
3*x
3x
Answer:
3x
Step-by-step explanation:
We are given the expression:
39*x /13
We want to simplify this expression. It can be simplified because both the numerator (top number) and denominator (bottom number) can be evenly divided by 13.
(39*x /13) / (13/13)
(39x/13) / 1
3x / 1
When the denominator is 1, we can simply eliminate the denominator and leave the numerator as our answer.
3x
The expression 39*x/13 can be simplified to 3x
Find the value of a A.130 B.86 C.58 D.65
Answer:
Option (B)
Step-by-step explanation:
If two chords intersect inside a circle, measure of angle formed is one half the sum of the arcs intercepted by the vertical angles.
Therefore, 86° = [tex]\frac{1}{2}(a+c)[/tex]
a + c = 172°
Since the chords intercepting arcs a and c are of the same length, measures of the intercepted arcs by these chords will be same.
Therefore, a = c
⇒ a = c = 86°
Therefore, a = 86°
Option (B) will be the answer.
I need answers for 1 , 2, 4
Answer:
(3) x ≥ -3
(4) 2.5 gallons
(4) -12x + 36
Step-by-step explanation:
Hey there!
1)
Well its a solid dot meaning it will be equal to.
So we can cross out 1 and 2.
And it's going to the right meaning x is greater than or equal to -3.
(3) x ≥ -3
2)
Well if each milk container has 1 quart then there is 10 quarts.
And there is 4 quarts in a gallon, meaning there is 2.5 gallons of milk.
(4) 2.5 gallons
4)
16 - 4(3x - 5)
16 - 12x + 20
-12x + 36
(4) -12x + 36
Hope this helps :)
Which point is a solution to the inequality shown in this graph?
Answer: A, (0, -3)
Step-by-step explanation:
Inequalities, once graphed, take the form of the image you attached:
Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.
Any point in the shading is a correct solution to the inequality.
When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.In this case, the line is solid, so any point on the line is a solution to the inequality.
Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.
The correct choice is A.
About 9% of the population has a particular genetic mutation. 600 people are randomly selected.
Find the standard deviation for the number of people with the genetic mutation in such groups of 600.
Answer:
The mean for all such groups randomly selected is 0.09*800=72.
Step-by-step explanation:
The value of the standard deviation is 7.
What is the standard deviation?Standard deviation is defined as the amount of variation or the deviation of the numbers from each other.
The standard deviation is calculated by using the formula,
[tex]\sigma = \sqrt{Npq}[/tex]
N = 600
p = 9%= 0.09
q = 1 - p= 1 - 0.09= 0.91
Put the values in the formulas.
[tex]\sigma = \sqrt{Npq}[/tex]
[tex]\sigma = \sqrt{600 \times 0.09\times 0.91}[/tex]
[tex]\sigma[/tex] = 7
Therefore, the value of the standard deviation is 7.
To know more about standard deviation follow
https://brainly.com/question/475676
#SPJ2
Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105
Answer:
8 and 9
Step-by-step explanation:
If x is the smaller integer, and x + 1 is the larger integer, then:
(x + 1)² + 3x = 105
x² + 2x + 1 + 3x = 105
x² + 5x − 104 = 0
(x + 13) (x − 8) = 0
x = -13 or 8
Since x is positive, x = 8. So the two integers are 8 and 9.
please help me ☣️☢️☢️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️⬅️▫️
Answer:
acute isosceles triangle
vertex angle, y = 44.0 degrees. (smallest angle)
Step-by-step explanation:
If the sides are in the ratio 4:4:3,
two of the sides have equal lengths, so it is an isosceles triangle.
Also, the sum of square of the two shorter sides is greater than the square of the longest side, so it is an acute triangle.
To find the smallest angle, we draw the perpendicular bisector of the base (side length 3) and form two right triangles.
The base angle x is given by the ratio
cos(x) = 1.5/4 = 3/8
Consequently the base angle is arccos(3/8) = 68.0 degrees.
The vertex angle equals twice the complement of 68.0
vertex angle, y = 2 (90-68.0) = 44.0 degrees. (smallest angle)
Data was collected for a sample of organic snacks. The amount of sugar (in mg) in each snack is summarized in the histogram below. 2 4 6 8 10 amount of sugar (mg) 180 182 184 186 188 190 192 194 Frequency What is the sample size for this data set?
Answer:
The sample size is 30.
Step-by-step explanation:
The sample size of a histogram can be calculated by summing up all the frequencies of all the occurrences in the data set
From the question the frequency is given as
Frequency = 2 4 6 8 10
The sample size n =
2 + 4 + 6 + 8 + 10
= 30
Therefore the sample size n of the data set = 30
amanda teaches the art of quilling to 4 students. These students each teach art of quilling to 4 other students. If this process continues for 5 generation after amanda, BLANK people other than amanda will know the art of qiulling
Answer:
1024
Step-by-step explanation:
4 * 4 * 4 * 4 * 4
Gravel is being dumped from a conveyor belt at a rate of 20 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 11 ft high
Answer:
0.0526ft/minStep-by-step explanation:
Since the gravel being dumped is in the shape of a cone, we will use the formula for calculating the volume of a cone.
Volume of a cone V = πr²h/3
If the diameter and the height are equal, then r = h
V = πh²h/3
V = πh³/3
If the gravel is being dumped from a conveyor belt at a rate of 20 ft³/min, then dV/dt = 20ft³/min
Using chain rule to get the expression for dV/dt;
dV/dt = dV/dh * dh/dt
From the formula above, dV/dh = 3πh²/3
dV/dh = πh²
dV/dt = πh²dh/dt
20 = πh²dh/dt
To calculate how fast the height of the pile is increasing when the pile is 11 ft high, we will substitute h = 11 into the resulting expression and solve for dh/dt.
20 = π(11)²dh/dt
20 = 121πdh/dt
dh/dt = 20/121π
dh/dt = 20/380.133
dh/dt = 0.0526ft/min
This means that the height of the pile is increasing at 0.0526ft/min
A table of values of a linear function is shown below. Find the output when the input is N. Type your answer in the space provide
Answer:
[tex] -3n - 7 [/tex]
Step-by-step explanation:
Considering the linear function represented in the table above, to find what output an input "n" would give, we need to first find an equation that defines the linear function.
Using the slope-intercept formula, y = mx + b, let's find the equation.
Where,
m = the increase in output ÷ increase in input = [tex] \frac{-13 - (-10)}{2 - 1} [/tex]
[tex] m = \frac{-13 + 10}{1} [/tex]
[tex] m = \frac{-3}{1} [/tex]
[tex] m = -3 [/tex]
Using any if the given pairs, i.e., (1, -10), plug in the values as x and y in the equation formula to solve for b, which is the y-intercept
[tex] y = mx + b [/tex]
[tex] -10 = -3(1) + b [/tex]
[tex] -10 = -3 + b [/tex]
Add 3 to both sides:
[tex] -10 + 3 = -3 + b + 3 [/tex]
[tex] -7 = b [/tex]
[tex] b = -7 [/tex]
The equation of the given linear function can be written as:
[tex] y = -3x - 7 [/tex]
Or
[tex] f(x) = -3x - 7 [/tex]
Therefore, if the input is n, the output would be:
[tex] f(n) = -3n - 7 [/tex]
An important proportion that the ancient Greeks used was the
the ancient Greek used the golden ratio
Answer:
An important proportion that the Ancient Greeks used was the Golden Mean, the a0
Step-by-step explanation:
Also known as Golden Ratio, Divine Proportion, or Golden Section
Identify an equation in point-slope form for the line perpendicular to
y= - 1/3x - 6 that passes through (-1,5).
O A. y + 1 = 3(x - 5)
O B. y + 5 = 1/3(x - 1)
O C. y - 5 = 3(x + 1)
O D. y - 5 = - 1/3(x + 1)
Answer:
hope you get it....sorry for any mistake calculations
Perform the indicated operation. kyz * 1/kyz answer choices is 0 1 and k^2 y^2 z^2
Answer:
1
Step-by-step explanation:
[tex]\frac{kyz}{1}*\frac{1}{kyz} =\frac{kyz}{kyz}=1[/tex]
17. What is the most likely outcome of decreasing the wavelength of incident light on a diffraction grating? A. lines become narrower B. distance between lines increases C. lines become thicker D. distance between lines decreases
When the wavelength of a diffraction grating is decreased, the distance between lines decreases.
What is a diffraction grating?The diffraction grating is used to carry out interference experiments. It consists of a number of small lines that are constructed to be close to each other and produce an interference pattern.
The outcome of decreasing the wavelength of incident light on a diffraction grating is that the distance between lines decreases.
Learn more about diffraction grating:https://brainly.com/question/13902808
#SPJ1
Kirsten has 9 syrup containers from a local cafe. There are 6 milliliters of syrup per container.
Answer: 54 mL
Step-by-step explanation:
Simply do 9(number of containers)*6(Syrup per container) to get 54 mL of syrup.
Hope it helps <3
I need to know if the following questions are true or false
Answer:
False
Step-by-step explanation:
To find <A, we can do 5x - 80 = 3x + 20.
As we simplify, we will get 2x = 100, which is x = 50
Therefore, <A will be 50 degrees and not 45 degrees.
Also, if you need y, you can do:
3y - 7 = y + 7
2y = 14
y = 7