the cord on a power tool you are planning to use has a split in the cord jacket but the insulated conductor inside appears to be undamaged. you should

Answers

Answer 1

If the cord jacket of a power tool has a split but the insulated conductor inside appears to be undamaged, you should immediately stop using the tool and unplug it from the power source.

What is Power?

Power is a physical quantity that measures the rate at which work is done or energy is transferred. It is defined as the amount of work done or energy transferred per unit time. The unit of power is the watt (W), which is equivalent to one joule (J) of work per second (s).

It is important to not use the power tool until the split in the cord jacket is repaired or replaced. This is because the split in the cord jacket could expose the internal wiring to external factors such as moisture, dust, and debris, which could lead to a potential electrical hazard, such as an electric shock or a short circuit.

Learn more about Power from given link

https://brainly.com/question/11569624

#SPJ1


Related Questions

if a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 a.m. and then gets on the first train that arrives, what proportion of time does he or she go to destination a?

Answers

The probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.

The uniform distribution is a type of probability distribution where all outcomes are equally likely. In this case, the passenger arrives at the station at a time that is uniformly distributed between 7 and 8 a.m. Therefore, the probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.
In other words, the probability that the passenger will go to destination A is 1/2. This is because the probability that they will arrive between 7 and 8 a.m. and get on the first train that arrives is the same as the probability that they will arrive between 7 and 8 a.m., which is 1/2.

Therefore, the proportion of time the passenger goes to destination A is 1/2. This is because the probability of them getting on the first train that arrives is the same as the probability of them arriving between 7 and 8 a.m., which is 1/2.

For more such questions on Probability distribution.

https://brainly.com/question/14210034#

#SPJ11

a satellite is orbiting the earth at an altitude of 744 km above the surface of earth. what is the acceleration due to gravity in m/s2 at that altitude?

Answers

The acceleration due to gravity in m/s² at that altitude of 744 km is 9.797.

To find out what the acceleration due to gravity is in m/s² at an altitude of 744 km above the surface of earth, use the formula `g = Gm/r²`.

Given,The altitude of the satellite, h = 744 km,The radius of the earth, r = 6371 km, Formula for acceleration due to gravity:

g = Gm/r²

Here, the value of G, the universal gravitational constant, is 6.67 x 10^-11 Nm²/kg².Mass of the Earth, m = 5.97 x 10^24 kg.Let's calculate the radius of the orbit, R.Radius of the orbit = r + h= 6371 + 744 = 7115 km = 7.115 x 10^6 m.So, we have,

g = Gm/R²= 6.67 x 10^-11 x 5.97 x 10^24 / (7.115 x 10^6)²= 9.797 m/s².Therefore, the acceleration due to gravity in m/s² at that altitude is 9.797.

More on acceleration: https://brainly.com/question/21975712

#SPJ11

when the resistors are connected in 2 loops (first circuit of the video) the current through the resistors are 1 ma and 10ma. what is the current in the circuit before the junction that splits to the 2 resistors?

Answers

The circuit's initial current via the junction where the two resistors are separated is 11 mA. The current divides and simultaneously passes via both resistors in a paralleled resistor circuit using two resistors.

A battery and many capacitors are linked in series. The capacitors have a comparable amount of charge.

A battery and many capacitors are linked in series. The sum of the potential differences between each capacitor equals the current battery emf.

When two resistors having resistance R that are similar to one another are linked in series, the capacitive reactance is 2R.

Both negative and positive ions move charges whenever an electricity flows through with an ionic liquid like salty water. Energy is measured in electron-volts.

To know more about current click here

brainly.com/question/30832987

#SPJ4

if it rotates through 8.00 revolutions in the first 2.50 s , how many more revolutions will it rotate through in the next 5.00 s ?

Answers

The object will rotate through 16.00 revolutions in the next 5.00s if it rotates through 8.00 revolutions in the first 2.50s.

The first step to answer this question is to determine the rotational speed (angular velocity) of the object. To do this, we use the formula:

Angular velocity = number of revolutions / time

So, the angular velocity of the object is given by:

Angular velocity = 8.00 revolutions / 2.50 s

Angular velocity = 3.20 revolutions per second

Now, we can use this angular velocity to determine the number of revolutions the object will rotate through in the next 5.00 s. To do this, we use the formula:Number of revolutions = angular velocity x time

So, the number of revolutions the object will rotate through in the next 5.00 s is given by:

Number of revolutions = 3.20 revolutions per second x 5.00 s

Number of revolutions = 16.00 revolutions

Therefore, the object will rotate through 16.00 revolutions in the next 5.00 s.

More on angular velocity: https://brainly.com/question/20355237

#SPJ11

A load of 100g placed on a spiral spring, A extends it spring by 2cm when the same load is placed on spiral spring, B it extends it by 5cm, which spring has smaller stiffness

Answers

Spring A has smaller stiffness.Stiffness is a measure of the spring's resistance to deformation. The stiffer the spring, the more resistant it is to deformation. When a load is applied to a spring, it experiences deformation. Stiffness is a measure of how much force is required to deform the spring by a certain amount.

Springs with higher stiffness require more force to deform them than springs with lower stiffness.A load of 100g placed on a spiral spring, A extends its spring by 2cm, whereas the same load placed on spiral spring, B extends it by 5cm. The stiffness of a spring is inversely proportional to the amount of deformation it experiences. Spring B will be less stiff because it experiences more deformation than Spring A.Spring stiffness is measured in units of force per unit of length. The spring constant k is a measure of stiffness. It is defined as the amount of force required to extend the spring by one unit of length.The spring constant k can be calculated as follows:F = kxWhere F is the force applied, k is the spring constant, and x is the amount of deformation experienced by the spring. We can use this formula to calculate the spring constants for A and B:kA = F/x = 100g/(2/100) = 5000 N/mkB = F/x = 100g/(5/100) = 2000 N/mSpring A has a higher stiffness (5000 N/m) than spring B (2000 N/m) because it requires more force to deform it by the same amount. Hence, spring A has smaller stiffness.

For such more questions on stiffness:

brainly.com/question/30724864

#SPJ11

your car is accelerating to the right from a stop.for the steps and strategies involved in solving a similar problem, you may view a

Answers

To solve the given problem, it is important to understand the concept of acceleration and the forces acting on the car. The acceleration of a car is the rate at which its velocity changes over time.

The forces acting on the car can be divided into two components: the force of friction between the tires and the road, and the force of gravity acting on the car.

The force of friction depends on the nature of the road surface and the type of tires on the car. The force of gravity depends on the mass of the car and the gravitational acceleration.

It is given that the car is accelerating to the right from a stop. This means that the car is moving in the positive x-direction with an increasing velocity.Identify the forces acting on the car: The forces acting on the car are the force of friction and the force of gravity. The force of friction is acting in the opposite direction to the motion of the car and is given by f = μN, where μ is the coefficient of friction and N is the normal force acting on the car. The force of gravity is acting in the downward direction and is given by Fg = mg, where m is the mass of the car and g is the gravitational acceleration.Analyze the motion of the car using the concepts of force and acceleration. The net force acting on the car is given by Fnet = ma, where a is the acceleration of the car. From Newton's second law, we can write Fnet = f - Fg = ma. Solving for a, we get a = (f - Fg)/m.Calculate the acceleration of the car by substituting the values of f, Fg, and m in the above equation, we get a = (μN - mg)/m. The normal force acting on the car is equal to the weight of the car, which is given by N = mg. Substituting this value in the above equation, we get a = (μ - g)/m. This is the expression for the acceleration of the car.

Therefore, a = (μ - g)/m is the expression for the acceleration of the car.

To know more about acceleration click here:

https://brainly.com/question/30660316

#SPJ11

a material has temperature coefficient of resistance (alpha) of 3.9 x 10^-3. if the material has a resistance of 23 ohms at a temperature of 20 c, what is the resistance of this material at a temperature of 50 c?

Answers

The resistance of the material at a temperature of 50°C is approximately 25.791 Ω.

We can use the formula for temperature dependence of resistance to solve this problem:

R2 = R1 [1 + α(T2 - T1)]

where R1 is the resistance at temperature T1, R2 is the resistance at temperature T2, and α is the temperature coefficient of resistance.

Plugging in the given values, we get:

R2 = 23 Ω [1 + (3.9 x 10⁻³/°C)(50°C - 20°C)]

Simplifying, we get:

R2 = 23 Ω [1 + (3.9 x 10^-3/°C)(30°C)]

R2 = 23 Ω [1 + 0.117]

R2 = 23 Ω [1.117]

R2 = 25.791 Ω

Therefore, the resistance of the material is approximately 25.791 Ω.

Learn more about Resistance:

#SPJ11

In the formula v = f X, what measurement is used for the frequency of the wavelength?​

Answers

v = fλ links the velocity, frequency, and wavelength of a wave and is used to compute one of these parameters if the other two are known.

What unit of measurement is the wavelength's frequency?

The wavelength formula shows the wavelength in metres. The v represents wave velocity and is measured in metres per second (mps). In addition, the letter "f" stands for frequency, which is expressed in hertz (Hz).

Which of the following best describes the wavelength measuring unit?

The term wavelength implies that it measures length. Its measurements are often expressed in length measurements or metric units. In other words, wavelengths can be expressed in their SI units, metres.

To know more about frequency visit:-

https://brainly.com/question/12053539

#SPJ1

a 23.9 a current flows in a long, straight wire. find the strength of the resulting magnetic field at a distance of 58.3 cm from the wire.

Answers

The magnetic field at a distance of 58.3 cm from a long, straight wire carrying a 23.9 A current, the strength of the resulting magnetic field can be found using the equation B = μ0*I/2π*r, where B is the magnetic field strength, μ0 is the permeability of free space, I is current, and r is the distance.

Therefore, the strength of the magnetic field at 58.3 cm from the wire is B = 4π * 10-7 * 23.9/2π * 58.3 = 0.0067 N/Amp.


The magnetic field strength due to the current in the wire is caused by the current producing a magnetic field, which is a result of moving electric charges (electrons) in the wire. The strength of the magnetic field depends on the magnitude of the current and the distance from the wire.

As the current increases, the magnetic field strength increases; likewise, as the distance from the wire increases, the magnetic field strength decreases. The direction of the magnetic field can be determined using the right-hand rule.


The strength of the magnetic field can be used to calculate the force on a moving charged particle, F = q * v * B, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength. By using this equation, the force acting on a charged particle due to the magnetic field at 58.3 cm from the wire can be found.

To know more about magnetic field refer here:

https://brainly.com/question/23096032#

#SPJ11

you have two flat metal plates, each of area 2.00 m2, with which to construct a parallel-plate capacitor. if the capacitance of the device is to be 1.00 f, what must be the separation between the plates?

Answers

The capacitance of the device is to be 1.00 f, the separation distance between the plates is 1.77 × 10⁻¹³ m.

We have two flat metal plates of area 2.00 m² each with which to construct a parallel-plate capacitor. If the capacitance of the device is to be 1.00 F

Given:

Area of each plate = 2.00 m²

Capacitance of the device = 1.00 F

We know that the capacitance of a parallel-plate capacitor is given by:

C = εA/d

Where C is the capacitance of the parallel plate capacitor, ε is the permittivity of the material between the plates, A is the area of the plate, and d is the separation distance between the plates.

Rearranging this equation we get:

d = εA/C

Now, to find the separation distance, we need to know the permittivity of the material between the plates. The permittivity of a vacuum is 8.85 × 10⁻¹² F/m.

Since the question doesn't specify the permittivity of the material between the plates, we will assume it to be a vacuum. So,

ε = 8.85 × 10⁻¹² F/m²

Substituting the values of ε, A, and C, we get:

d = εA/C= (8.85 × 10⁻¹² F/m²) × (2.00 m²) / (1.00 F)

= 17.7 × 10⁻¹² m²/F /F= 17.7 × 10⁻¹² m

= 1.77 × 10⁻¹³ m

Therefore, the separation distance between the plates is 1.77 × 10⁻¹³ m.

For more such questions on distance , Visit:

https://brainly.com/question/26550516

#SPJ11

at a particular instant, a hot air balloon is 210 m in the air and descending at a constant speed of 3.5 m/s. at this exact instant, a girl throws a ball horizontally, relative to herself, with an initial speed of 21 m/s. when she lands, where will she find the ball? ignore air resistance. (find the distance, in meters, from the girl to the ball.)

Answers

The ball which is thrown with a speed of 21 m/s, travels a distance of 129.99 m in the horizontal direction.

Therefore, the vertical component of the ball's motion will be determined by the force of gravity and the initial vertical speed of the balloon.

We can use the following kinematic equation to determine how long it takes for the ball to fall to the ground:

h = ut + 1/2 * g * t^2

where h is the initial height of the ball (equal to the height of the balloon which is 210 m).

u is the initial velocity of the ball in the vertical direction which is 3.5 m/s.

g is the acceleration due to gravity (approximately 9.8 m/s^2),

and t is the time it takes for the ball to fall to the ground.

Plugging in the values we know, we get:

210 = 3.5 * t + 1/2 * 9.8 * t^2

4.9 t^2 + 3.5 t - 210 = 0

t = 6.19 seconds

Now we can use the time it takes for the ball to fall to the ground to determine how far it travels horizontally, given its initial horizontal velocity of 21 m/s. We can use the following equation:

d = v * t

where d is the horizontal distance traveled by the ball, v is its initial horizontal velocity, and t is the time it takes to fall to the ground (which we just calculated).

Plugging in the values we know, we get:

d = 21 * 6.19

d ≈ 129.99 meters

Therefore, the girl will find the ball approximately at a distance of 129.99 meters away from her when she lands after throwing the ball horizontally.

Learn more about the kinematic equation:

https://brainly.com/question/28712225

#SPJ11

over the course of a half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. what is the parallax angle (p) in this case?\

Answers

Over the course of half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. The parallax angle in this case is: 0.400''

Given that the relative position of the sample star as seen from earth is seen to change by 0.400'' over the course of half of a year. We are to determine the parallax angle in this case. Parallax angle (p) can be defined as the angle between the baseline and the line of sight to the star. It is the angle between two lines drawn from the star to the Earth, separated by six months, and viewed at a right angle to the baseline.

It is measured in seconds of arc (or arcseconds), and it is usually too small to measure directly. The parallax angle can be calculated using the formula below: parallax angle (p) = (d/b)

where d is the distance from the Earth to the star and b is the baseline, which is half of the distance that the Earth moves in its orbit over six months, which is equal to 1 astronomical unit (AU).

Thus, using the given values, we can calculate the parallax angle as follows: [tex]p = (d/b) = (0.400/1) = 0.400''[/tex]

Thus, the parallax angle, in this case, is 0.400'' (arcseconds). Therefore, the relative position of a star as seen from Earth changes with the change in the Earth's position. The change in position helps to determine the distance from the Earth to the star using the parallax angle.

To know more about parallax angles refer here:

https://brainly.com/question/20296211#

#SPJ11

Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Drag and drop each item into
the correct column. Order does not matter.
Conductor or Insulator
:: aluminum foil
:: plastic :: ocean water
:: air
:: wood
:: soil
:: foam
glass

Answers

Conductor:

Aluminum foil

Insulator:

Plastic

Air

Wood

Soil

Foam

Glass

What is Conductor?

A conductor is a material or substance that allows electric charge to flow freely through it, offering little or no resistance to the flow of an electric current. Common conductors include metals such as copper, silver, and gold.

A conductor is a material or substance that allows electrical current to flow freely through it. This is due to the presence of free electrons that can move easily through the material when an electric field is applied. Common conductors include metals such as copper, silver, and aluminum.

In contrast, an insulator is a material or substance that does not allow electrical current to flow through it easily. Insulators have very few free electrons and resist the flow of electric current. Common insulators include rubber, plastic, glass, and air.

Learn more about Conductor from given link

https://brainly.com/question/24154868

#SPJ1

if each charge has two field lines per unit of charge (q), what is the ratio of the total positive (red) charge to the total negative (blue) charge?

Answers

The ratio of total positive charge (red) to total negative charge (blue) is 1:1. This is because for each unit of charge (q), there are two field lines, one for the positive charge and one for the negative charge.

What are field lines?

Field lines are a visual tool used to represent the direction and strength of an electrical field. The direction of a field line shows the direction of the force that a positive test charge would experience if it were placed at that point in the field. Meanwhile, the density of the field lines indicates the strength of the electric field.

Since each charge has two field lines per unit of charge (q), it means that the total number of field lines is proportional to the total charge. If there are equal numbers of field lines coming from both the positive and negative charges, it means that the ratio of the total positive charge to the total negative charge is 1:1.

Read more about electricity:

https://brainly.com/question/24786034

#SPJ11

at what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm?

Answers

The first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm is approximately 6.2°.


The angle of the first-order maximum refers to the angle at which the brightest interference pattern appears on a screen placed behind two closely spaced slits when illuminated with the blue light of 450-nm wavelength.

The angle is determined by the equation:

theta_m = (m*lambda)/d

where m is the order, lambda is the wavelength, and d is the slit separation.
theta_m = (1*450E-9 m)/0.0500 mm
theta_m = 6.2°

Thus, the first-order maximum for double slits of 0.0500 mm at 450 nm λ blue light is around 6.2°.

To know more about  first-order maximum click here:

https://brainly.com/question/14703717

#SPJ11

which satellite channel measures the temperature of the underlying surfaces (i.e., clouds, ocean, land)? group of answer choices visible infrared water vapor

Answers

Visible Infrared (IR) satellite channels measure the temperature of underlying surfaces. This includes clouds, oceans, and land.

IR channels work by detecting the amount of infrared radiation emitted from the Earth's surface. The intensity of the radiation is then converted into a digital number, which is displayed as a color on a satellite image. The higher the digital number, the warmer the surface temperature. This data can then be used to track changes in temperatures over time. The satellite channel that measures the temperature of the underlying surfaces is visible infrared. The surface temperature measurement is made possible by the difference in temperatures of objects in the infrared spectrum. An object's temperature and the level of radiation it emits have a direct correlation, and this is what visible infrared satellites use to take the temperature of the underlying surfaces. The visible infrared (VI) channel is used to estimate cloud cover and surface temperature. Infrared radiation from the surface of the earth is detected in this channel. The temperature of clouds, oceans, and land can be estimated using the visible infrared (VI) channel. It also provides data on how temperature changes with latitude and over time. Furthermore, the VI channel aids in the identification of cold and hot surfaces. Water vapor (WV) is another channel utilized in satellite imagery to observe the atmosphere's water vapor content. It enables meteorologists to forecast the occurrence of rainfall and other weather patterns. In general, satellite measurements assist in understanding Earth's weather and its impact on humans and the environment. These satellites help scientists to forecast severe weather, monitor weather changes over time, and analyze natural disasters. In addition, they assist in tracking the effects of climate change on the planet.

For more such questions on Satellites.

https://brainly.com/question/15168838#

#SPJ11

how much work is done lifting a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot

Answers

The amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

In order to solve the problem, we can use the formula W = Fd. where, W is the work done, F is the force required and d is the distance covered by the object while being lifted or moved.

So, we have to first calculate the force required to lift the object. Let us assume the force required is F, then

F =  weight of object + weight of cable

F = 15 + 2 * 30

F = 75 pounds

Therefore, the force required to lift the object is 75 pounds. Now, we can calculate the work done as follows:

W= Fd

W = 75 * 14

W = 1050 foot-pounds

Therefore, the amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

Learn more about work of move at https://brainly.com/question/28356414

#SPJ11

the electric field 0.300 m from a very long uniform line of charge is 850 n/c . part a how much charge is contained in a section of the line of length 1.70 cm ? express your answer in coulombs.

Answers

The charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C

The electric field 0.300 m from a very long uniform line of charge is 850 n/c. How much charge is contained in a section of the line of length 1.70 cm? The answer is 1.277 × 10⁻⁷ C. Explanation: To begin, let's consider the electric field due to an infinite line of charge. The electric field generated by a uniformly charged infinite line of charge is given by:$$E = \frac{λ}{2πεr}$$where, E is the electric field, λ is the linear charge density (charge per unit length), r is the distance from the wire, and ε is the permittivity of free space. To begin with, we can rearrange the equation for electric field:$$λ=\frac{2πεrE}{l}$$Where, l is the length of the line section of interest, E is the electric field at the distance r from the line of charge, and λ is the linear charge density. Now we can plug in the given values:$$(1.70 cm)λ = Q$$$$λ=\frac{2πεrE}{l}$$λ = (2π * 8.85 × 10⁻¹² F/m) * (0.300 m) * (850 N/C) / (0.0170 m)λ = 2.16 × 10⁻⁵ C/mSo, the charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C$$Therefore, 1.277 × 10⁻⁷ C.

Learn more about Charge line of length

brainly.com/question/14433096

#SPJ11

europa, one of the moons of jupiter, was discovered by galileo in 1610. europa has a circular orbit of radius 6.708 105 km and period 3.551 days. find the mass of jupiter.

Answers

Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

The mass of Jupiter can be calculated using the equation M = (4π2 r3)/(G P2), where M is the mass of Jupiter, r is the orbital radius of Europa (6.708 105 km), G is the gravitational constant (6.674 × 10-11 m3 kg-1 s-2), and P is the orbital period of Europa (3.551 days).

The circular orbit of Europa is given as, r = 6.708 × 105 km. The period of Europa is given as, T = 3.551 days are supposed to calculate the mass of Jupiter. In order to calculate the mass of Jupiter, we need to use Kepler's 3rd law. Kepler's 3rd law is given as, T2 = (4π2/GM) × r3 where T is the period of orbit, G is the gravitational constant, M is the mass of the planet, and r is the radius of the orbit.

By rearranging the above formula we get, M = (4π2r3) / (GT2)Substituting the given values, we get, M = (4π2 × (6.708 × 105)3) / ((6.67430 × 10-11) × (3.551 × 24 × 60 × 60)2) ≈ 1.898 × 1027 kg. Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

You can read more about Jupiter at https://brainly.com/question/2715802#:

#SPJ11

Research Galileo's work on falling bodies What did he wanted to demonstrate?What arguments did he use to prove that he was right?did be used experiments logic finding of other scientists or other approaches

Answers

Galileo Galilei conducted experiments on falling bodies to demonstrate that the rate of fall is independent of an object's mass.  Galileo argued that if heavier objects did indeed fall faster, then two objects of different masses tied together would fall at an intermediate speed, which he found was not the case.

He used various methods to prove his point, including rolling balls down inclined planes, dropping weights from towers, and measuring the times of fall. He also used logic and mathematical reasoning to support his conclusions. Galileo's work marked a significant shift from traditional Aristotelian physics to the empirical approach of modern science.

To know more about modern science, here

brainly.com/question/30252960

#SPJ4

a rear window defroster consists of a long, flat wire bonded to the inside surface of the window. when current passes through the wire, it heats up and melts ice and snow on the window. for one window the wire has a total length of 11.0 m , a width of 1.8 mm , and a thickness of 0.11 mm . the wire is connected to the car's 12.0 v battery and draws 7.5 a . part a what is the resistivity of the wire material? express your answer with the appropriate units.

Answers

The resistivity of the wire material can be calculated using Ohm's Law, which states that V=IR, or voltage = current multiplied by resistance. Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8} \Omega m[/tex].

Resistivity of wire is given as ρ=RA/L where R is the resistance of wire, A is the cross-sectional area of the wire, L is the length of the wire.

The formula to calculate the resistance of wire from Ohm's Law is given by R=V/I where V is the voltage, I is the current.

Substituting the given values: V = 12.0 V, I = 7.5 A.

Therefore, R=V/I=12.0 / 7.5 = 1.6 Ω

From the formula of resistivity:

[tex]\rho=\dfrac{RA}{L}\\R=\dfrac{ρL}{A}[/tex]

Substituting the given values: R = 1.6 Ω, L = 11.0 m and calculating the area:

[tex]A = (1.8 \times 10^{-3} m) (0.11 \times 10^{-3} m)\\ = 0.198 \times 10^{-6} m²[/tex]

Therefore,

[tex]\rho = RA/L\\= \dfrac{R \times A}{ L}\\= \frac{1.6 \times 0.198 \times 10^{-6}}{ 11.0}\\ = 2.87 \times 10^{-8 } \Omega m[/tex]

Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8 } \Omega m[/tex].

For more details on resistivity, click on the below link:

https://brainly.com/question/30799966

#SPJ11

two identical carts, both of mass 0.5 kg are moving towards each other, each with a speed of 1.5 m/s. after they collide, what will be their velocities?

Answers

After the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

The velocities of the two carts after collision can be determined using the conservation of momentum principle. Momentum is defined as the product of an object's mass and velocity. Given,Mass of each cart, m = 0.5 kg, Initial velocity of each cart, u = 1.5 m/s, Initial momentum of each cart, p = mu.

After collision, velocity of the carts = v. Using the law of conservation of momentum;

mu + mu = mv + mv⇒ 2mu = 2mv⇒ u = v

Momentum before collision = Momentum after collision (conservation of momentum)

∴ 0.5 × 1.5 + 0.5 × (-1.5) = 0.5v1 + 0.5v2

On solving, we get,v1 = -1.5 m/sv2 = 1.5 m/s

Therefore after the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

More on velocity: https://brainly.com/question/30470329

#SPJ11

a 10.0-mf capacitor is fully charged across a 12.0-v bat- tery. the capacitor is then disconnected from the battery and connected across an initially uncharged capacitor with capacitance c. the resulting voltage across each capacitor is 3.00 v. what is the value of c?

Answers

The value of  uncharged capacitor in series with a 10.0-microfarad capacitor, given that each capacitor has a voltage of 3.00 volts, can be calculated using the formula for equivalent capacitance in series and  formula for charge on a capacitor. The value of c is approximately 4.00 microfarads.

To determine the value of c, which is [tex]1/Ceq = 1/C1 + 1/C2[/tex] . Initially, the 10.0-microfarad capacitor has a charge of [tex]Q = CV = (10.0 * 10^{-6 }F) * 12.0 V = 1.20 * 10^{-4} C[/tex].

When it is connected in series with uncharged capacitor with capacitance c,  charge is shared between the two capacitors. The charge on  10.0-microfarad capacitor is also equal to the charge on  uncharged capacitor, which is given by [tex]Q = (3.00 V) * C[/tex] .

Equating the two expressions for Q and solving for c, we get [tex]C = Q/3.00[/tex] [tex]V = (1.20 * 10^{-4 C}) / (3.00 V) = 4.00 * 10^{-5 F}[/tex]. Therefore,  value of c is approximately 4.00 microfarads.

To know more about equivalent capacitance, here

brainly.com/question/30905469

#SPJ4

a long, straight wire carries a current of 8.60 a. an electron is traveling in the vicinity of the wire. at the instant when the electron is 4.50 cm from the wire and traveling at a speed of 6.00 * 104 m>s directly toward the wire, what are the magnitude and direction (relative to the direction of the current) of the force that the magnetic field of the current exerts on the electron?

Answers

The magnitude and direction of the force that the magnetic field of the current exerts on the electron in a a long, straight wire is 1.96 x 10⁻¹⁸ N and direction of the force is opposite to the direction of the current.

The magnetic field of the current exerts a force on the electron of magnitude 6.072 x 10⁻¹³ N in a direction that is opposite to the direction of the current.

where

Current, I = 8.60 A

Distance of electron from wire, r = 4.50 cm = 0.045 m

Velocity of electron, v = 6.00 x 10^4 m/s

The force on the electron due to magnetic field of current-carrying wire is given by:

F = (μ * I * q) / (2 * π * r)

where μ is the magnetic permeability of free space and is equal to 4π x 10⁻⁷ Tm/A,

q is the charge of electron and is equal to -1.6 x 10⁻¹⁹ C, and

r is the distance between the electron and the wire.

Substituting the values, we get:

F = (4π x 10⁻⁷ Tm/A) * (8.60 A) * (-1.6 x 10⁻¹⁹ C) / (2 * π * 0.045 m)

F = -1.96 x 10⁻¹⁸ N.

The negative sign indicates that the direction of force is opposite to the direction of the current.

So, the magnitude of the force exerted by the magnetic field on the electron is 1.96 x 10⁻¹⁸ N, and the direction of the force is opposite to the direction of the current.

To practice more questions about the 'magnetic field':

https://brainly.com/question/26257705

#SPJ11

A boy on a 1.9 kg skateboard initially at rest
tosses a(n) 8.0 kg jug of water in the forward
direction.
If the jug has a speed of 2.7 m/s relative to
the ground and the boy and skateboard move
in the opposite direction at 0.65 m/s, find the
boy’s mass.
Answer in units of kg.

Answers

Answer:

Approximately [tex]31.3\; {\rm kg}[/tex]. (Assuming the friction between the skateboard and the ground is negligible.)

Explanation:

The momentum [tex]p[/tex] of an object of [tex]m[/tex] and velocity [tex]v[/tex] is:

[tex]p = m\, v[/tex].

When the boy tossed the jug of water, the change in the momentum of the jug would be:

[tex]\Delta p(\text{jug}) = m(\text{jug}) \, (v(\text{jug}) - u(\text{jug}))[/tex], where:

[tex]m(\text{jug}) = 8.0\; {\rm kg}[/tex] is the mass of the jug;[tex]v(\text{jug}) = 2.7\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the jug after the toss;[tex]u(\text{jug}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the jug, which was at rest before the toss.

Hence:

[tex]\begin{aligned}\Delta p(\text{jug}) &= m(\text{jug}) \, (v(\text{jug}) - u(\text{jug})) \\ &= (8.0)\, (2.7 - 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= 21.6\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Similarly, the change in the momentum of the skateboard would be:

[tex]\Delta p(\text{board}) = m(\text{board}) \, (v(\text{board}) - u(\text{board}))[/tex], where:

[tex]m(\text{board}) = 1.9\; {\rm kg}[/tex] is the mass of the board;[tex]v(\text{board}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the board after the toss;[tex]u(\text{board}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the board.

Note that the velocity of the board [tex]v(\text{board})\![/tex] after the toss is opposite to that of the jug. The sign of [tex]v(\text{board})[/tex] would be opposite to that of [tex]v(\text{jug})[/tex]. Since [tex]v(\text{jug})\![/tex] is positive, the value of [tex]v(\text{board})\!\![/tex] should be negative.

[tex]\begin{aligned}\Delta p(\text{board}) &= m(\text{board}) \, (v(\text{board}) - u(\text{board})) \\ &= (1.9)\, ((-0.65)- 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= (-1.235)\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Let [tex]m(\text{boy})[/tex] denote the mass of the boy. The velocity of the boy was initially [tex]u(\text{boy}) = 0\; {\rm m\cdot s^{-1}}[/tex] and would become [tex]v(\text{boy}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] after the toss. The change in the velocity of the boy would be:

[tex]\Delta p(\text{boy}) = m(\text{boy}) \, (v(\text{boy}) - u(\text{boy}))[/tex].

Under the assumptions, the total changes in the momentum of this system (the boy, the skateboard, and the jug) should be [tex]0[/tex]. Thus:

[tex]\Delta p(\text{boy}) + \Delta p(\text{boy}) + \Delta p(\text{jug}) = 0[/tex].

Rearrange and solve for the mass of the boy:

[tex]\Delta p(\text{boy}) = -\Delta p(\text{jug}) - \Delta p(\text{board})[/tex].

[tex]\begin{aligned} m(\text{boy}) &= \frac{-\Delta p(\text{jug}) - \Delta p(\text{board})}{v(\text{boy}) - u(\text{boy})} \\ &= \frac{-(21.6) - (-1.235)}{(-0.65) - 0}\; {\rm kg} \\ &\approx 31.3\; {\rm kg}\end{aligned}[/tex].

calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length.

Answers

The work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is[tex]W = (1/2) \times k \times x^2[/tex].

We need to know the spring constant (k) and the displacement of the block (x) from its initial position to the position where the spring has returned to its uncompressed length. We can use the formula:

W = (1/2) * k * x^2

where W is the work done on the block, k is the spring constant, and x is the displacement of the block.

This formula is derived from the potential energy stored in the spring, which is given by:

U = (1/2) * k * x^2

where U is the potential energy stored in the spring.

When the block is initially at rest, the spring is compressed, and it has potential energy given by U = - (1/2) * k * x^2, where x is the initial compression of the spring.

Note that the negative sign indicates that the work done by the spring is negative, which means that the spring is doing work on the block in the opposite direction to the displacement of the block. This is because the spring force is always directed opposite to the displacement of the block.

As the block is released, the spring begins to push it back to its uncompressed length, and the block begins to move.

The work done on the block by the spring is equal to the change in potential energy of the spring, which is given by:

W = U_final - U_initial

Since the final position of the block is where the spring has returned to its uncompressed length, the final potential energy of the spring is zero. Therefore, the work done on the block by the spring is:

W = U_initial

Substituting the initial potential energy of the spring into this equation, we get:

W = (1/2) * k * x^2

Therefore, the work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is given by the formula:

W = (1/2) * k * x^2

Learn more about spring:

https://brainly.com/question/14670501

#SPJ11

a car starts from rest and moves around a circular track of radius 47.0 m. its speed increases at the constant rate of 0.600 m/s2. (a) what is the magnitude of its net linear acceleration 15.0 s later?

Answers

The magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2. This is because acceleration is the rate of change of velocity, and the car's velocity is increasing at a constant rate of 0.600 m/s2.

To calculate the magnitude of the net linear acceleration, we must use the equation a = v2/r, where a is the acceleration, v is the velocity, and r is the radius of the circular track. Since the velocity of the car is increasing at a constant rate of 0.600 m/s2, we can calculate the velocity of the car after 15.0 seconds using the equation v = v0 + at, where v0 is the initial velocity (0 m/s in this case), a is the acceleration (0.600 m/s2), and t is the time (15.0 seconds).
Thus, the velocity of the car after 15.0 seconds is 9.00 m/s. Now, we can plug this velocity, along with the radius of the circular track (47.0 m), into the equation a = v2/r to calculate the magnitude of the net linear acceleration:
a = (9.00 m/s)2/47.0 m = 5.08 m/s2

Therefore, the magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2.

For more such questions on Linear acceleration.

https://brainly.com/question/12996537#

#SPJ11

water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. the density of water is 1 000 kg/m3. determine its average velocity. multiple choice question. 20 m/s 200 m/s 0.02 m/s 2 m/s 0.2 m/s

Answers

Option D: 2 m/s is the average velocity of the water flowing through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s.

According to the question:

cross-sectional area of the pipe = 0.002m²

Mass flowrate = 4 kg/s

Density of water = 1000 kg/m³

We are asked to find, average velocity =?

Average velocity is the net or total displacement covered by a body in a given time. The mass flow rate divided by the pipe's cross-sectional area and density ratio is the formula for calculating a fluid's average velocity.

As a result, the water's average flow rate through the pipe is provided by:

v = m / (ρ × A)

where, v is the average velocity, m is the mass flow rate, ρ is the density of water, and A is the cross-sectional area of the pipe. Substituting the values in the above equation we get:

v = 4 / (1000 × 0.002)

v = 2m/s

Therefore, the average velocity of water flowing through a pipe of cross-sectional area of 0.002m² is 2m/s.

To know more about average velocity, refer:

https://brainly.com/question/13243044

#SPJ4

Correct question is:

Water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. The density of water is 1 000 kg/m3. Determine its average velocity. Multiple choice question.

20 m/s

200 m/s

0.02 m/s

2 m/s

0.2 m/s

the plane is flying at 800 miles per hour. how far will the package travel horizontally during its descent?

Answers

The distance that a package will travel horizontally during its descent when a plane is flying at 800 miles per hour can be calculated using the following steps is 1600 miles.

What is the distance?

Determine the time taken for the package to hit the ground. We know that when an object is dropped from a certain height, it falls under the influence of gravity.

The acceleration due to gravity is 9.8 m/s². The formula for the time taken for an object to fall can be given by:

t = √(2h/g)

where, t is the time taken for the object to fall is the height from which the object was dropped g is the acceleration due to gravity.

We know that the distance traveled by the package horizontally can be given by d = vt

where, d is the distance traveled horizontally by the package v is the velocity of the planet is the time taken for the package to hit the ground.

Thus, the distance is 1600 miles.

Read more about Distance here:

https://brainly.com/question/15172156

#SPJ11

if a wavelength is 635 nm, what is the frequency? please show all the steps and all of your work when you upload your final answer.

Answers

If a wavelength is 635 nm, the frequency is 4.72 × 10¹⁴ Hz.

The frequency of a wavelength is determined by the formula f = c/λ, where f is the frequency, c is the speed of light (3.00 x 108 m/s), and λ is the wavelength.
Given,

Wavelength = 635 nm

To find, frequency

Formula

The velocity of light = Wavelength × Frequency.

C = λ × f

Frequency f = C / λ

Where C = 3 × 10⁸ m/s, λ = 635 nm = 635 × 10⁻⁹ m

∴ f = C / λ

= (3 × 10⁸ m/s) / (635 × 10⁻⁹ m)

= (3 × 10⁸) × (10⁹ / 635)Hz= 4.72 × 10¹⁴ Hz

Frequency = 4.72 × 10¹⁴ Hz

Therefore, the frequency is 4.72 × 10¹⁴ Hz.

For more such questions on frequency , Visit:

https://brainly.com/question/27151918

#SPJ11

Other Questions
raul is buying a home that is part of an hoa. his lender wants to verify that there are no liens from the hoa on the property. what would they most likely request from the hoa? which theory argues that intimacy often takes longer to develop in online relationships because the communicators need to use unique language and stylistic cues to develop the relationship? graphy = -6 4x + y = 2 in 2006, brazil began incentivizing farmers to grow on previously cleared land after a moratorium on what product? for an actual economy, total expenditures on goods and services by households does not equal gdp because The average wavelength in a series of ocean waves is 15. 0 meters. A wave crest arrives at the shore an average of every 10. 0 seconds, so the frequency is 0. 100 Hz. What is the average speed of the waves? suppose the current equilibrium price of natural gas per mmbtu is $5. if the government decides the price per mmbtu of natural gas cannot rise above $4, there would be: a 0.30 m solution of sucrose (c12h22o11) at 37oc has approximately the same osmotic pressure as blood. what is the osmotic pressure of blood? food insecurity rates are higher than average in households with children that are headed by a single mom. true false What is the significance of this event in the Civil War?Question 4 options:The invasion of the Confederate capital forced it to surrender.The Confederate attack on the Union fort initiated the war.The Confederate defense of the besieged fort lengthened the war.The Union victory divided the Confederacy at the Mississippi River. A refrigerator magnet uses 5/8 inch of magnetic tape. How many refrigerator magnets can you make with 9 3/8 inches of magnetic tape? Explain. when two or more colors merge into one new color, i.e., small scale print or yarn dyed fabric viewed from a distance, it is called the How did White fur traders and Indigenous people in the Pacific Northwest benefit one another? Polygon D has been dilated to create polygon D.Determine the scale factor used to create the image. Scale factor of 1.6 Scale factor of 1.2 Scale factor of 0.8 Scale factor of 0.6 Do you skip lines when using a Venn Diagram? when assessing evolutionary relationships in classification, one approach is to focus on derived (modified) characteristics. what is this approach called? one mistake companies make when preparing segmented income statements is arbitrarily assigning fixed costs to segments. (enter only one word per blank.) need help? review these concept resources. Que cuidados debemos tener al consumir biomoliculas what is the single most important fact that predicts the person with whom you will become friends or have a romantic relationship? group of answer choices the amount of contact you have with people. your physical attractiveness. your financial wellbeing. your similarity to others. Jacque bought 2.5 pounds of dark chocolate covered pecans at $0.30 per ounce. In dollars and cents, what was the cost of these pecans?