Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From the question we are told that
The original voltage is [tex]V_o[/tex]
The new voltage is [tex]V =\frac{V_o}{2}[/tex]
The capacitance is [tex]C = 150\ nF = 150 *10^{-9} \ F[/tex]
The first resistance is [tex]R_i = 26 \Omega[/tex]
The second resistance is [tex]R_E = 200 \Omega[/tex]
Generally the equivalent resistance is
[tex]R_e = R_1 + R_E[/tex]
=> [tex]R_e = 26 +200 [/tex]
=> [tex]R_e = 226 \ \Omega [/tex]
Generally the time constant is mathematically represented as
[tex]\tau = RC[/tex]
=> [tex]\tau = 226 * 150 *10^{-9}[/tex]
=> [tex]\tau = 3.39 *10^{-5} \ s [/tex]
Generally the voltage is mathematically represented as
[tex]V = V_o e^{-\frac{t}{\tau} }[/tex]
=> [tex]\frac{V_o}{2} = V_o e^{-\frac{t}{\tau} }[/tex]
=> [tex]0.5 = e^{-\frac{t}{\tau} }[/tex]
=> [tex]ln(0.5) = {-\frac{t}{ 3.39 *10^{-5} } }[/tex]
=> [tex]ln(0.5) * 3.39 *10^{-5} = -t [/tex]
=> [tex]t = 2.35*10^{-5} \ s [/tex]
help me get the answer in Physical Science.
Answer:
lithium
Explanation:
I took physical science 2 years ago and passed with an A
Which statement best describes an atom? (2 points)
оа
Protons and neutrons grouped in a specific pattern
Ob
Protons and electrons spread around randomly
ос
A group of protons and neutrons that are surrounded by electrons
Od
A ball of electrons and neutrons surrounded by protons
Answer:
A group of protons and neutrons that are surrounded by electrons I think that's the answer...
Explanation:
Sometimes we will want to write vectors in terms of a coordinate grid. To show a vector points
horizontally (along the x-axis), place an x after the magnitude of the vector. To show a vector point
vertically (along the y-axis), place a y after the magnitude.
4) Using the notation above,
i. How would you write d1?
ii. How would you write d2?
iii. How would you write dtotal?
d1=(0,5)
d2=(5,5)
Answer:
III) [tex]d_{1}+ d_{2}=d_{t}[/tex]
Explanation:
I) coordinate (0,5) is the head for [tex]d_{1}[/tex] I will put the tail coordinate as (0,0) but it could be any other number in the x just not in the 5 with the the y being any other value.
II) coordinate (5,5) is the head for [tex]d_{2}[/tex] the tail needs to be in the head of [tex]d_{1}[/tex] being (0,5)
III) coordinates for [tex]d_{t}[/tex] is connecting the tail from [tex]d_{1}[/tex] and the head of [tex]d_{2}[/tex] making it (0,0)[tex](tail)[/tex] and (0,5)[tex](head)[/tex] and is written as [tex]d_{1}+ d_{2}=d_{t}[/tex]
(i) using coordinate grid notation to represent d₁, d₁ = 5y
(ii) using coordinate grid notation to represent d₂, d₂ = 5x + 5y
(ii) The sum of d₁ and d₂ is written as 5x + 10y
In order to show the horizontal direction of a vector, we will place x after the magnitude of the vector.
Also, to show the vertical direction of a vector, we will place a y after the magnitude of the vector.
(i) Using coordinate grid to represent d₁ = (0, 5)
[tex]d_1 = 0(x) + 5(y)\\\\d_1 = 5y[/tex]
(ii) Using coordinate grid to represent d₂ = (5, 5)
[tex]d_2 = 5x + 5y[/tex]
(iii) The total vector is written as;
[tex]d_1 + d_2 = 5y + (5x + 5y)\\\\d_1 + d_2 = 5y + 5x + 5y\\\\d_1 + d_2 = 5x + 10y[/tex]
Learn more here: https://brainly.com/question/17212749
In the absence of a gravitational field, you could determine the mass of an object (of unknown composition) by:
A) applying a known force and measuring it's acceleration.
B) measuring the volume.
C) weighing it.
Answer:
A) By applying a known force, and measuring it's acceleration.
Explanation:
This is actually something that astronauts do in space as a mathmatical exercise when calculating the mass of an object since F = m × a.
Once the force, and acceleration are applied, the only unknown is the mass which can be solved by dividing force over acceleration. This is because inertial mass is equal to gravitational mass.
21. Prediction: If you were to measure the current at points A, B and C, how do you think the values would compare? Why? 22. Prediction: If you were to measure the potential differences across these bulbs (what the voltmeter measures) how do you think the values will compare to each other and to the potential difference across the battery pack or the power supply? Why?
Answer:
hello your question is incomplete attached below is the complete question
21) The current at points B and C would be the same ( identical bulbs) while the current at Point A will be greater than the currents at point B and C. i.e. twice the current at either point B or point C
22) The potential difference across the bulbs will be the same and this is because the bulbs are connected in parallel to the the power source ( battery)
hence the voltage in the battery will be equal to the voltage across each bulb
Explanation:
The current at points B and C would be the same ( identical bulbs) while the current at Point A will be greater than the currents at point B and C. i.e. twice the current at either point B or point C
The potential difference across the bulbs will be the same and this is because the bulbs are connected in parallel to the the power source ( battery)
hence the voltage in the battery will be equal to the voltage across each bulb
A plane flying horizontally at a speed of 40.0 m/s and at an elevation of 160 m drops a package. Two seconds later it drops a second package. How far apart will the two packages land on the ground?
Answer:
Package 1 will land at 228.0 m, package 2 will land at 308.0 m, and the distance between them is 80.0 m.
Explanation:
To find the distance at which the first package will land we need to calculate the time:
[tex] Y_{f} = Y_{0} + V_{0y}t - \frac{1}{2}gt^{2} [/tex]
Where:
Y(f) is the final position = 0
Y(0) is the initial position = 160 m
V(0y) is initial speed in "y" direction = 0
g is the gravity = 9.81 m/s²
t is the time=?
[tex] 0 = 160 m + 0t - \frac{1}{2}9.81 m/s^{2}t^{2} [/tex]
[tex] t = \sqrt{\frac{2*160 m}{9.81 m/s^{2}}} = 5.7 s [/tex]
Now we can find the distance of the first package:
[tex] X_{1} = V_{0x}*t = 40.0 m/s*5.7 s = 228.0 m [/tex]
Then, after 2 seconds the distance traveled by plane is (from the initial position):
[tex] X_{p} = V_{0x}*t = 40.0 m/s*2 s = 80.0 m [/tex]
Now, the distance of the second package is:
[tex] X _{2} = X_{1} + X_{p} = 228.0 m + 80.0 m = 308.0 m [/tex]
The distance between the packages is:
[tex] X = X_{2} - X_{1} = 308.0 - 228.0 m = 80.0 m [/tex]
Therefore, package 1 will land at 228.0 m, package 2 will land at 308.0 m and the distance between them is 80.0 m.
I hope it helps you!
Jumping on a trampoline cause you to fly up in the air. What type of newton’s law is it ?
Answer:
The Third law
Explanation:
For every action there is an equal and opposite reaction.
Answer:
First Law
Explanation:
An object at rest (not moving) will stay at rest unless an unbalanced force acts on it.
An object in motion will stay in motion (in a straight line and at a constant speed) unless an unbalanced force acts on it.
You jump down on a trampoline and fly up in the air as a result.
what is the force produced on a body of 30kg mass when a body moving with the velocity of 26km/hr is acceleted to gain the velocity of 54 km/hr in 4 sec
Answer:
F = 58.35 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that force is equal to the product of mass by acceleration. But first we must use the following equation of kinematics.
We have to convert speeds from kilometers per hour to meters per second
[tex]\frac{26km}{hr}*\frac{1000m}{1km}*\frac{1hr}{3600s}=\frac{7.22m}{s} \\\frac{54km}{hr}*\frac{1000m}{1km}*\frac{1hr}{3600s}=15\frac{m}{s}[/tex]
[tex]v_{f}=v_{o}+(a*t) \\[/tex]
where:
Vf = final velocity = 15 [m/s]
Vi = initial velocity = 7.22 [m/s]
a = acceleration [m/s^2]
t = time = 4 [s]
Note: the positive sign of the above equation is because the car increases its speed
15 = 7.22 + (a*4)
a = 1.945 [m/s^2]
Now we can use the Newton's second law:
F = m*a
F = 30*1.945
F = 58.35 [N]
the diagram shows a contour map. letter a through k are reference points on the map. which points are located at the same elevation above sea level?
Answer:
K and I
Explanation:
Contour maps use lines that represent spaces in a map that have the same elevation, this means that all the lines should be continuous and closed, in this case, we are not able to see the full extent of most of the lines, but since the points are located in different lines we can assume that they are at different heights, so since only point K and point I are on the same line, we know that these two points are at the same height.
While making some observations at the top of the 66 m tall Astronomy tower, Ron
accidently knocks a 0.5 kg stone over the edge. How long will a student at the bottom
have to get out of the way before being hit?
Analysing the question:
Since the stone was dropped, there was no initial velocity applied on it and hence it's initial velocity of the stone is 0 m/s
We are given:
height of the tower (h) = 66 m
mass of the stone (m) = 0.5 kg
initial velocity of the stone (u) = 0 m/s
time taken by the stone to reach the ground (t) = t seconds
acceleration due to gravity = 10 m/s²
** Neglecting air resistance**
Finding the time taken by the stone to reach the ground:
from the second equation of motion
h = ut + 1/2at²
replacing the variables
66 = (0)(t) + 1/2 (10)(t)²
66 = 5t²
t² = 13.2
t = 3.6 seconds
I initially wanted to subtract the height of the student from the height of the tower since the time i calculated is the time taken by the stone to reach the ground and that means that the stone has already hit the student before 3.6 seconds
but since we were NOT given the height of a student, the person who posed this question wants the time taken by the stone to reach the ground and that is what we solved
If it takes you 5 minutes to dry your hair using a 1200-W hairdryer plugged into a 120-V power outlet, how many Coulombs of charge pass through your hair dryer
Answer:
The charge pass through your hair dryer is 3000 C.
Explanation:
Given that,
Power = 1200 W
Voltage = 120 V
Flow time = 5 min
We need to calculate the current
Using formula of power
[tex]P=VI[/tex]
[tex]I=\dfrac{P}{V}[/tex]
Put the value into the formula
[tex]I=\dfrac{1200}{120}[/tex]
[tex]I=10\ A[/tex]
We need to calculate the charge pass through your hair dryer
Using formula of current
[tex]I=\dfrac{Q}{t}[/tex]
[tex]Q=It[/tex]
Put the value into the formula
[tex]Q=10\times5\times60[/tex]
[tex]Q=3000\ C[/tex]
Hence, The charge pass through your hair dryer is 3000 C.