Answer:
3 grams will be left after 6 half-lives
Step-by-step explanation:
Half-live:
Time it takes for the substance to be reduced by hall.
After n half lives:
The amount remaing is:
[tex]A(n) = A(0)(0.5)^{n}[/tex]
In which A(0) is the initial amount and n is the number of half-lives.
Starting with 210 grams of a radioactive isotope, how much will be left after 6 half-lives?
This is A(6) when A(0) = 210. So
[tex]A(n) = A(0)(0.5)^{n}[/tex]
[tex]A(6) = 210(0.5)^{6} = 3.3[/tex]
Rounding to the nearest gram
3 grams will be left after 6 half-lives
Find the solution(s) of the system of equations: x2 + y2 = 8 y = x – 4 options: (–2,–6) (2,–2) and (–2,–6) (2,–2) No solutions
Answer: x=2 y=-2
(2,-2) one solution
Step-by-step explanation:
Solve by substitution
[tex]\begin{bmatrix}x^2+y^2=8\\ y=x-4\end{bmatrix}[/tex]
[tex]\mathrm{Subsititute\:}y=x-4[/tex]
[tex]\begin{bmatrix}x^2+\left(x-4\right)^2=8\end{bmatrix}[/tex]
[tex]2x^2-8x+16=8[/tex]
[tex]\mathrm{Isolate}\:x\:\mathrm{for}\:2x^2-8x+16=8:\quad x=2[/tex]
[tex]\mathrm{For\:}y=x-4[/tex]
[tex]\mathrm{Subsititute\:}x=2[/tex]
[tex]y=2-4[/tex] [tex]2-4=-2[/tex]
[tex]y=-2[/tex]
[tex]The\:solutions\:to\:the\:system\:of\:equations\:are[/tex]
[tex]x=2,\:y=-2[/tex]
ALGEBRA HELP PLEASE THANKS Evaluate the expression using exponential rules. Write the result in standard notation. [tex]\frac{4 x 10^{-4} }{20 x 10^{2} }[/tex]
Answer:
[tex]2 \times 10 {}^{ - 7} [/tex]
Step-by-step explanation:
[tex] \frac{4 \times 10 {}^{ - 4} }{20 \times 10 {}^{2} } = \frac{0.0004}{2000} = 2 \times 10 {}^{ - 7} [/tex]
Hope this helps ;) ❤❤❤
You have $50,000 in savings for retirement in an investment earning 5% annually. You aspire to have $1,000,000 in savings when you retire. Assuming you add no more to your savings, how many years will it take to reach your goal?
Answer: It will take you about 61 years for you to reach your goal.
Step-by-step explanation:
We will represent this situation by an exponential function. So if you earn 5% yearly then we could represent it by 1.05.So in exponential function we need to find the initial value and the common difference and in this case the common difference is 1.05 and the initial value or amount is 50,000 dollars.
We could represent the whole situation by the equation.
y= [tex]50,000(1.05)^{x}[/tex] where x is the number of years. so if you aspire to have 1,000,000 in some years then we will put in 1 million dollars for y and solve for x.
1,000,000 = 50,000(1.05)^x divide both sides by 50,000
20 = (1.05)^x
x= 61.40
Set up a rational equation and then solve the following problems. A positive integer is twice another. The difference of the reciprocals of the two positive integers is 1/18. Find the two integers.
Answer:
9 and 18
Step-by-step explanation:
2x and x are the numbers
1/x-1/2x=1/18
2/2x-1/2x=1/18
1/2x=1/18
2x=18X=9,
2x=18
The two integers are 9 and 18
In triangle abc what is the value of cos b A 5/13 B 12/13 C 5/12 D 13/12
Answer:
[tex]\boxed{Option \ B}[/tex]
Step-by-step explanation:
In the triangle,
Hypotenuse = 13
Opposite = Perpendicular = 5
Adjacent = Base = 12
Now,
Cos B = [tex]\frac{Adjacent}{Hypotenuse}[/tex]
Cos B = 12/13
If the triangle is just like in the attached file!
Answer:
B) 12/13
Step-by-step explanation:
Determine which of the following statements is true. A: If V is a 6-dimensional vector space, then any set of exactly 6 elements in V is automatically a basis for V. B: If there exists a set that spans V, then dim V = 3. C: If H is a subspace of a finite-dimensional vector space V, then dim H ≤ dim V
Answer:
A. This statement A is false.
B. This statement A is false.
C. This statement is true .
Step-by-step explanation:
Determine which of the following statements is true.
From the statements we are being given , we are to determine if the statements are valid to be true or invalid to be false.
SO;
A: If V is a 6-dimensional vector space, then any set of exactly 6 elements in V is automatically a basis for V
This statement A is false.
This is because any set of exactly 6 elements in V is linearly independent vectors of V . Hence, it can't be automatically a basis for V
B. If there exists a set that spans V, then dim V = 3
The statement B is false.
If there exists a set , let say [tex]v_1 ...v_3[/tex], then any set of n vector (i.e number of elements forms the basis of V) spans V. ∴ dim V < 3
C. If H is a subspace of a finite-dimensional vector space V then dim H ≤ dim V is a correct option.
This statement is true .
We all know that in a given vector space there is always a basis, it is equally important to understand that there is a cardinality for every basis that exist ,hence the dimension of a vector space is uniquely defined.
SO,
If H is a subspace of a finite-dimensional vector space V then dim H ≤ dim V is a correct option.
A company manufacturing oil seals wants to establish X and R control charts on the process. There are 25 preliminary samples of size 5 on the internal diameter of the seal. The summary data (in mm) are as follows:
sigma^25_i = 1 X_t = 1, 253.75, sigma^25_i = 1 R_i = 14.08
(a) Find the control limits that should be used on the X and R control charts. For n = 5, A2 = 0.577, D4 = 2.114, D3 = 0
(b) Assume that the 25 preliminary samples plot in control on both charts. Estimate the process mean and standard deviation.
Answer:
A ) i) X control chart : upper limit = 50.475, lower limit = 49.825
ii) R control chart : upper limit = 1.191, lower limit = 0
Step-by-step explanation:
A) Finding the control limits
grand sample mean = 1253.75 / 25 = 50.15
mean range = 14.08 / 25 = 0.5632
Based on X control CHART
The upper control limit ( UCL ) =
grand sample mean + A2* mean range ) = 50.15 + 0.577(0.5632) = 50.475
The lower control limit (LCL)=
grand sample mean - A2 * mean range = 50.15 - 0.577(0.5632) = 49.825
Based on R control charts
The upper limit = D4 * mean range = 2.114 * 0.5632 = 1.191
The lower control limit = D3 * mean range = 0 * 0.5632 = 0
B) estimate the process mean and standard deviation
estimated process mean = 50.15 = grand sample mean
standard deviation = mean range / d2 = 0.5632 / 2.326 = 0.2421
note d2 is obtained from control table
URGENT!!!!!! A 5 inch × 7 inch photograph is placed inside a picture frame. Both the length and width of the frame are 2x inches larger than the width and length of the photograph. Which expression represents the perimeter of the frame? REPLY IN COMMENTS PLEASE IM GLITCHING AND CANT SEE ANSWERS
Answer:
the perimeter of the square is just "(5+2x)(2)+(7+2x)(2)
Step-by-step explanation:
Answer:
2 × 10 + 2 × 14
Step-by-step explanation:
The frame is given to have measurements 2 times that of the photograph's measurements. We also know that the photograph is given by dimensions being 5 inch by 7 inch. Therefore the measurements of the frame should be 5 [tex]*[/tex] 2, which = 10 inches, by 7 [tex]*[/tex] 2 = 14 inches.
So the dimensions of the frame are 10 inch × 14 inch. As the frame is present as a rectangle, the perimeter is given by two times both dimensions together. That would be represented by the expression " 2 × 10 inch + 2 × 14 inch. " In other words you can say that the expression is 2 × 10 + 2 × 14 - the expression that represents the perimeter of the frame.
which of the following is equivalent to the expression below? log2-log14 A. LOG(1/7) B. LOG(-12) C. LOG 12 D. LOG 7
Answer:
The answer is option A.
Step-by-step explanation:
Using the properties of logarithms
that's
[tex] log(x) - log(y) = log( \frac{x}{y} ) [/tex]
log 2 - log 14 is
[tex] log(2) - log(14) = log( \frac{2}{14} ) [/tex]
Simplify
We have the final answer as
[tex] log( \frac{1}{7} ) [/tex]
Hope this helps you
Answer:
log ( 1/7)
Step-by-step explanation:
log2-log14
We know that log ( a/b) = log a - log b
log (2 /14)
log ( 1/7)
g There are 60 mountain climbers in a club. 10 of these have climbed Mt. Everest. 15 have climbed Mt. Rainier. 8 have climbed both. How many have not climbed either mountain?
Answer:
43 mountain climbers have not climbed either mountain.
Step-by-step explanation:
Total number of mountain climbers, i.e. n(U) = 60
Number of mountain climbers who have climbed Mt. Everest, n(E) = 10
Number of mountain climbers who have climbed Mt. Rainier, n(R) = 15
Number of mountain climbers who have climbed both, n(E [tex]\cap[/tex] R) = 15
Using the formula to find number of climbers who have climbed either of the mountains:
[tex]n(A \cup B) = n(A)+n(B)-n(A\cup B )[/tex]
[tex]\therefore n(E \cup R) = n(E)+n(R)-n(E\cup R )\\\Rightarrow n(E \cup R) = 10+15-8 = 17[/tex]
To find, who have not climbed either mountain:
[tex]n(E\cup B)'=n(U) - n(E\cap B)\\\Rightarrow n(E\cup B)'=60 - 17 = \bold{43}[/tex]
So, the answer is:
43 mountain climbers have not climbed either mountain.
Solve the equation using the distributive property and properties of equality.
1/2(x+6) = 18
What is the value of x?
O 6
O7 1/2
O 14 1/2
0 30
Answer:
x = 30
Step-by-step explanation:
1/2(x+6) = 18
Expand brackets or use distributive law.
1/2(x) + 1/2(6) = 18
1/2x + 6/2 = 18
1/2x + 3 = 18
Subtract 3 on both sides.
1/2x + 3 - 3 = 18 - 3
1/2x = 15
Multiply both sides by 2.
(2)1/2x = (2)15
x = 30
Answer:
30
Step-by-step explanation:
Find the probability of each of the following, if Z~N(μ = 0,σ = 1).
(please round any numerical answers to 4 decimal places)
a) P(Z > -1.13) =
b) P(Z < 0.18) =
c) P(Z > 8) =
d) P(| Z | < 0.5) =
Answer: a) 0.8708, b) 5714, c) 0.000, d) 0.3830
Step-by-step explanation:
(a)
To find P(Z>-1.13):
Since Z is negative, it lies on left hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.3708
So,
P(Z>-1.13) = 0.5 + 0.3708 = 0.8708
(b)
To find P(Z<0.18):
Since Z is positive, it lies on right hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.0714
So,
P(Z<0.18) = 0.5 + 0.0714 = 0.5714
(c)
To find P(Z>8):
Since Z is positive, it lies on right hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.5 nearly
So,
P(Z>8) = 0.5 - 0.5 nearly = 0.0000
(d)
To find P(| Z | < 0.5)
that is
To find P(-0.5 < Z < 0.5):
Case 1: For Z from - 0.5 to mid value:
Table of Area Under the Standard Normal Curve gives area = 0.1915
Case 2: For Z from mid value to 0.5:
Table of Area Under the Standard Normal Curve gives area = 0.1915
So,
P(| Z | < 0.5) = 2 * 0.1915 = 0.3830
The Probability can be determine using z-Table. The z- table use to determine the area under the standard normal curve for any value between the mean (zero) and any z-score.
(a) The value of [tex]P(z>-1.13)=0.8708[/tex].
(b) The value of [tex]P(Z < 0.18) = 0.5714[/tex].
(c) The value of [tex]P(Z > 8) = 0.0000[/tex].
(d) The value of [tex]P(| Z | < 0.5) =0.3830[/tex].
Given:
The given condition is [tex]Z\sim N(\mu= 0,\sigma = 1).[/tex]
(a)
Find the value for [tex]P(Z > -1.13)[/tex].
Here Z is less than 1 that means Z is negative. So it will lies it lies on left hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area = 0.3708[/tex].
Now,
[tex]P(Z > -1.13)=0.5 + 0.3708 = 0.8708[/tex]
Thus, the value of [tex]P(z>-1.13)=0.8708[/tex].
(b)
Find the value for [tex]P(Z < 0.18)[/tex].
Here Z is positive. So it will lies it lies on right hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area = 0.0714[/tex].
Now,
[tex]P(Z <0.18)=0.5 + 0.0714 = 0.5714[/tex]
Thus, the value of [tex]P(Z < 0.18) = 0.5714[/tex].
(c)
Find the value for [tex]P(Z >8)[/tex].
Here Z is positive. So it will lies it lies on right hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area \approx 0.5[/tex].
Now,
[tex]P(Z >8)\approx0.5 - 0.5 = 0.0000[/tex]
Thus, the value of [tex]P(Z > 8) = 0.0000[/tex].
(d)
Find the value for [tex]P(|Z| <0.05)[/tex].
Here Z is mod of Z, it may be positive or negative. Consider the negative value of Z.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area =0.1915[/tex].
Consider the positive value of Z.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area =0.1915[/tex].
Now,
[tex]P(|Z| <0.5)=2\times 0.1915 = 0.3830[/tex]
Thus, the value of [tex]P(| Z | < 0.5) =0.3830[/tex].
Learn more about z-table here:
https://brainly.com/question/16051105
Which of the following triangles can be proven similar through AA?
A)
B)
C)
D)
Answer:
The options that have two angles, which are A and D prove both triangles to be similar.
Step-by-step explanation:
The postulate AA is exactly what it sounds like, and you can find the two angles, which will prove the similarity of two triangles sharing those two angles.
The reason being is if two angles are the same between the two triangles, the third can't be different.
Section 8
Find the mean of these numbers:
24 18
37
82 17
26
Answer:
[tex]\boxed{Mean = 34.33}[/tex]
Step-by-step explanation:
Mean = Sum of Observations / No. Of Observations
Mean = (24+18+37+82+17+26)/6
Mean = 206 / 6
Mean = 34.33
State the degrees of freedom error in each of the following tests. (a) A consultant measures job satisfaction in a sample of 14 supervisors, 14 managers, and 14 executives at a local firm. (b) A researcher tests how nervous public speakers get in front of a small, medium, or large audience. Ten participants are randomly assigned to each group. (c) A high school counselor has 8 students in each of five classes rate how much they like their teacher.
Answer:
.
Step-by-step explanation:
Compute the least-squares regression line for predicting y from a given the following summary statistics. Round final answers to four decimal places, as needed.
xbar = 8.8 sx = 1.5 sy = 1.8 ybar = 30.3
r = -0.84
Download data
Regression line equation: y = ______ + _______ x
Answer: Regression line equation: [tex]\hat{y}=-1.008x+39.1704[/tex]
Step-by-step explanation:
Equation of least-squares regression line for predicting y :
[tex]\hat{y}=b_1x+b_o[/tex]
, where [tex]\text{Slope} (b_1)=r\dfrac{s_y}{s_x}[/tex] , [tex]\text{intercept}(b_0)=\bar{y}-b_1\bar{x}[/tex]
Given: [tex]\bar{x}=8.8,\ s_x=1.5,\ s_y=1.8,\ \bar{y}=30.3,\ r=-0.84[/tex]
Then,
[tex]b_1=(-0.84)\dfrac{ 1.8}{ 1.5}\\\\\Rightarrow\ b_1=-1.008[/tex]
Now,
[tex]b_0=30.3-(-1.008)(8.8)=30.3+8.8704\\\\\Rightarrow\ b_0=39.1704[/tex]
Then, Regression line equation: [tex]\hat{y}=-1.008x+39.1704[/tex]
Line j is a straight line. Which equation represents the relationship between the measures of Angle w and Angle z? A) Measure of angle w = measure of angle z b) Measure of angle w + measure of angle z = 90 degrees c) Measure of angle w + measure of angle z = 100 degrees d) Measure of angle w + measure of angle z = 180 degrees
Answer:
Measure of angle W + measure of angle Z = 180°
Step-by-step explanation:
The reason is that angles in a straight line add up to 180° and angles at a point add up to 360° (i.e the sum of measure of angles W, X, Y, Z is 360°)
Answer:
D is your answer
Step-by-step explanation:
I have no explanation
solve for inequality
ᶜ⁄₋₃ ≥ 3
Answer:
c ≤ -9
Step-by-step explanation:
c / -3 ≥ 3
c ≤ -9
Remember, we flip the sign of the inequality by multiplying / dividing by a negative number.
Answer:
c ≤ -9
Step-by-step explanation:
c / -3 ≥ 3
c ≤ -9
What is the value of x in the diagram below?
A.
6
B.
4
C.
5
D.
3
Answer:
[tex]\boxed{3}[/tex]
Step-by-step explanation:
We can use ratios to solve since the sides are proportional.
[tex]\frac{18}{x} =\frac{48}{8}[/tex]
Cross multiply.
[tex]48x=18 \times 8[/tex]
Divide both sides by 48.
[tex]\frac{48x}{48} = \frac{18 \times 8}{48}[/tex]
[tex]x=3[/tex]
The value of x in the given triangle is 3.
What are similar triangles?Two triangles are similar if they have the same ratio of corresponding sides and equal pair of corresponding angles.
Given are two similar triangles,
Therefore, they have the same ratio of corresponding sides
18/48 = x/8
x = 3
Hence, The value of x in the given triangle is 3.
For more references on similar triangles, click;
https://brainly.com/question/25882965
#SPJ2
22,403 Check:
- 8,675
how i do this
Answer:
Hello!! :) The answer to your question is 13,728
Steps will be below.
Step-by-step explanation:
So we will subtract 22,403 and 8,675.
When we do that we will get 13,728
To check your answer we have to do the opposite of subtracting which will be adding.
This is how we check our work: the answer we got was 13,728...we have to take that answer and add it to 8,675 which will give us 22,403
(Both of the numbers are from the question)
At the bottom I attached a picture of how I did the subtracting and how I checked my work.
Sorry for my handwriting......if you can’t understand my handwriting, I attached another picture which is more clearer.
ANSWER TO YOUR QUESTION: 13,728
Brainliest would be appreciated! Thank you :3
Hope this helps! :)
Answer:
The answer is 13,728
Step-by-step explanation:
Check your work with addition.
WHY IS THERE ANY HELP? PLEASE Solve the system of equations by using the substitution method. [tex]\left \{ {{x+y=6} \atop {x=2y}} \right.[/tex] Is there a solution, no solution, or infinite number? If there's a solution, what's the ordered pair?
Answer:
There is a solution. The ordered pair is (4, 2).
Step-by-step explanation:
Solve the system of equations by using the substitution method.
[tex]x+y=6\\x=2y[/tex]
Substitute x as 2y in the first equation and solve for y.
[tex]2y+y=6\\ 3y=6\\(3y)/3=6/3\\y=2[/tex]
Substitute y as 2 in the second equation and solve for x.
[tex]x=2(2)\\x=4[/tex]
Using Pascal’s Theorem, expand the expression 〖(2x-y)〗^3
Answer:
(2x - y)³ = 8x³ - 12x²y + 6xy² - y³
Step-by-step explanation:
Pascal's Theorem uses a set of already known and easily obtainable numbers in the expansion of expressions. The numbers serve as the coefficients of the terms in the expanded expression.
For the expansion of
(a + b)ⁿ
As long as n is positive real integer, we can obtain the coefficients of the terms of the expansion using the Pascal's triangle.
The coefficient of terms are obtained starting from 1 for n = 0.
- For the next coefficients of terms are 1, 1 for n = 1.
- For n = 2, it is 1, 2, 1
- For n = 3, it is 1, 3, 3, 1
The next terms are obtained from the previous one by writing 1 and summing the terms one by one and ending with 1.
So, for n = 4, we have 1, 1+3, 3+3, 3+1, 1 = 1, 4, 6, 4, 1.
The Pascal's triangle is
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
The terms can also be obtained from using the binomial theorem and writing the terms from ⁿC₀ all through to ⁿCₙ
So, for n = 3, the coefficients are 1, 3, 3, 1
Then the terms are written such that the sum of the powers of the terms is 3 with one of the terms having the powers reducing from n all through to 0, and the other having its powers go from 0 all through to n
So,
(2x - y)³ = [(1)(2x)³(-y)⁰] + [(3)(2x)²(-y)¹] + [(3)(2x)¹(-y)²] + [(1)(2x)⁰(-y)³]
= (1×8x³×1) + (3×4x²×-y) + (3×2x×y²) + (1×1×-y³)
= 8x³ - 12x²y + 6xy² - y³
Hope this Helps!!!
Need Help with these (Giving brainiest if you can solve these)
Answer: try using sine for this equasion
Step-by-step explanation:
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.? y = 2 + sec(x), −π/3 ≤ x ≤ π/3, y = 4; about y = 2
Answer:
The volume of the solid is: [tex]\mathbf{V = \pi [ \dfrac{8 \pi}{3} - 2\sqrt{3}]}[/tex]
Step-by-step explanation:
GIven that :
[tex]y = 2 + sec \ x , -\dfrac{\pi}{3} \leq x \leq \dfrac{\pi}{3} \\ \\ y = 4\\ \\ about \ y \ = 2[/tex]
This implies that the distance between the x-axis and the axis of the rotation = 2 units
The distance between the x-axis and the inner ring is r = (2+sec x) -2
Let R be the outer radius and r be the inner radius
By integration; the volume of the of the solid can be calculated as follows:
[tex]V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(4-2)^2 - (2+ sec \ x -2)^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(2)^2 - (sec \ x )^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [4 - sec^2 \ x ]dx[/tex]
[tex]V = \pi [4x - tan \ x]^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) - 4(-\dfrac{\pi}{3})+ tan (-\dfrac{\pi}{3})] \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) + 4(\dfrac{\pi}{3})- tan (\dfrac{\pi}{3})] \\ \\ \\ V = \pi [8(\dfrac{\pi}{3}) - 2 \ tan (\dfrac{\pi}{3}) ][/tex]
[tex]\mathbf{V = \pi [ \dfrac{8 \pi}{3} - 2\sqrt{3}]}[/tex]
If one termite can destroy 1.2mg of wood per day, how many kilograms of wood can 10 termites destroy in 1 week? *Can someone please explain how to do this*
Answer:
10 termites will destroy 0.000084kg of wood per week
Step-by-step explanation:
Convert milligram to kilogram
1.2mg=(1.2 / 1,000,000)kg
1.2mg=0.0000012kg
1 termite destroys=0.0000012kg per day
10 termites will destroy (per day) =0.0000012×10 termites per day
10 termites in one day will destroy=0.000012kg
There are 7 days in a week
Therefore,
10 termites will destroy=destruction per day × 7 days
=0.000012×7
=0.000084kg per week
a box contains 20 blue marbes, 16 green marbles, and 14 red marbles. two marbles are selected at random. let 3 be the event that first marbke selected is green. find p(fe) g
Answer:
Let E be the event that the first marble selected is green. Let F be the event that the second marble selected is green. A box contains 20 blue marbles, 16 green marbles and 14 red marbles P(F/E)=15/49 because if the first marble selected is green there are 49 in total and 15 are green. I think this is it.
Step-by-step explanation:
what is the length of bc in the right triangle below?
Answer: A) 15
Step-by-step explanation:
Because of Pythagorean Theorem, 9^2+12^2=BC^2. Thus, 81+144=BC^2. Thus, 225=BC^2. Thus, 15=BC.
Hope it helps, and ask if you want further clarification <3
x(x+3)(x+3)=0 Please I NEED HELP FAST! PLLLLLLLLLLLLLLLLLLLLLLLLLLEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSSSSSSSSSSSSSSSSSSSSSSSSSEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE!
Answer:
[tex]\boxed{x^3+6x^2+9x}[/tex]
Step-by-step explanation:
[tex]x(x+3)(x+3)[/tex]
Resolving the first parenthesis
[tex](x^2+3x) (x+3)[/tex]
Using FOIL
[tex]x^3+3x^2+3x^2+9x[/tex]
Adding like terms
[tex]x^3+6x^2+9x[/tex]
[tex]\text{If } \: a\cdot b \cdot c = 0 \text{ then } a=0 \text{ or } b =0 \text{ or } c=0 \text{ or all of them are equal to zero.}[/tex]
[tex]x(x+3)(x+3) =0[/tex]
[tex]\boxed{x_1 =0}[/tex]
[tex]x_2+3 =0[/tex]
[tex]\boxed{x_2 = -3}[/tex]
[tex]x_3+3 =0[/tex]
[tex]\boxed{x_3 = -3}[/tex]
here are the 2 questions in the 2 pics separated lol
Answer:
60 and 87
Step-by-step explanation:
Question 1: The chance of losing would be 100% - 40% = 60%.
Question 2: Again, we just have to do 100% - 13% = 87%.
Answer:
Below
Step-by-step explanation:
First question:
Jade has a 40% chance of winnig wich could be expressed as 2/5
The chance of losing is the remainning pourcentage from 100%
●100-40 =60%
60% is the chance of losing wich could be expressed as 3/5
The sum of 3/5 and 2/5 is 1 so it's true.
■■■■■■■■■■■■■■■■■■■■■■■■■
Same method for the 2nd question:
The person has a 13 % chance of winning.
The chance of losing is 87%
● 100-13 =87
An estimator is said to be consistent if: the difference between the estimator and the population parameter grows smaller as the sample size grows larger. it is an unbiased estimator. the variance of the estimator is zero. the difference between the estimator and the population parameter stays the same as the sample size grows larger.
Answer:
the difference between the estimator and the population parameter grows smaller as the sample size grows larger.
Step-by-step explanation:
In Statistics, an estimator is a statistical value or quantity, which is used to estimate a parameter.
Generally, parameters are the determinants of the probability distribution. Thus, to determine a normal distribution we would use the parameters, mean and variance of the population.
An estimator is said to be consistent if the difference between the estimator and the population parameter grows smaller as the sample size grows larger. This simply means that, for an estimator to be consistent it must have both a small bias and small variance.
Also, note that the bias of an estimator (b) that estimates a parameter (p) is given by; [tex]E(b) - p[\tex]
Hence, an unbiased estimator is an estimator that has an expected value that is equal to the parameter i.e the value of its bias is equal to zero (0).
A sample variance is an unbiased estimator of the population variance while the sample mean is an unbiased estimator of the population mean.
Generally, a consistent estimator in statistics is one which gives values that are close enough to the exact value in a population.