Answer:
It takes 4 seconds for the projectile to hit the ground
Step-by-step explanation:
The height of the projectile after t seconds is given by the following equation:
[tex]h(t) = -16t^{2} + 32t + 128[/tex]
How long will it take the projectile to hit the ground?
It happens when [tex]h(t) = 0[/tex]
So
[tex]h(t) = -16t^{2} + 32t + 128[/tex]
[tex]-16t^{2} + 32t + 128 = 0[/tex]
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4ac[/tex]
In this question:
[tex]-16t^{2} + 32t + 128 = 0[/tex]
So [tex]a = -16, b = 32, c = 128[/tex]
[tex]\bigtriangleup = 32^{2} - 4*(-16)*(128) = 9216[/tex]
[tex]t_{1} = \frac{-32 + \sqrt{9216}}{2*(-16)} = -2[/tex]
[tex]t_{2} = \frac{-32 - \sqrt{9216}}{2*(-16)} = 4[/tex]
Time is a positive measure, so:
It takes 4 seconds for the projectile to hit the ground
Please Help!!! Find X for the triangle shown.
Answer:
[tex] x = 2 [/tex]
Step-by-step explanation:
Given a right-angled triangle as shown above,
Included angle = 60°
Opposite side length = 3
Adjacent side length = x
To find x, we would use the following trigonometric ratio as shown below:
[tex] tan(60) = \frac{3}{x} [/tex]
multiply both sides by x
[tex] x*tan(60) = \frac{3}{x}*x [/tex]
[tex] x*tan(60) = 3 [/tex]
Divide both sides by tan(60)
[tex] \frac{x*tan(60)}{tan(60} = \frac{3}{tan(60} [/tex]
[tex] x = \frac{3}{tan(60} [/tex]
[tex] x = 1.73 [/tex]
[tex] x = 2 [/tex] (approximated to whole number)
I don’t know this one
Answer:
[tex]\sqrt{x-4} +5[/tex]
Step-by-step explanation:
the conjugate of [tex]\sqrt{x-4} -5[/tex] is the term that completes a²-b² when multiplied by each other
a = [tex]\sqrt{x-4}[/tex] b = 5a²-b² = (a+b)(a-b)
(a-b)(a+b) =([tex]\sqrt{x-4}[/tex] -5)([tex]\sqrt{x-4}[/tex] +5)What is the slope of the line graphed below?
(3, 3) (0,-6)
Answer:
3
Step-by-step explanation:
Use this equation
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] substitute
-6-3/0-3 subtract
-9/-3 simplify
-3/-1 two negitives cansle out
3/1=3
Hope this helpes, if it did, please consider giving me brainliest, it will help me a lot. If you have any questions, feel free to ask.
Have a good day! :)
Answer:
3
Step-by-step explanation:
To find the slope, we use the slope formula
m= ( y2-y1)/(x2-x1)
= ( -6 -3)/(0 -3)
= -9/-3
= 3
Dion recorded his heart rate as 204 beats in 3 minutes. How many beats does his heart make in 1 minute?
Answer:
68
Step-by-step explanation:
Answer:
The answer is
68 beatsStep-by-step explanation:
To solve this problem we use ratio and proportion
For 3 minutes his heart rate was 204 beats
So 1 minute will be
[tex] \frac{204 \: beats}{3} \times 1[/tex]
= 68 beatsHope this helps you
You pick two students at random, one at a time. What is the probability that the second student is a sophomore, given that the first is a freshman
Answer:
0.40
Step-by-step explanation:
The computation of the probability for the second student be sophomore and the first is a freshman is shown below:
Let us assume
Sophomore = S
Freshman = F
Based on this assumption, the probability is as follows
So,
[tex]= \frac{P(S\cap F)}{P(F)} \\\\ = \frac{P(S) \times P(F)}{P(F)} \\\\ = \frac{16}{40}[/tex]
= 0.40
Hence, the probability for the second student be sophomore and the first student be freshman is 0.40
Given that r = ( 7, 3, 9) and v = ( 3, 7, -9), evaluate r + v
a. (-21,-21,81)
b. (10,10,0)
c. (21,21,-81)
d. (-10,-10,0)
Answer:
b. (10,10,0)
Step-by-step explanation:
r+v can be evaluated if the vectors/matrices have the same dimensions.
These do. They are both 1 by 3 vectors.
Just add first to first in each.
Just add second to second in each.
Just add third to third in each.
Example:
(5,-5,6)+(1,2,3)
=(5+1,-5+2,6+3)
=(6,-3,9)
Done!
In general, (a,b,c)+(r,s,t)=(a+r,b+s,c+t).
r+v
=(7,3,9)+(3,7,-9)
=(7+3,3+7,9+-9)
=(10,10,0)
Done!
Let x and y be real numbers satisfying 2/x=y/3=x/y Determine the value of x^3
Answer:
64/27Step-by-step explanation:
If x and y be real numbers satisfying 2/x=y/3=x/y, then any two of the equation are equated as shown;
2/x = y/3 ... 1 and;
y/3 = x/y... 2
From equation 1, 2y = 3x ... 3
and from equation 2; y² = 3x ... 4
Equating the left hand side of equation 3 and 4 since their right hand sides are equal, we will have;
2y = y²
2 = y
y = 2
Substituting y = 2 into equation 3 to get the value of x;
2y = 3x
2(2) = 3x
4 = 3x
x = 4/3
The value of x³ will be expressed as (4/3)³ = 4*4*4/3*3*3 = 64/27
A man is standing 20 feet away from the base of a tree and looking at the top of a tree wondering it’s height. If the man’s eyes are located 6 feet off the ground and the angle of elevation is 67°, how tall is the tree? Round to the nearest tenth of a foot.
Answer: 53.1ft
Step-by-step explanation:
We can draw a triangle rectangle.
Where the distance between the man and the tree is one cathetus, (the vertex is on the man's eyes)
The tree itself is the other cathetus, and the line that connects the man's eyes and the tip of the tree is the hypotenuse.
We know that:
The angle at the vertex of the man's eyes is 67°
And the adjacent cathetus, the distance between the man and the tree, is 20ft.
Then using the relation:
Tan(A) = (opposite cathetus)/(adjacent cathetus)
We can find the height of the treee:
Tan(67°) = X/20ft
Tan(67°)*20ft = X = 47.1ft
But remember that this is measured from the mans eye's, and the man's eyes are 6ft away from the ground.
Then the height of the tree is 47.1ft + 6ft = 53.1ft
the sum of place value of 5 in 15954
Answer:
5050
Step-by-step explanation:
Place value of a digit is the value of digit based on its position the given number.
to determine the place value of a digit
we multiply the digit by number of 10's which is equal to number of digits in its right.
example
for a number 1234687
the place value of 3 is
we take 3 and
multiply it by number of 10' in its right
number of 10's in the right is 4
thus place value of 3 = 3*10*10*10*10 = 30000
________________________________________________
15954
place value of 5 at thousandth position = 5*10*10*10 = 5000
place value of 5 at tens position = 5*10 = 50
Thus, sum of place value of 5 in 15954 = 5000+50 = 5050
Find the circumference of a circular field with a diameter of 16 yards.
(Let it = 3.14)
Answer:
Hey there!
The circumference of a circle is [tex]\pi(d)[/tex], where d is the diameter, and [tex]\\\pi[/tex] is a constant roughly equal to 3.14.
The diameter is 16, so plugging this into the equation, we get 3.14(16)=50.24.
The circumference of the circle is 50.24 yards.
Hope this helps :)
Square root of 5 + square root of 3 the whole divided by sqaure root of 5 - square root of 3
Answer:
The answer is 4 + √15 .
Step-by-step explanation:
You have to get rid of surds in the denorminator by multiplying it with the opposite sign :
[tex] \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } [/tex]
[tex] = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } [/tex]
[tex] = \frac{ {( \sqrt{5} + \sqrt{3} ) }^{2} }{( \sqrt{5} - \sqrt{3} )( \sqrt{5} + \sqrt{3}) } [/tex]
[tex] = \frac{ {( \sqrt{5} )}^{2} + 2( \sqrt{5} )( \sqrt{3}) + {( \sqrt{3}) }^{2} }{ {( \sqrt{5}) }^{2} - { (\sqrt{3} )}^{2} } [/tex]
[tex] = \frac{5 + 2 \sqrt{15} + 3 }{5 - 3} [/tex]
[tex] = \frac{8 + 2 \sqrt{15} }{2} [/tex]
[tex] = 4 + \sqrt{15} [/tex]
Find the slope of the line that passes through (1, 14) and (4,9)
Which two numbers in the points represent x values? Select both in the
list.
In any coordinate pair, the first number is the x-value and the second number is the y-value.
To find the slope, simply take the difference of the y values and divide by the difference in the x values: (14-9)/(1-4) is equal to -5/3.
The slope of the line that passes through (1, 14) and (4,9) is -5/3.
It is find the slope of the line.
what is slope?The slope of any line, ray, or line segment is the ratio of the vertical to the horizontal distance between any two points on it (“slope equals rise over run”).
The slope is always calculated from the rise divided by the run. Typically, the equation is presented as:
m = Rise/Run
If you have two points, the points should be [tex]P_{1} (x_{1} ,y_{1} )[/tex] and [tex]P_{2} (x_{2} ,y_{2} )[/tex] So, the equation would be:
[tex]m=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
In any coordinate pair, the first number is the x-value and the second number is the y-value.
The difference of the y values and divide by the difference in the x values:
m=(14-9)/(1-4) is equal to -5/3.
The slope of the line that passes through (1, 14) and (4,9) is -5/3.
Learn more about slope here:
https://brainly.com/question/17114095
#SPJ5
Use the Alternating Series Remainder Theorem to determine the smallest number of terms required to approximate the sum of the series with an error of less than 0.0001.
Answer:
yeyyyaya
Step-by-step explanation:
Which interval contains a local minimum for the graphed
function?
Answer:
[2.5 ,4]
Step-by-step explanation:
The graph in this interval has a vertex while opening up wich means it's a minimum
please help it's Factorisation with Numbers
Answer:
C.
6a + 18x + 18p
Step-by-step explanation:
3(2a + 6 (x + p)) firs multiply (x + p) with 6
3 (2a + 6x + 6z) now multiply inside the parenthesis with 3 and the answer would be 6a + 18x + 18p
If a dozen eggs cost $1.35, what is the unit cost?
A) $0.11
B) $0.13
C) $1.23
D) $4.29
Answer:
A) $0.11
Step-by-step explanation:
Since a dozen (12) eggs cost $1.35. You will divide $1.35 by 12. And it will equal 0.1125. Round it up it equals to 0.11.
What is the input value other than -7, for which h (x) = 3?
Answer:
x=5
Step-by-step explanation:
h (x) = 3
We want the x values where y =3
The values are x = -7 and x=5
1. Which of the following ordered pairs are solutions to the system of equations below?
4x + 4y = -9
Y = 2x - 13
A : (-3, -7)
B : (3-7)
C : (3,7)
D : (-3,7)
Answer:
43\ 12 , 35/ 6
Step-by-step explanation:
43\ 12 , 35/ 6
Answer: B: (3, -7)
Step-by-step explanation:
4x + 4y = -9
y = 2x - 13
Use Substitution:
4x + 4(2x - 13) = -9
4x + 8x - 52 = -9
12x - 52 = -9
12x = 43
[tex]x=\dfrac{43}{12}[/tex]
None of the options provided are valid so either there is a typo on your worksheet or you typed in one of the equations wrong.
Plan B: Input the choices into the equation to see which one makes a true statement.
4x + 4y = -9
A) (x, y) = (-3, -7)
4(-3) + 4(-7) = -9
-12 + -28 = -9
-40 ≠ -9
B) (x, y) = (3, -7)
4(3) + 4(-7) = -9
12 + -28 = -9
-16 ≠ -9
C) (x, y) = (3, 7)
4(3) + 4(7) = -9
12 + 28 = -9
40 ≠ -9
D) (x, y) = (-3, 7)
4(-3) + 4(7) = -9
-12 + 28 = -9
16 ≠ -9
Obviously there is something wrong with the first equation because none of the options provide a true statement.
y = 2x - 13
A) (x, y) = (-3, -7)
-7 = 2(-3) - 13
-7 = -6 -13
-7 ≠ -19
B) (x, y) = (3, -7)
-7 = 2(3) - 13
-7 = 6 -13
-7 = -7 this works!!!
C) (x, y) = (3, 7)
7 = 2(3) - 13
7 = 6 -13
7 ≠ -7
D) (x, y) = (-3, 7)
7 = 2(-3) - 13
7 = -6 -13
7 ≠ -19
Option B is the only one that provides a true statement so this must be the answer.
Graph image of figure using transformation given. Reflection across x-axis.
Answer:
Q(1,1), N(3,2) A(2,5)
Step-by-step explanation:
if the focus of an ellipse are (-4,4) and (6,4), then the coordinates of the enter of the ellipsis are
Answer:
The center is (1,4)
Step-by-step explanation:
The coordinates of the center of an ellipse are the coordinates that are in the middle of the two focus.
Then if we have a focus on [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], we can say that the coordinates for x and y can be calculated as:
[tex]x=\frac{x_1+x_2}{2}\\ y=\frac{y_1+y_2}{2}[/tex]
So, replacing [tex](x_1,y_1)[/tex] by (-4,4) and [tex](x_2,y_2)[/tex] by (6,4), we get that the center is:
[tex]x=\frac{-4+6}{2}=1\\ y=\frac{4+4}{2}=4[/tex]
in the number 23.45 the digit 5 is in ?
Answer: hundredths place
Step-by-step explanation:
Y + 1 1/6 = 7 5/6 what is Y
Answer:
6[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
y + 1[tex]\frac{1}{6}[/tex] = 7[tex]\frac{5}{6}[/tex]
y + [tex]\frac{7}{6}[/tex] = [tex]\frac{47}{6}[/tex]
y = 40/6 = 20/3 = 6[tex]\frac{2}{3}[/tex]
a circle has a radius of 6/7 units and is centered at (-2.3,0) What is the equation of the circle
Answer:
(x+2.3)^2 + (y) ^2 = (6/7)^2
Step-by-step explanation:
The equation of a circle can be written as
(x-h)^2 + (y-k) ^2 = r^2 where ( h,k) is the center and r is the radius
(x- -2.3)^2 + (y-0) ^2 = (6/7)^2
(x+2.3)^2 + (y) ^2 = (6/7)^2
If f(x) = 2x2 + 2 and g(x) = x2 – 1, find (f – 9)(X).
Answer:
x^2 +3
Step-by-step explanation:
f(x) = 2x^2 + 2
g(x) = x2 – 1,
find (f – g)(X).
f(x) - g(x) = 2x^2 + 2 -( x^2 – 1)
Distribute the minus sign
= 2x^2 +2 -x^2 +1
= x^2 +3
a person can do a job in 6 day days . another can do the same job in 4days . if they work together, how long do they need to finish the job?
Answer:
It will take them 2 2/5 days working together
Step-by-step explanation:
To find the time worked
1/a + 1/b = 1/t
Where a and b are the times worked individually and t is the time worked together
1/4 + 1/6 = 1/t
Multiply each side by 12t to clear the fractions
12t( 1/4 + 1/6 = 1/t)
3t + 2t =12
Combine like terms
5t = 12
Divide by 5
t = 12/5
t = 2 2/5
It will take them 2 2/5 days working together
The _________ measures the strength and direction of the linear relationship between the dependent and the independent variable.
Answer:
Correlation Coefficient
Step-by-step explanation:
Base: z(x)=cosx Period:180 Maximum:5 Minimum: -4 What are the transformation? Domain and Range? Graph?
Answer:
The transformations needed to obtain the new function are horizontal scaling, vertical scaling and vertical translation. The resultant function is [tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex].
The domain of the function is all real numbers and its range is between -4 and 5.
The graph is enclosed below as attachment.
Step-by-step explanation:
Let be [tex]z (x) = \cos x[/tex] the base formula, where [tex]x[/tex] is measured in sexagesimal degrees. This expression must be transformed by using the following data:
[tex]T = 180^{\circ}[/tex] (Period)
[tex]z_{min} = -4[/tex] (Minimum)
[tex]z_{max} = 5[/tex] (Maximum)
The cosine function is a periodic bounded function that lies between -1 and 1, that is, twice the unit amplitude, and periodicity of [tex]2\pi[/tex] radians. In addition, the following considerations must be taken into account for transformations:
1) [tex]x[/tex] must be replaced by [tex]\frac{2\pi\cdot x}{180^{\circ}}[/tex]. (Horizontal scaling)
2) The cosine function must be multiplied by a new amplitude (Vertical scaling), which is:
[tex]\Delta z = \frac{z_{max}-z_{min}}{2}[/tex]
[tex]\Delta z = \frac{5+4}{2}[/tex]
[tex]\Delta z = \frac{9}{2}[/tex]
3) Midpoint value must be changed from zero to the midpoint between new minimum and maximum. (Vertical translation)
[tex]z_{m} = \frac{z_{min}+z_{max}}{2}[/tex]
[tex]z_{m} = \frac{1}{2}[/tex]
The new function is:
[tex]z'(x) = z_{m} + \Delta z\cdot \cos \left(\frac{2\pi\cdot x}{T} \right)[/tex]
Given that [tex]z_{m} = \frac{1}{2}[/tex], [tex]\Delta z = \frac{9}{2}[/tex] and [tex]T = 180^{\circ}[/tex], the outcome is:
[tex]z'(x) = \frac{1}{2} + \frac{9}{2} \cdot \cos \left(\frac{\pi\cdot x}{90^{\circ}} \right)[/tex]
The domain of the function is all real numbers and its range is between -4 and 5. The graph is enclosed below as attachment.
What is the size of the matrix resulting from...
Answer:
1 x 3
Step-by-step explanation:
The order of the first matrix is 1 × 3
The order of the second matrix is 3 × 3
that is (1 × 3 ) × (3 × 3 )
The bold values at the ends of the orders give the order of the product, that is
1 × 3
Determine which expression could represent a polynomial with a factor of (x - √3i)
Answer:
Option (3)
Step-by-step explanation:
[tex](x-i\sqrt{3})[/tex] is a factor of a polynomial given in the options, that means a polynomial having factor as [tex](x-i\sqrt{3})[/tex] will be 0 for the value of x = [tex]i\sqrt{3}[/tex].
Option (1),
3x⁴ + 26x² - 9
= [tex]3(i\sqrt{3})^{4}+26(i\sqrt{3})^2-9[/tex] [For x = [tex]i\sqrt{3}[/tex]]
= 3(9i⁴) + 26(3i²) - 9
= 27 - 78 - 9 [Since i² = -1]
= -60
Option (2),
4x⁴- 11x² + 3
= [tex]4(i\sqrt{3})^4-11(i\sqrt{3})^2+3[/tex]
= 4(9i⁴) - 33i² + 3
= 36 + 33 + 3
= 72
Option (3),
4x⁴ + 11x² - 3
= [tex]4(i\sqrt{3})^4+11(i\sqrt{3})^2-3[/tex]
= 4(9i⁴) + 33i² - 3
= 36 - 33 - 3
= 0
Option (4),
[tex]3x^{4}-26x^{2}-9[/tex]
= [tex]3(i\sqrt{3})^4-26(i\sqrt{3})^{2}-9[/tex]
= 3(9i⁴) - 26(3i²) - 9
= 27 + 78 - 9
= 96
Therefore, [tex](x-i\sqrt{3})[/tex] is a factor of option (3).
Find the coordinate vector [Bold x ]Subscript Upper B of x relative to the given basis BequalsStartSet Bold b 1 comma Bold b 2 comma Bold b 3 EndSet.
Answer:
3
Step-by-step explanation:
3