Answer:
[tex]20[/tex].
Step-by-step explanation:
In any triangle, the sum of the lengths of any two sides should be strictly greater than the length of the third side. For example, if the length of the three sides are [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex]:
[tex]a + b > c[/tex],
[tex]a + c > b[/tex], and
[tex]b + c > a[/tex].
In this question, the length of the sides are [tex]10[/tex], [tex]24[/tex], and [tex]x[/tex]. The length of these sides should satisfty the following inequalities:
[tex]10 + 24 > x[/tex],
[tex]10 + x > 24[/tex], and
[tex]24 + x > 10[/tex].
Since [tex]x > 0[/tex], the inequality [tex]24 + x > 10[/tex] is guarenteed to be satisfied.
Simplify [tex]10 + 24 > x[/tex] to obtain the inequality [tex]x < 35[/tex].
Similarly, simplify [tex]10 + x > 24[/tex] to obtain the inequality [tex]x > 14[/tex].
Since [tex]x[/tex] needs to be a whole number, the greatest [tex]x[/tex] that satisfies [tex]x < 35[/tex] would be [tex]34[/tex]. Similarly, the least [tex]x\![/tex] that satisfies [tex]x > 14[/tex] would be [tex]15[/tex]. Thus, [tex]x\!\![/tex] could be any whole number between [tex]15\![/tex] and [tex]34\![/tex] (inclusive.)
There are a total of [tex]34 - 15 + 1 = 20[/tex] distinct whole numbers between [tex]15[/tex] and [tex]34[/tex] (inclusive.) Thus, the number of possible whole number values for [tex]x[/tex] would be [tex]20[/tex].
Solve the following quadratic equation by factorin
x - 12x + 35 = 0
2
x? -
The solution set is {}.
(Simplify your answer. Type each solution only
Answer:
(x - 5)(x - 7x)
Step-by-step explanation:
x - 12x + 35 = 0
x - 12x + 35 = 0
x - 5x - 7x + 35= 0
x ( x - 5) -7x(x + 5)
(x - 5)(x - 7x)
The line L passes through the points (5, -5) and (1, 2).
Find the gradient of line L.
gradient of L = -7/4
Explanation:
[tex]\sf gradient = \dfrac{y_2-y_1}{x_2-x_1}[/tex]
Insert the following values.
[tex]\rightarrow \sf \dfrac{2-(-5)}{1-5}[/tex]
[tex]\rightarrow \sf \dfrac{7}{-4}[/tex]
[tex]\rightarrow \sf -\dfrac{7}{4}[/tex]
Use the slope formula:-
(the slope is the same as the gradient)
[tex]\sf{\displaystyle\frac{y2-y1}{x2-x1} }[/tex]
[tex]\sf{\displaystyle\frac{2-(-5)}{1-5}}[/tex]
[tex]\sf{\displaystyle\frac{2+5}{-4} }=\frac{7}{-4} ={\boxed{-\frac{7}{4} }}\leftarrow\sf{slope~of~line~L}}}[/tex]
note:-Hope everything is clear; if you need any clarification/explanation, kindly let me know, and I will comment and/or edit my answer :)
There were 57 cars in a parking lot at 9:00 AM and 36 different cars at 8:00 PM.
How many cars were there all together?
21 cars
83 cars
93 cars
97 cars
Answer:
C. 93 cars
Step-by-step explanation:
57 cars + 36 cars = 93 cars
1 3/5 gallons of gasoline were used to drive 25 1/2 miles. How many miles per gallons did the car get?
Answer:
15.9375
Step-by-step explanation:
Just divide the number of miles over the number of gallons.
what are two variables that might be positively related to academic success?
A bag contains seven red balls, five green balls, four yellow balls, and two black balls. A ball is picked at random
from the bag. What is the probability that the ball will NOT be black?
Answer:
50/50 chance a black ball will be picked
Which distribution has the greatest spread? A. distribution 1 B. distribution 2 C. distribution 3 D. distribution 4
Answer:
D I think so
Step-by-step explanation:
HOPE IT HELPS
The total price of 5 pounds of bananas was $1.95. What was the price per pound?
Answer:
Well you divide the total of 1.95/5
.39 cent
Answer:
you would need to do 1.95/5 and that equals 39 cents so your answer would be .39
Emily is 4 years Jacob's junior. Eight years ago. she was half Jacob's age. How old are they?
Answer:
Emily is now 12.
Jacob is now 16.
Step-by-step explanation:
since Emily is 4yrs younger than Jacob, let Jacob be x and Emily be (x - 4) yrs.
eight yrs ago: Emily is ( x-4-8) = ( x - 12)
Jacob is ( x - 8)
Emily was half Jacob's age: so, we have to balance the ages by either multiplying Emily's age by 2 or dividing Jacob's age by 2. ( I multiplied by 2)
2( x - 12) = x - 8
2x - 24 = x - 8............ Bring the like terms together and solve for x
x = 16, which is Jacob's current age
Emily ( x - 4) = 12 yrs
8. An angle that contains 126° 32' is a/an Angle
angle.
A. straight
B. obtuse
C. right
D. acute
Answer:
B.
Step-by-step explanation:
A straight angle is exactly 180°
An Obtuse angle is more than 90°, but less than 180.
A right angle is 90°
An acute angle is less than 90°
Convert the binary number 1101001 to decimal.
Answer:
105
Step-by-step explanation:
Answer:
105
Step-by-step explanation:
Decimal calculation steps
(1101001)₂ = (1 × 2⁶) + (1 × 2⁵) + (0 × 2⁴) + (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰) = (105)₁₀
Which equation has the solution x = 2?
A. 2x - 3 = 19
B. 3 x + 2 = 8
C. 4x - 4 = -4
D. 5x + 1 = 10
Answer:
=> B. 3 x + 2 = 8
Step-by-step explanation:
=> 3x+2 = 8
=> 3(2) +2 = 8
=> 6+2 = 8
=> 8 = 8
Find the surface area of the prism. Write your answer as a fraction or mixed number
2/3ft
2/3ft
2/3ft
consecutive integers differ by, such as 15 and
Answer:
integers are not fractions so there you go
A pair of equations is shown below:
y = 7x − 9
y = 3x − 1
Part A: In your own words, explain how you can solve the pair of equations graphically. Write the slope and y-intercept for each equation that you will plot on the graph to solve the equations. (6 points)
Part B: What is the solution to the pair of equations? (4 points)
If you graph y=7x-9 and y=3x-1 the two lines will intersect at one point. That is how you graphically "solve" the system of equations.
Both of these lines are of the form y=mx+b where m is the slope and b is the y-intercept.
So for y=7x-9, the slope is 7 and the y-intercept is -9
For y=3x-1, the slope is 3 and the y-intercept is -1
....
The solution for this system occurs when both coordinates are equal to each other so we can say:
7x-9=3x-1 subtract 3x from both sides
4x-9=-1 add 9 to both sides
4x=8 divide both sides by 4
x=2, making y=3x-1 become:
y=3(2)-1=6-1=5, so the solution to the system of equations is:
(2,5)
Answer:
Part A: If you graph the pair of equations shown above both lines will intersect at one point and that is how you would solve the system of equations graphically. The y intercept and slope for each equation would be for y = 7x − 9 it would have a slope of 7 and y intercept of -9 and y = 3x − 1 would have a slope of 3 and y intercept of -1.
Part B:The solution to the pair of equations is (2,5)
PLEASE HELP PLEASE PLEASE HELP
Reason:
Choices A through C all result in 8/3 = 2.667 approximately
In contrast, choice D becomes 2/3 + 4/3 = (2+4)/3 = 6/3 = 2; showing that choice D is not equivalent to choices A through C.
For which values of x is the expression undefined x-8/x-5
Answer:
(x+10 (3x-45) is the answer of the question so easy
Answer:
x = 5
Step-by-step explanation:
Any number over 0 is undefined. Given that, the values of x that make this expression undefined make the denominator equal to 0
x - 5 = 0
x = 5
I hope this helps!
Find the surface area.
9 in
7 in
16 in
In this question we are provided with the length breadth and height and we are asked to find the surface area of the figure.
[tex] \small\bf{ Length = 16 \: inches } \\ \small\bf{Breadth = 7 \: inches} \\ \small\bf{Height = \: 9 \: inches} [/tex]
We know,
[tex] \pink\star \: \large\boxed{ \pink{ \rm{ Surface \: area = 2(lb + bh + hl)}}}[/tex]
Substituting the values we get
Surface area = 2(16 × 7 + 7 × 9 + 9 × 16)
= 2(112 + 63 + 144)
= 2(319)
= 638
Surface area = 638 inches².
Hey !
Question :Find the surface area of cuboid .
Given :Length of Cuboid = 16 inchesBreadth of Cuboid = 7 inchesHeight of Cuboid = 9 inchesTo Find :We have to find the surface area of given cuboid .Concept :The concept of this question belongs to surface areas of different three dimensional shapes . Whether they are cuboid , cube , cylinder , cone and many more .
Formula Used :[tex] \boxed{\sf{ \pink{Surface \: Area \: of \: cuboid=} \pink{2(lw + wh + hl)}}}[/tex]
Where ,
l = length height of cuboidw = width height of cuboidh = height of cuboidSo Starting Our Solution :Substituting value in formula ,
[tex] \longmapsto \: 2 ((16 \times 7) + (7 \times 9) + 9 \times 16)[/tex]
Now ,
[tex] \longmapsto \: 2(112 + 63 + 144)[/tex]
Adding the values which are inside bracket ,
[tex] \longmapsto \: 2(319)[/tex]
Now multiplying 319 by 2 ,
[tex] \longmapsto \: \bold{ 638 \: inches {}^{2} }[/tex]
Therefore ,
[tex] \boxed{ \sf \pink{Surface \: area \: of cuboid = 638 \: in {}^{2} }}[/tex]
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
#[tex] \rm{Keep \: Learning}[/tex]is 0.304 meters less than 1 meter
Answer:
yes!
Step-by-step explanation:
because it is 0.
if it is was 1.304, it would be more than 1 meter.
Hope this makes sense! If you have further questions, let me know!
- profparis
(-3 + 3y = 9)(8x - 6y = -4)
Step-by-step explanation:
(3y=9+3)(8x-6y=-4)
(3y=12)(8x-6y=-4)
(y=12÷3)(8x-6y=-4)
(y=4)(8x-6y=-4)
Now putting the value of y in (8x-6y=-4)
8x-6*4=-4
8x-24=-4
8x=24-4
8x=20
x=20/8
x=5/2
HELLLPPLPPPP MUDDLE SCHOOLLL!!!!
Answer:
D.
Thats what gauth.math said
In preparation for an earnings report, a large retailer wants to estimate p= the proportion of annual sales
that occur during the month of December. A SRS of sales from last year revealed that 37 of
the randomly selected sales occurred during the month December out of 161 sales.
Using the z-distribution, it is found that the 95% confidence interval for the proportion of sales that occured in December is (0.1648, 0.2948).
What is a confidence interval of proportions?A confidence interval of proportions is given by:
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which:
[tex]\pi[/tex] is the sample proportion.z is the critical value.n is the sample size.In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
The sample size and the estimate are given by:
[tex]n = 161, \pi = \frac{37}{161} = 0.2298[/tex]
Hence:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2298 - 1.96\sqrt{\frac{0.2298(0.7702)}{161}} = 0.1648[/tex]
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2298 + 1.96\sqrt{\frac{0.2298(0.7702)}{161}} = 0.2948[/tex]
The 95% confidence interval for the proportion of sales that occured in December is (0.1648, 0.2948).
More can be learned about the z-distribution at https://brainly.com/question/25890103
Which of these inequalities means that
18 is greater than three times a number?
Let's write this verbal phrase as an inequality.
First of all, let the number be n.
"three times n" can be written like so:-
[tex]\pmb{3n}[/tex]
Now, 18 is greater than 3n:-
[tex]\pmb{18 > 3n}[/tex]
Which means 3n is less than 18:-
[tex]\bigstar{\boxed{\pmb{3n < 18}}}[/tex]
note:-Hope everything is clear; if you need any explanation/clarification, kindly let me know, and I'll comment and/or edit my answer :)
Which answer is $734,596 rounded to the nearest thousand??
1) 734,500
2)734,600
3)735,000
4)734,000
Thank you so much
Answer:
2
Step-by-step explanation:
A simple random sample of 49 8th graders at a large suburban middle school indicated that 89% are involved in some type of after school activity. Find the 95% confidence interval that estimates the proportion of them that are involved in an after school activity.
A. [0.722], [0.978]
B. [0.802], [0.978]
C. [0.702], [0.928]
D. [0.802], [0.778]
E. [0.852], [0.857]
F. None of the above
Answer:
B. [0.802], [0.978]
Step-by-step explanation:
n=49
p=.89
confidence level of 95% has a z value of 1.960
z*= 1.960
z*=qnorm(1.95/2)
p+/-z* multiplied by sqrt[ P * ( 1 - P ) / n ]
p+/-z*times(√(p)(1-p)/n)
.89+/-1.960* (square root of (.89)(.11)/49))
calculatornetconfidenceintervalcalculatorhtml
mathuheducathyMath2311TestsTest2032311PT3helppdf
If the cube shown above is sliced by a plane to create a triangle, which sets of vertices could the plane pass through?
A.
4, 5, and 7
1, 2, and 7
2, 3, and 7
B.
1, 3, and 4
2, 3, and 8
1, 3, and 7
C.
3, 5, and 8
1, 2, and 6
2, 4, and 7
D.
4, 5, and 7
1, 3, and 8
2, 4, and 7
Answer:
The correct answer is D.
4, 5, and 7
1, 3, and 8
2, 4, and 7.
Hope this helps you czn!!!!!
Thankyou For joining Brainly Community!!!!
Don't froget Mark me Brainleast!!!!
Answer: the correct answer is d .
4,5 and 7
1,3 and 8
2,4 and 7
Step-by-step explanation: I HOPE IT HELPS YOU BUDDY . PLEASE GIVE BRAINLIEST .THANKS .
You make a shade of green icing using 2 drops of yellow food coloring for every 4 drops of blue. How many drops of blue food coloring would you need if you use 4 drops of yellow food coloring? how many drops of blue food coloring would u need if you use 4 drops of yellow food coloring
Answer:
8 drops of blue
Step-by-step explanation:
You doubled the yellow from 2 drops to four
so double the blue from 4 to 8
Find the volume of the oblique rectangular prism below. Round your answer to the
nearest tenth if
necessary.
1100
1115
1120
1135
Answer:
1100 units³
First calculate the Base Area:
parallelogram area:
Base * Height
11 * 10
110 units²
Volume:
Base Area * Length
110 * 10
1100 units³
Answer:
volume = 1100 cm³
Step-by-step explanation:
[tex]\textsf{Volume of an oblique rectangular prism}=l \cdot w \cdot h[/tex]
where:
[tex]l[/tex] is the base length[tex]w[/tex] is the base width[tex]h[/tex] is the height perpendicular to the baseGiven:
[tex]l[/tex] = 11 cm[tex]w[/tex] = 10 cm[tex]h[/tex] = 10 cmSubstituting the given values into the formula:
[tex]\implies \textsf{Volume}=11 \cdot 10 \cdot 10 = 1100\: \sf cm^3[/tex]
1. Solve 2(x + 1)^2 = 18. What are the x-intercepts?
Answer:
The x-intercepts are [tex](2,0)[/tex] and [tex](-4,0)[/tex].
Step-by-step explanation:
We are given the equation
[tex]2(x+1)^2=18[/tex]
Begin by dividing both sides of the equation by 2:
[tex](x+1)^2=9[/tex]
Next, take the square root of both sides. Remember that there are two solutions to a square root, the positive and the negative root:
[tex]x+1=\pm3[/tex]
Split the equation into two based on the two solutions:
[tex]x+1=-3[/tex]
[tex]x+1=3[/tex]
Solve each equation by subtracting 1 from both sides:
[tex]x=-4\\ x=2[/tex]
Since the x-intercepts are the solutions to a quadratic, we know the solutions are (2,0) and (-4,0).
A perimeter of a square field is 200, what is the area of that field?
Answer:
2500
Step-by-step explanation:
The perimeter is given by the formula :
P = 4L (L is length)
We rearrange the equation to get L as the subject:
L = P÷4
L = 200÷4
L = 50
The area of a square is given by the formula :
A = L²
A = 50²
A = 2500