The liquid level in a thermosyphon reboiler is mainly determined by the
a. Flow through the reboiler
b. Liquid level inside the tower
c. The diameter of the reboiler
d. None of the above

Answers

Answer 1

The liquid level in a thermosyphon reboiler is mainly determined by the height difference between the reboiler and the distillation tower, as well as the pressure drop through the reboiler.

This creates a natural circulation of the liquid, with the hot liquid rising in the reboiler and flowing into the tower, while the cooler liquid from the tower flows back into the reboiler to be reheated. The flow rate through the reboiler is largely determined by the pressure drop, which is influenced by the geometry of the reboiler and the physical properties of the fluid. However, the liquid level in the tower can also have an effect on the flow rate through the reboiler.

Learn more about reboiler

https://brainly.com/question/15687037

#SPJ4

Answer 2

The liquid level in a thermosyphon reboiler is mainly determined by the height difference between the reboiler and the distillation tower, as well as the pressure drop through the reboiler.

This creates a natural circulation of the liquid, with the hot liquid rising in the reboiler and flowing into the tower, while the cooler liquid from the tower flows back into the reboiler to be reheated. The flow rate through the reboiler is largely determined by the pressure drop, which is influenced by the geometry of the reboiler and the physical properties of the fluid. However, the liquid level in the tower can also have an effect on the flow rate through the reboiler.

Learn more about reboiler

brainly.com/question/15687037

#SPJ11


Related Questions

true or false a pure substance (such as h2o or iron) can only exist in three phases (solid, liquid, and gas)

Answers

A pure substance (such as H₂O or iron) can only exist in three phases (solid, liquid, and gas) - True.

A kind of matter with a predictable chemical composition and physical characteristics is referred to as a chemical substance. According to certain texts, a chemical compound cannot be physically divided into its component parts without rupturing chemical bonds. Chemical compounds, alloys, and simple substances (substances made up of a single chemical element) are all examples of chemical substances.

To distinguish them from mixes, chemical compounds are frequently referred to as 'pure'. Pure water is a popular illustration of a chemical substance; regardless of whether it is separated from a river or created in a lab, it has the same characteristics and hydrogen to oxygen ratio. Other chemicals that are frequently found in their purest forms are refined sugar (sucrose), gold, table salt (sodium chloride), and diamond (carbon). In reality, though, no material is completely pure, and chemical purity is determined by the chemical's intended application.

Learn more about Pure substance:

https://brainly.com/question/18452279

#SPJ4

a 20.0-ml sample of 0.25 m hno3 is titrated with 0.15 m naoh. what is the ph of the solution after 3.2 ml of naoh have been added to the acid? please include two decimal places.

Answers

The pH of the solution after 3.2 mL of NaOH have been added to the HNO3 is 12.33.

To solve this problem, we need to use the equation:

M(acid)V(acid) = M(base)V(base)

Where M is the molarity of the solution and V is the volume in milliliters.

First, we need to calculate the moles of HNO3 in the initial solution:

0.25 M x 20.0 mL = 0.005 moles HNO3

Next, we need to determine how many moles of NaOH were added to the solution:

0.15 M x 3.2 mL = 0.00048 moles NaOH

Since NaOH is a strong base, it will completely react with the HNO3, forming water and a salt. This means that the number of moles of HNO3 is reduced by the number of moles of NaOH:

0.005 moles HNO3 - 0.00048 moles NaOH = 0.00452 moles HNO3 remaining

Now, we can use the equation for the dissociation of HNO3 in water:

HNO3 + H2O → H3O+ + NO3-

The concentration of H3O+ can be found using the equation for the ion product of water:

Kw = [H3O+][OH-]

Kw is a constant equal to 1.0 x 10^-14 at 25°C. At this point, we have added enough NaOH to completely react with the HNO3, which means that all of the H3O+ initially present in the solution has been neutralized.

Therefore, [OH-] = (moles of NaOH added) / (total volume of solution)

[OH-] = 0.00048 moles / (20.0 mL + 3.2 mL) = 0.0214 M

Using Kw, we can calculate [H3O+]:

1.0 x 10^-14 = [H3O+][OH-]

[H3O+] = 4.67 x 10^-13 M

Finally, we can convert this concentration to pH:

pH = -log[H3O+] = -log(4.67 x 10^-13) = 12.33



To learn more about : NaOH

https://brainly.com/question/28504849

#SPJ11

Boyle's Law: Air trapped in a cylinder fitted with a piston occupies 136.5 mL at 1.05 atm pressure. What is the volume of air when the pressure is increased to 1.42 atm by applying force to the piston?

Answers

Boyle's Law states that the pressure and volume of a gas are inversely proportional, as long as the temperature remains constant. This means that we can use the formula:

P1V1 = P2V2

where P1 and V1 are the pressure and volume at the initial state, and P2 and V2 are the pressure and volume at the final state.

We are given:

P1 = 1.05 atm
V1 = 136.5 mL
P2 = 1.42 atm

We can solve for V2:

P1V1 = P2V2

V2 = (P1V1) / P2

V2 = (1.05 atm x 136.5 mL) / 1.42 atm

V2 = 100.9 mL (rounded to one decimal place)

Therefore, the volume of air when the pressure is increased to 1.42 atm is about 100.9 mL.

explain why conjugation of coupling reagent or the number of aromatic rings in the nucleophile makes a bigger difference in determining the lambda max of an azo dye? g

Answers

The lambda max (λmax) of an azo color is the wavelength at which the color retains light most unequivocally.

It is decided by the electronic structure of the color atom, which in turn depends on the nature and position of the chromophores and auxochromes within the atom.

A chromophore could be a gathering of iotas in an atom that retains light due to the nearness of delocalized π electrons.

An autochrome may be a gathering of molecules in an atom that changes the electronic properties of the chromophore and impacts the absorption spectrum of the particle.

In azo dyes, the chromophore is the azo gather (-N=N-), which incorporates a tall molar termination coefficient and assimilates emphatically within the unmistakable locale of the electromagnetic range.

The auxochromes are ordinarily fragrant rings, amino bunches, or carboxylic corrosive bunches, which can give or pull back electrons from the chromophore and move the λmax of the color.

When a coupling reagent is included in an azo color response, it responds with a diazonium salt to make an unused azo color. The structure of the coupling reagent can influence the λmax of the coming about color by modifying the electronic properties of the chromophore.

For case, a coupling reagent with an electron-donating gather can increment the electron thickness on the chromophore and move the λmax to a longer wavelength, while a coupling reagent with an electron-withdrawing bunch can diminish the electron thickness on the chromophore and move the λmax to a shorter wavelength.

The number of fragrant rings within the nucleophile can moreover influence the λmax of the azo dye. Fragrant rings are electron-rich and can give electrons to the chromophore, expanding its electron thickness and moving the λmax to a longer wavelength.

Hence, a nucleophile with different fragrant rings will have a more prominent impact on the λmax of the color than a nucleophile with only one fragrant ring.

In rundown, both the conjugation of the coupling reagent and the number of fragrant rings within the nucleophile can impact the electronic structure of the azo color and move its λmax.

Be that as it may, the impact of the nucleophile is ordinarily more critical since it specifically influences the electron thickness of the chromophore. 

To know more about coupling reactions refer to this :

https://brainly.com/question/19561214

#SPJ4

Calculate the heat capacity, in joules per degree of 28.4 g of water. Specific heat of H2O() = 4.184 J/g.°C a) 28.4 J/°C b) 119 J/°C Oc) 6.8 J/°C d) 0.147J/°C

Answers

The heat capacity of 28.4 g of water is 118.8976 J/°C. The closest option to this answer is option b) 119 J/°C.

To calculate the heat capacity of 28.4 g of water, we need to use the formula:

Heat capacity = mass x specific heat

where mass is given as 28.4 g and specific heat of water is given as 4.184 J/g.°C.

So, substituting the values in the formula, we get:

Heat capacity = 28.4 g x 4.184 J/g.°C
Heat capacity = 118.8976 J/°C


To calculate the heat capacity of 28.4 g of water, you need to multiply the mass of water (m) by its specific heat (c). The formula for heat capacity (Q) is:

Q = m × c

Given:
m = 28.4 g
c = 4.184 J/g.°C

Substitute the values and perform the calculation:

Q = 28.4 g × 4.184 J/g.°C = 118.8 J/°C

The closest answer among the given options is:

b) 119 J/°C

To learn more about mass of water click here

brainly.com/question/26789700

#SPJ11

in the removal of a pollutant from wastewater, which of the following is true of the cost per unit of pollutant removed? it decreases as the toxicity of the pollutant increases. it decreases as the time passed before remediation increases. it increases as the concentration of the pollutant decreases. it increases as the concentration of the

Answers

pollutant increases.

The cost per unit of pollutant removed increases as the concentration of the pollutant increases. The higher the concentration of the pollutant, the more difficult it is to remove, and more expensive the technology and processes required to remove it. Therefore, the cost per unit of pollutant removed is generally higher for higher concentrations of pollutants.

How many grams are contained in 2.709 x 10 ^24 atoms of MgCl2?

Answers

The approximate mass is 428.45 grams

can you help me with this

Answers

Rock type I’m not sure but Yan ang natatandaan ko na tinuri sa amin

25. j. chadwick discovered the neutron by bombarding with the popular projectile of the day, alpha particles. (a) if one of the reaction products was the then unknown neutron, what was the other product? (b) what is the q-value of this reaction?

Answers

(a) If one of the reaction products was the then unknown neutron, what was the other product is the C -12.

(b) The q-value of this reaction is the 5.9 × 10⁸ J.

The James Chadwick was discovered the neutron during the experiment involving the nuclear reaction in that the beryllium, bombarded with the alpha particles. The equation of the reaction is as :

⁴Be₉  +  ²He₄  ---->  ⁶C₁₂  +  ⁰n₁

(a) If one of the reaction products was the then unknown neutron, what was the other product is the C -12.

(b) The q-value of this reaction is as :

q = mc²

Where,

The m is the mass

The c is the speed of the light.

m = 4.002603 + 2.014102

m = 1.988501

q = 1.988501  × 3 × 10⁸

q = 5.9 × 10⁸ J

To learn more about James Chadwick here

https://brainly.com/question/14559793

#SPJ4

Pi bonding occurs in each of the following species EXCEPT...
(A) CO2 (B) C2H4 (C) CN− (D) C6H6 (E) CH4

Answers

CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

The answer is (E) CH4.



Pi bonding refers to the sharing of electrons between two atoms that occurs when two atomic orbitals with parallel electron spins overlap. Pi bonds are formed by the sideways overlap of two p orbitals.

In the given options, all except CH4 have pi bonds:

(A) CO2 has two pi bonds between the carbon atom and the oxygen atoms.
(B) C2H4 has a double bond between the two carbon atoms, which consists of one sigma bond and one pi bond.
(C) CN− has a triple bond between the carbon and nitrogen atoms, consisting of one sigma bond and two pi bonds.
(D) C6H6 has six pi bonds due to the delocalized pi electron system in the benzene ring.

In contrast, CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

Visit to know more about Sigma bonds:-

brainly.com/question/31377841

#SPJ11

which pair of elements are nonmetals and gases at room temperature and normal atmospheric pressure ?

Answers

The pair of elements that are nonmetals and gases at room temperature and normal atmospheric pressure are:

Oxygen (O₂) - Oxygen is a nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is colorless, odorless, and tasteless.

Nitrogen (N₂) - Nitrogen is another nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is also colorless, odorless, and tasteless.

Both oxygen and nitrogen are essential components of the Earth's atmosphere, with nitrogen making up about 78% of the air we breathe and oxygen making up about 21%.

To know more about atmospheric pressure, visit:

https://brainly.com/question/30166820

#SPJ1

PLEASE ANSWER 50 POINTS!!!!!
How many grams of NH3 form when 22g H2 react completely?
3H2 + N2 ---> 2NH3
H2: 2 g/mol NH3: 17 g/mol
22g H2 ----> gNH3

Answers

You should write 22 gram H2 and each mol has 2 gram and we have 3 mol.On the other side we have X gram NH3 and each mol has 17 grams and we have 2 mol of NH3

Answer:

mass of NH₃ formed when 22g of H₂ react completely = 124.67 grams

Explanation:

3H₂ + N₂ → 2NH₃

What is stoichiometry

The ratio of coefficients of reactants and products in the above reaction equation (3 : 1 : 2), is known as the stoichiometry of the reaction.

A stoichiometric amount of a reagent is the the optimum amount or ratio where, assuming that the reaction proceeds to completion, all of the reagent is consumed, there is no deficiency of the reagent, and there is no excess of the reagent. Thus if the stoichiometry of a reaction is known, as well as the mass of one of the substances, then it is possible to calculate the mass of any of the other substances.

What is a mole?

The mole is a unit of amount of substance established by the International System of Units, to make expressing amounts of reactant or product in a reaction more convenient. As defined by Avogadro's Constant, a mole is 6.022×10²³ amounts of something. The mole is used in stoichiometric calculations, instead of the mass.

Converting between mass and moles

To convert from mass to moles, we need to divide the mass present in grams, by the molar mass of the substance (the sum of the molar masses of the individual elements comprising the compound), in g/mol, to get the moles. This can be represented by the formula: n = m/M, where n = number of moles, m = mass, M = molar mass.

So if we have 22 g of H₂ gas, which reacts completely, and therefore is a stoichiometric amount, then converting this to moles:

n(H₂) = m/M = 22/2 = 11 mol.

Using our stoichiometry, we can see that the ratio of H₂ to NH₃ = 3 : 2.

Therefore, for every 3 moles of H₂ used, we produce 2 moles of NH₃.

n(NH₃) = 2/3 × n(H₂) = 2/3 × 11 = 7.333 mol.

Finally, converting moles back to mass we get:

m(NH₃) = n×M = 7.333×17 = 124.67 grams

∴ mass of NH₃ formed when 22g of H₂ react completely = 124.67 grams

A Carbon atom has a mass of 1.994 x10-23 g. If a sample of pure carbon has a mass of 42.552g, how many atoms would this contain? Show your work.

Answers

The sample of pure carbon would contain approximately 2.135 x 10²⁴ carbon atoms.

How many carbon atoms have masses that are equivalent to those in the periodic table?

The majority of carbon atoms—98.93%—have masses of 12 atomic mass units. A mass of 13.00 atomic mass units is present in 1.07% of the carbon atoms. 14.) Identify one distinction between the nuclei of carbon-12 and carbon-13 atoms in terms of the subatomic particles that can be discovered there.

First, using the atomic mass of carbon, we must determine how many moles of carbon are present in the sample:

1 mole of carbon atoms = 12.01 g of carbon atoms (atomic mass of carbon)

42.552 g of carbon atoms / 12.01 g/mol = 3.545 moles of carbon atoms

Using Avogadro's number, we can then determine how many carbon atoms are present in the sample:

Number of carbon atoms = 3.545 moles of carbon atoms x 6.022 x 10²³ atoms/mole

Number of carbon atoms = 2.135 x 10²⁴ atoms

To know more about carbon atoms visit:-

https://brainly.com/question/30507533

#SPJ1

someone help please its a sience testtt

Answers

The equator of the sun rotates faster than the poles.

How does the rotation of the equator of the sun differ from the rotation of the poles of the sun?

The equator of the sun rotates faster than its poles. This is known as differential rotation, and it is due to the fact that the sun is not a solid body, but is composed of gas and plasma. The equatorial regions of the sun rotate faster because they are farther from the center of the sun, where the gravitational pull is stronger, and thus experience less resistance to their motion.

The period of rotation of the equator of the sun is shorter than that of the poles. The equator rotates once every 25.4 days, while the poles rotate once every 36 days.

Learn more about the sun:https://brainly.com/question/17376727

#SPJ1

which of the following is a true statement regarding entropy? multiple choice question. the entropy of a substance is lowest in the solid phase and highest in the gas phase. the entropy of a system is the same regardless of whether it is in the solid or the gas phase. the entropy of a system is lowest in the gas phase and the highest in the solid phase. the entropy of a system is independent of its phase.

Answers

Answer:

Answer (Detailed Solution Below)

Explanation:

Option 3 : Substance in solid phase has the least entropy.

uric acid is a weak acid. if the initial concentration of uric acid is 0.110 m and the equilibrium concentration of h3o is 3.4 x 10-2 m, calculate ka for uric acid

Answers

The acid dissociation constant (Ka) for uric acid is [tex]1.0 x 10^-5.[/tex]

The dissociation of uric acid can be represented as follows:

H2UA ⇌ H+ + HUA

The equilibrium expression is given by:

Ka = [H+][HUA-]/[H2UA]

where Ka is the acid dissociation constant, [H+] is the concentration of hydrogen ions, [HUA-] is the concentration of the urate ion, and [H2UA] is the concentration of uric acid.

At equilibrium, the concentration of H2UA is equal to the initial concentration minus the concentration of H+ ions that have been consumed:

[H2UA] = 0.110 - [H+]

The concentration of HUA- can be calculated from the equation:

[HUA-] = [H+]

Substituting the above expressions into the equilibrium expression for Ka, we get

[tex]Ka = ([H+]^2) / (0.110 - [H+])[/tex]

Substituting [H+] = 3.4 x 10^-2 M, we get:

[tex]Ka = [(3.4 x 10^-2)^2] / (0.110 - 3.4 x 10^-2)[/tex]

[tex]Ka = 1.0 x 10^-5[/tex]

Therefore, the acid dissociation constant (Ka) for uric acid is [tex]1.0 x 10^-5.[/tex]

Learn more about dissociation constant

https://brainly.com/question/28197409

#SPJ4

what is the molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water? question 36 options: 0.00220 m 2.20 m 12.9 m 129 m

Answers

, the molar concentration of the solution is 2.202 M. molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water

To calculate the molar concentration of a solution, we need to first determine the number of moles of the solute present in the solution, and then divide that by the volume of the solution in liters.

The molar mass of NaCl is 58.44 g/mol. Therefore, the number of moles of NaCl in 45.0 g can be calculated as:

mole= mass / molar mass = 45.0 g / 58.44 g/mol = 0.7709 mol

Next, we need to convert the volume of the solution from milliliters to liters:

volume = 350.0 ml = 0.3500

Finally, we can calculate the molar concentration (M) of the solution as:

M = moles / volume = 0.7709 mol / 0.3500 L = 2.202 M

Learn more about concentration  here:

https://brainly.com/question/30665317

#SPJ11

explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases

Answers

The concentrations of major species in a mixture of weak and strong acids and bases are determined by their dissociation behavior and interaction in a solution, influencing the overall pH and buffering capacity.

The relationship among the concentrations of major species in a mixture of weak and strong acids and bases can be understood through their dissociation and interaction in a solution.

Strong acids, such as HCl, fully dissociate in water, releasing a high concentration of H+ ions. Similarly, strong bases, like NaOH, dissociate completely, releasing a high concentration of OH- ions.

Weak acids, such as acetic acid (CH3COOH), only partially dissociate in water, releasing a smaller concentration of H+ ions. Likewise, weak bases, like ammonia (NH3), partially dissociate, releasing a smaller concentration of OH- ions.

When a mixture of weak and strong acids and bases is present, the strong species will react first due to their higher concentrations of H+ or OH- ions. This reaction will affect the pH of the solution, as well as the concentrations of the weak species, as they will be buffered by the strong species.

To learn more about buffering capacity click here

brainly.com/question/24188850

#SPJ11

when solid mercury(i) chloride reacts with ammonia, two precipitates form. write the chemical formula for each of the precipitates. first precipitate: second precipitate:

Answers

When solid mercury(I) chloride (Hg₂Cl₂) reacts with ammonia (NH₃), two precipitates form: white mercurous ammonium chloride (HgNHCl) and black mercuric nitride (Hg₃N₂).

The chemical equation for the reaction is:

Hg₂Cl₂(s) + 2NH₃(aq) → HgNH₂Cl(s) + Hg₃N₂(s) + 2HCl(aq)

The first precipitate, mercurous ammonium chloride, is a white solid that forms because of the reaction between Hg₂Cl₂ and NH₃. It is also known as white precipitate and has a molecular formula of HgNH₂Cl.

The second precipitate, mercuric nitride, is a black solid that forms because of the reaction between the excess ammonia and the Hg²⁺ ions produced by the Hg₂Cl₂. The molecular formula of mercuric nitride is Hg₃N₂.

To learn more about nitride follow the link:

https://brainly.com/question/24004315

#SPJ4

at stp, what is the volume of 4.50 moles of nitrogen gas? at stp, what is the volume of 4.50 moles of nitrogen gas? 101 l 167 l 1230 l 60.7 l 3420 l

Answers

The volume of 4.50 moles of nitrogen gas at STP is approximately 101 L. So, the correct answer is 101 L.

At STP (standard temperature and pressure), the volume of one mole of any gas is 22.4 liters. Therefore, to find the volume of 4.50 moles of nitrogen gas at STP, we can simply multiply the number of moles by the molar volume:

At STP (Standard Temperature and Pressure), the volume of 4.50 moles of nitrogen gas (N2) can be calculated using the ideal gas law:

PV = nRT

Where P is the pressure (which is 1 atm at STP), V is the volume, n is the number of moles, R is the gas constant, and T is the temperature (which is 273.15 K at STP).

Rearranging this equation to solve for V, we get:

V = (nRT)/P

Substituting the values for n, R, P, and T, we get:

V = (4.50 mol x 0.08206 L atm K^-1 mol^-1 x 273.15 K)/1 atm

V = 101.3 L

For such more questions on STP:

https://brainly.com/question/27100414

#SPJ11

a flask containing helium gas is connected to an open-ended mercury manometer. the open end is exposed to the atmosphere, where the prevailing pressure is 752 torr. the mercury level in the open arm is 47 mm above that in the arm connected to the flask of helium. what is the helium pressure, in torr? a. -799 torr b. 26 torr c. 726 torr d. 705 torr e. none of these choices is correct.

Answers

The helium pressure is 799 torr.

As 1 mm Hg is equal to 1 torr. In an open-ended mercury manometer, the pressure will be equal to the atmospheric pressure.

Also, the pressure of the mercury level in the open arm is 47 mm above that in the arm connected to the flask of helium. Add both the given numbers,

(752 + 47) mm Hg = 799 torr

To learn more about helium pressure,

https://brainly.com/question/15867535

what is the total number of joules of heat energy needed to raise the temperature of 10 grams of water from 20 c to 30 c

Answers

The total number of joules of heat energy needed to raise the temperature of 10 grams of water from 20°C to 30°C is 418.4 J. The specific heat capacity of water is 4.184 J/g·°C.

To find the total heat energy needed, we can use the formula:

Q = m·c·ΔT

where:

Q = heat energy (in Joules)

m = mass of the water (in grams)

c = specific heat capacity of water (4.184 J/g·°C)

ΔT = change in temperature (in °C)

Substituting the values given, we get:

Q = 10 g × 4.184 J/g·°C × (30°C - 20°C)

Q = 418.4 J

Therefore, the total number of joules of heat energy needed to raise the temperature of 10 grams of water from 20°C to 30°C is 418.4 J.

Learn more about heat energy

https://brainly.com/question/29210982

#SPJ4

a random copolymer produced by polymerization of vinyl chloride and propylene has a number average molecular weight of 229,500 g/mol and a number degree of polymerization of 4,000. what is the average repeat unit molecular weight? select one: a. 62.5 g/mol b. 42.0 g/mol c. 57.4 g/mol d. 24.0 g/mol

Answers

The average repeat unit molecular weight for average molecular weight of 229,500 g/mol and a number degree of polymerization of 4,000 is equals to the 57.4 g/mol. So, option(c) is right one.

Polymers are large molecules made up of repeating structural units linked together. The degree of polymerization (DP) is the number of repeating units in the polymer molecule. The average molecular weight is the degree of polymerization (MP) multiplied by the molecular weight of the repeat unit (m) is written as [tex] \bar M_n = (DP)(m)[/tex]

We have a random copolymer produced by polymerization of vinyl chloride and propylene.

Average molecular weight= 229500 g/mol

Number degree of polymerization = 4000

Using the above formula, the average repeat unit molecular weight = 229500 g/mol/ 4000

= 57.37 ~ 57.4 g/mol

Hence, required value is 57.4 g/mol.

For more information about degree of polymerization, visit :

https://brainly.com/question/30751495

#SPJ4

a fractional distillation involves the use of a fractionating column to provide multiple condensation/evaporation cycles over a given distance. group of answer choices true false

Answers

The given statement "A fractional distillation that involves the use of the fractionating column and to provide the multiple condensation or the evaporation cycles over the given distance" is true as it involves the separation of the miscible liquids.

The Fractional distillation is the type of the distillation that will involves the separation of the miscible liquids. This process will involves the repeated distillations and the condensations. The mixture is separated into the component parts. The separation that happens when the mixture will be heated at the certain temperature and the fractions of the mixture will start to vaporize.

The more will be the volatile components will  increase in the vapor state after the heating, and when it  is liquefied, the  volatile components increase in the liquid state.

To learn more about Fractional distillation here

https://brainly.com/question/27004370

#SPJ4

2.345 x 10² grams of H3PO4 will need how many grams of Mg(OH)2 in the reaction below?

(Mg = 24.31 g/mol; O = 16.00 g/mol; H = 1.01 g/mol; P = 30.97 g/mol)

3Mg(OH)2 + 2H3PO4 =
1Mg3(PO4)2 + 6H2O

Answers

Taking into account definition of reaction stoichiometry, 209.36 grams of Mg(OH)₂ are needed.

Reaction stoichiometry

In first place, the balanced reaction is:

3 Mg(OH)₂ + 2 H₃PO₄ → Mg₃(PO₄)₂ + 6 H₂O

By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:

Mg(OH)₂: 3 moles H₃PO₄: 2 molesMg₃(PO₄)₂: 1 mole H₂O: 6 moles

The molar mass of the compounds is:

Mg(OH)₂: 58.33 g/moleH₃PO₄: 98 g/moleMg₃(PO₄)₂: 262.87 g/moleH₂O: 18.02 g/mole

Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

Mg(OH)₂: 3 moles× 58.33 g/mole= 174.99 gramsH₃PO₄: 2 moles× 98 g/mole= 196 gramsMg₃(PO₄)₂: 1 mole× 262.87 g/mole= 262.87 gramsH₂O: 6 moles× 18.02 g/mole= 108.12 grams

Mass of Mg(OH)₂ needed

The following rule of three can be applied: If by reaction stoichiometry 196 grams of H₃PO₄ react with 174.99 grams of Mg(OH)₂, 2.345×10² grams of H₃PO₄ react with how much mass of Mg(OH)₂?

mass of Mg(OH)₂= (2.345×10² grams of H₃PO₄× 174.99 grams of Mg(OH)₂)÷ 196 grams of H₃PO₄

mass of Mg(OH)₂= 209.36 grams

Finally, 209.36 grams of Mg(OH)₂ is required.

Learn more about reaction stoichiometry:

brainly.com/question/24741074

#SPJ1

The process of boiling is considered to be a (1) chemical change, because a new substance is formed (2) chemical change, because a new substance is not formed (3) physical change, because a new substance is formed (4) physical change, because a new substance is not formed

Answers

Answer:

physical change, because a new substance is not formed

Explanation:

Answer:

4) physical change, because a new substance is not formed

a physical change is where you can change the look and feel of whatever and get it back to what it was before but a chemical change. is a change where you can not get back to what it was originally

Explanation:

please give me brainliest

what, if any, relationship is observed between the most probable molecular speed and the molar mass of the gas? the most probable molecular speed decreases as the molar mass of the gas increases. there is no relationship between the most probable molecular speed and the molar mass. the most probable molecular speed decreases as the molar mass of the gas decreases. the most probable molecular speed increases as the molar mass of the gas increases.

Answers

The correct statement is: the most probable molecular speed decreases as the molar mass of the gas increases. The relationship observed between the most probable molecular speed and the molar mass of the gas is that the most probable molecular speed decreases as the molar mass of the gas increases. This is because heavier molecules have more inertia and therefore move more slowly than lighter molecules. So, the larger the molar mass, the slower the molecular speed.


This relationship can be explained by the equation for the most probable molecular speed (V_p), which is derived from the Maxwell-Boltzmann distribution:

V_p = √(2 * R * T / M)

where:
- V_p is the most probable molecular speed
- R is the ideal gas constant
- T is the temperature in Kelvin
- M is the molar mass of the gas

As you can see from the equation, the most probable molecular speed (V_p) is inversely proportional to the square root of the molar mass (M). This means that when the molar mass increases, the most probable molecular speed decreases, and vice versa.

Learn more about molar mass at https://brainly.com/question/837939

#SPJ11

The relationship observed between the most probable molecular speed and the molar mass of the gas is the most probable molecular speed decreases as the molar mass of the gas increases.

This relationship can be explained by the following steps:
1. Molecular speed refers to the velocity of individual molecules in a gas sample.
2. Molar mass is the mass of one mole of a substance, usually expressed in grams per mole (g/mol).
3. The most probable molecular speed can be estimated using the Maxwell-Boltzmann distribution, which describes the distribution of molecular speeds in a gas.
4. According to this distribution, lighter molecules (with lower molar mass) tend to have higher molecular speeds than heavier molecules (with higher molar mass) at the same temperature.
5. Therefore, as the molar mass of a gas increases, the most probable molecular speed decreases.

To learn more about molecular speed, refer:-

https://brainly.com/question/19243977

#SPJ11

in a binary star system that contains stars with 10 m¤ and 5 m¤, the velocity of the 10 m¤ star will be __________ times the velocity of the 5 m¤ star.

Answers

The velocity of the 10 M¤ star will be 1/2 times the velocity of the 5 M¤ star of binary star system.

In a binary star system, the velocity of each star depends on their masses and distances from each other. According to Kepler's laws, the more massive star will have a smaller orbit radius and a faster orbital velocity. Therefore, in this binary star system with stars of 10 m¤ and 5 m¤, the velocity of the 10 m¤ star will be higher than that of the 5 m¤ star. The exact ratio of their velocities cannot be determined without additional information about their distances and orbits.
In a binary star system, the stars orbit around a common center of mass. According to Kepler's laws of planetary motion, the velocities of the two stars are inversely proportional to their masses.

Let v1 be the velocity of the 10 M¤ star and v2 be the velocity of the 5 M¤ star. Using the inverse proportionality of velocities and masses, we can write the following equation:

v1 / v2 = M2 / M1

where M1 is the mass of the 10 M¤ star and M2 is the mass of the 5 M¤ star. Now, we can plug in the given values:

v1 / v2 = (5 M¤) / (10 M¤)

Simplify the equation:

v1 / v2 = 1 / 2

So, the velocity of the 10 M¤ star will be 1/2 times the velocity of the 5 M¤ star.

Learn more about binary star system here:

https://brainly.com/question/29912300

#SPJ11

The velocity of the 10 m¤ star will be approximately 0.71 times the velocity of the 5 m¤ star in this binary star system.

v = √(GM/r)

[tex]v_10m / v_5m[/tex]= √(G(5m¤) / r) / √(G(10m¤) / r)

Simplifying the equation, we get:

[tex]v_10m / v_5m[/tex] = √(5/10) = √0.5 ≈ 0.71

The star system is a way to represent the electronic configuration of an atom. It is also known as the "Hund's rule star notation" or "star diagram." The star system is used to show the distribution of electrons in different orbitals of an atom. In this notation, each orbital is represented by a circle, and each circle is divided into sections (or lobes) representing the different possible values of the angular momentum quantum number (l).

The sections are labeled using the corresponding values of l, such as s, p, d, f, and so on. Electrons are represented by arrows, with the direction of the arrow indicating the spin of the electron. The arrows are placed in the sections of the orbital circles according to Hund's rule, which states that electrons will fill the orbitals with the same energy level singly and with the same spin before pairing up.

To learn more about Star system visit here:

brainly.com/question/17046229

#SPJ4

What is wrong with the electron level diagrams/electron configurations below?

Answers

Answer:

a.) Instead of configuring all up before some down, all of the configurations were placed as up and down, leaving two spots empty in the 2p sublevel.

b.) There is a missing s sublevel for row 3.

c.) There are two up arrows in one of the lines.

d.) When you get to the "d" section you must subtract the number you're using by 1. So, it's supposed to be 2d to the power of 10.

calculate the volume of a solution, in liters, prepared by diluting a 1.0 l solution of 0.40 m koh to 0.13 m.

Answers

The volume of a solution, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is approximately 3.08 liters.

To calculate the volume of a solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M, you can use the dilution formula:

M1V1 = M2V2

where M1 is the initial molarity of the solution (0.40 M), V1 is the initial volume of the solution (1.0 L), M2 is the final molarity of the solution (0.13 M), and V2 is the final volume of the solution (in liters) that we need to find.

Rearrange the formula to solve for V2:

V2 = (M1V1) / M2

Now, plug in the given values:

V2 = (0.40 M * 1.0 L) / 0.13 M

V2 = 0.40 L / 0.13

V2 ≈ 3.08 L

So, the volume of the diluted solution is approximately 3.08 liters.

Learn more about the volume of a solution at https://brainly.com/question/29262229

#SPJ11

The volume of the solution after dilution is approximately 3.08 liters.

To calculate the volume of the solution, we can use the formula:

V1C1 = V2C2

where V1 is the initial volume, C1 is the initial concentration, V2 is the final volume, and C2 is the final concentration.

Plugging in the values given in the question, we get:

(1.0 L)(0.40 M) = V2(0.13 M)

Solving for V2, we get:

V2 = (1.0 L)(0.40 M) / (0.13 M) = 3.08 L

Therefore, the volume of the solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is 3.08 L.
Hi! I'd be happy to help you calculate the volume of the solution. To do this, we'll use the dilution formula:

C1V1 = C2V2

where C1 and V1 represent the initial concentration and volume, and C2 and V2 represent the final concentration and volume.

1. Plug in the given values:
C1 = 0.40 M (initial concentration of KOH)
V1 = 1.0 L (initial volume of the solution)
C2 = 0.13 M (final concentration of KOH)

2. Rearrange the formula to solve for V2:
V2 = (C1V1) / C2

3. Substitute the values into the formula:
V2 = (0.40 M × 1.0 L) / 0.13 M

4. Calculate V2:
V2 ≈ 3.08 L

So, the volume of the solution after dilution is approximately 3.08 liters.

Learn more about solution here:

https://brainly.com/question/31522192

#SPJ11

Other Questions
describe how an older adult should be instructed to breathe when performing the chest press exercise The history of real estate development is punctuated with great success stories and great failures. It is a risky, volatile business. It is sometimes described as a business that has 100 questions. If you answer all 100 questions correctly, then you can make a great deal of return on an investment. If you answer 95 correctly, then you can make some money. A mere 90 correct brings you even, and any fewer correct ensures that you will lose money. In this case, the investors were all knowledgeable in their areas but threw caution to the wind and put up a great deal of money with no real understanding of the impact of their actions. When they first started, they had no real reason to believe that their project would succeed. They had picked a good location and found savvy investors who had the financial strength they needed. Yet they failed. Fortunately for them they found out about their project before they lost any more money. To be sure, the loss they suffered was large, but it could have been much larger. They could have been approved and started construction, only to find that the nearby retail center was failing because of a change in the direction of the highway that abuts the center. The team could have had money in the land and paid for the construction, only to find that they had no chance of recovering any of their investment. This case is fairly simple in that the sole reason for the failure of the project was the wetland issue. In reality, projects like this are subject to a plethora of issues that can make or break them. Competition, a change in the marketplace, or a change in the overall economy or in area buying habits can affect a project. The best way to proceed with investments of these types is to commit as little to a project as possible in the early stages, and then contribute more as the risk in the major issues declines or is satisfied. Otherwise, real estate development investment can be a deep hole for unwise investors to dump a great deal of funds. escribe how to implement a stack using two queues. what is the running time of the push () and pop () methods in this case? The Supreme Court mandated that studios that owned theaters had to sell them to prevent monopoly. This is done because? At LaGuardia Airport for a certain nightly flight, the probability that it will rain is 0. 07 and the probability that the flight will be delayed is 0. 16. The probability that it will not rain and the flight will leave on time is 0. 83. What is the probability that it is raining and the flight is delayed? Round your answer to the nearest thousandth. How would you figure this out? a check received from the offeror may be held uncashed by the broker until acceptance of the offer, provided the: which virtual private network (vpn) protocols do not have security features natively? choose all that apply. Which label points to the part of chloroplast where chlorophyll molecules are found?A. 1 B. 2C. 3D. 4 Activity 1: Look Up Directions: Pair up and look closely at the picture. 1. What situation in life do you remember as you look at the picture? Answer:2. How does the picture make you feel? Answer:3. Do you believe the idea presented is relevant or truthful in the present time? Answer:4. As a viewer, do you always trust the material that you encounter? Why?Answer:Good Perfect Complete=BrainlistCopy Wrong Incomplete=ReportGood Luck Answer Brainly Users:-) after teaching a group of nursing students about the use of anti-infectives for prophylaxis, the instructor determines that the students need additional teaching when a student identifies what as an example? The wonderful advantage that American women have is that we can have all the rewards of that number-one career, and still moonlight with a second one to suit our intellectual, cultural, or financial tastes or needs." Schlafly's argument in the excerpt responded most directly to the change in the structure of families (true or false) what is the function of the highlighted structures? multiple choice connecting to muscles circulating nutrients controlling center removing waste destroying foreign invaders highly automated batch processes that can reduce the cost of making similar groups of products are called . group of answer choices flexible manufacturing systems. functional layouts. make-to-stock. adjacent processes. the coefficient of determination resulting from a particular regression analysis was 0.85. what was the slope of the regression line? Write the following expression without negative exponents. What is the difference between a flexible spending account (FSA) and a health savings account (HSA)? FSA contribution is made from pretax dollars; an HSA contribution is made from after-tax dollars. H if total internal reflection occurs, what can you say about the minimum possible index of refraction of the liquid? Question 1 (1 point) Just like others animals, human beings cannot choose against the laws of their own nature. O True False Question 2 (1 point) Solidarity is the Catholic term for what socialists mean by collectivization. O True O False 1) Consider the oil market characterized by:P= $/gallonQ=million gallons10P= 8+2QP= 100-10Q (tao) = $1/unit (gallons)a)What is the tax burden on customers and producers?b)What is the DWL due to this policy? how does the mixed polarity/nonpolarity of phospholipids and membrane proteins determine the structure of the cell membrane?