The maintenance department at the main campus of a large state university receives daily requests to replace fluorescent lightbulbs. The distribution of the number of daily requests is bell-shaped and has a mean of 42 and a standard deviation of 10. Using the 68-95-99.7 rule, what is the approximate percentage of lightbulb replacement requests numbering between 42 and 62.

The Maintenance Department At The Main Campus Of A Large State University Receives Daily Requests To

Answers

Answer 1

we are given

mean=42

Std=10

if the mean=42 + std =10 42+10=52

if the mean=42 - std=10 42-10=32

Rule -- 68-95-99.7

68% of the measures are within 1 standard deviation of the mean.

42+10=52

95% are within 2.

42+20=62

99.7% are within 3.

42+30=72

The normal distribution is symmetric, which means that 50% of the measures are above the mean and 50% are below.

we are ask for the porcentage of request between 42-62 (between the mean and 2+std)

62 is two standard deviations above the mean.

Of the 50% of the measures below the mean, 95% are between 42 and 62, so

0.95(50)=47.5

The approximate percentage of light bulb replacement requests numbering between 42 and 62 is of 47.5%


Related Questions

The endpoints CD are given. Find the coordinates of the midpoint m. 24. C (-4, 7) and D(0,-3)

Answers

To find the coordinates of the midpoint

We will use the formula;

[tex](x_m,y_m)=(\frac{x_1+x_2}{2},\text{ }\frac{y_1+y_2}{2})[/tex]

x₁ = -4 y₁=7 x₂ = 0 y₂=-3

substituting into the formula

Xm = x₁+x₂ /2

=-4+0 /2

=-2

Ym= y₁+ y₂ /2

=7-3 /2

=4/2

=2

The coordinates of the midpoint m are (-2, 2)

given the residual plot below, which of the following statements is correct?

Answers

Let me explain this question with the following picture:

We can recognize a linear structure when all the points have a pattern that seems like a straight line as you can see above for example.

In the graph of your question, we can see that the points don't have a definited pattern and that's clearly not seemed like a straight line.

Therefore, the answer is option B:

There is not a pattern, so the data is not linear.

We have a deck of 10 cards numbered from 1-10. Some are grey and some are white. The cards numbered are 1,2,3,5,6,8 and 9 are grey. The cards numbered 4,7, and 10 are white. A card is drawn at random. Let X be the event that the drawn card is grey, and let P(X) be the probability of X. Let not X be the event that the drawn card is not grey, and let P(not X) be the probability of not X.

Answers

Given:

The cards numbered are, 1,2,3,5,6,8, and 9 are grey.

The cards numbered 4,7 and 10 are white.

The total number of cards =10.

Let X be the event that the drawn card is grey.

P(X) be the probability of X.

Required:

We need to find P(X) and P(not X).

Explanation:

All possible outcomes = All cards.

[tex]n(S)=10[/tex]

Click boxes that are numbered 1,2,3,5,6,8, and 9 for event X.

The favourable outcomes = 1,2,3,5,6,8, and 9

[tex]n(X)=7[/tex]

Since X be the event that the drawn card is grey.

The probability of X is

[tex]P(X)=\frac{n(X)}{n(S)}=\frac{7}{10}[/tex]

Let not X be the event that the drawn card is not grey,

All possible outcomes = All cards.

[tex]n(S)=10[/tex]

Click boxes that are numbered 4,7, and 10 for event not X.

The favourable outcomes = 4,7, and 10

[tex]n(not\text{ }X)=3[/tex]

Since not X be the event that the drawn card is whic is not grey.

The probability of not X is

[tex]P(not\text{ }X)=\frac{n(not\text{ }X)}{n(S)}=\frac{3}{10}[/tex]

Consider the equation.

[tex]1-P(not\text{ X\rparen}[/tex][tex]Substitute\text{ }P(not\text{ }X)=\frac{3}{10}\text{ in the equation.}[/tex][tex]1-P(not\text{ X\rparen=1-}\frac{3}{10}[/tex][tex]1-P(not\text{ X\rparen=1}\times\frac{10}{10}\text{-}\frac{3}{10}=\frac{10-3}{10}=\frac{7}{10}[/tex]

[tex]1-P(not\text{ X\rparen is same as }P(X).[/tex]

Final answer:

[tex]1-P(not\text{ X\rparen is same as }P(X).[/tex]

Which of the following is NOT a factor of x3 + x2 - 4x - 4?x + 1x + 2x - 1x - 2

Answers

Answer: (x - 1)

Explanation

Given:

[tex]x^3+x^2-4x-4[/tex]

To factor a third-degree polynomial, we can do it by grouping:

[tex]=(x^3+x^2)+(-4x-4)[/tex]

Then, we have to find the common factor between groups:

[tex]=x^2(x+1)-4(x+1)[/tex]

Now, we can get the common factor of (x+1):

[tex]=(x^2-4)(x+1)[/tex]

Finally, the differences of squares equal the following:

[tex](x^2-a^2)=(x-a)(x+a)[/tex]

Then, applying this rule to our factor we get:

[tex]=(x+2)(x-2)(x+1)[/tex]

Thus, the only factor that is not correct is (x - 1)

Austin walks 3.5km every day. How far does he walk in 7 days?Write your answer in meters.

Answers

Answer:

24,500 meters

Step-by-step explanation:

Find the solution of the system by graphing.-x - 4y=4y=1/4x-3Part B: The solution to the system,as an ordered pair,is

Answers

Solution

-x -4y = 4

y= 1/4 x -3

Replacing the second equation in the first one we got:

-x -4(1/4x -3) =4

-x -x +12= 4

-2x = 4-12

-2x = -8

x= 4

And the value of y would be:

y= 1/4* 4 -3= 1 -3= - 2

And the solution would be ( 4,-2)

if a driver drive at aconstant rate of 38 miles per hour how long would it take the driver to drive 209 mile

Answers

In order to calculate how long would it take to drive 209 miles, we just need to divide this total amount of miles by the speed of the driver.

So we have:

[tex]\text{time}=\frac{209}{38}=5.5[/tex]

So it would take 5.5 hours (5 hours and 30 minutes).

The circumference of a circle is 18pi meters. What is the radius?Give the exact answer in simplest form. ____ meters. (pi, fraction)

Answers

Given:

The circumference of a circle, C=18π m.

The expression for the circumference of a circle is given by,

[tex]C=2\pi r[/tex]

Put the value of C in the above equation to find the radius.

[tex]\begin{gathered} 18\pi=2\pi r \\ r=\frac{18\pi}{2\pi} \\ r=9\text{ m} \end{gathered}[/tex]

Therefore, the radius of the circle is 9 m.

Determine whether the sequence is geometric. 160, 40, 10,2.5, ...

Answers

[tex]\begin{gathered} \frac{40}{160}=\frac{10}{40}=\frac{2.5}{10} \\ \\ \frac{1}{4}=\frac{1}{4}=\frac{1}{4} \end{gathered}[/tex]

Since the ratio is constant through the sequence, we conclude that it is geometric sequence.

If f(x) = x + 1, find f(x + 7). Hint: Replace x in the formula by x+7.f(x + 7) =

Answers

The original function is:

[tex]f(x)\text{ = x+1}[/tex]

We want to find the value of the function when the input is "x + 7". So in the place of the original "x" we will add "x+7".

[tex]\begin{gathered} f(x+7)\text{ = (x+7)+1} \\ f(x+7)\text{ = x+7+1} \\ f(x+7)\text{ = x+8} \end{gathered}[/tex]

The value of the expression is "x + 8"

Rowan is taking his siblings to get ice cream. They can't decide whether to get a cone or a cup because they want to get the most ice cream for their money. If w = 4 in, x =6 in, y = 6 in, z = 2 in, and the cone and cup are filled evenly to the top with no overlap, which container will hold the most ice cream? Use 3.14 for π, and round your answer to the nearest tenth.

Answers

EXPLANATION:

Given;

We are given two ice cream cups in the shapes of a cone and a cylinder.

The dimensions are;

[tex]\begin{gathered} Cone: \\ Radius=4in \\ \\ Height=6in \\ \\ Cylinder: \\ Radius=3in \\ \\ Height=2in \end{gathered}[/tex]

Required;

We are required to determine which of the two cups will hold the most ice cream.

Step-by-step solution;

Take note that the radius of the cylinder was derived as follows;

[tex]\begin{gathered} radius=\frac{diameter}{2} \\ \\ radius=\frac{6}{2}=3 \end{gathered}[/tex]

The volume of the cone is given by the formula;

[tex]\begin{gathered} Volume=\frac{1}{3}\pi r^2h \\ \\ Therefore: \\ Volume=\frac{1}{3}\times3.14\times4^2\times6 \\ \\ Volume=\frac{3.14\times16\times6}{3} \\ \\ Volume=100.48 \end{gathered}[/tex]

Rounded to the nearest tenth, the volume that the cone can hold will be;

[tex]Vol_{cone}=100.5in^3[/tex]

Also, the volume of the cylinder is given by the formula;

[tex]\begin{gathered} Volume=\pi r^2h \\ \\ Volume=3.14\times3^2\times2 \\ \\ Volume=3.14\times9\times2 \\ \\ Volume=56.52 \end{gathered}[/tex]

Rounded to the nearest tenth, the volume will be;

[tex]Vol_{cylinder}=56.5in^3[/tex]

ANSWER:

Therefore, the results show that the CONE will hold the most ice cream.

Given the matrices A and B shown below, find – į A+ B.89A=12 4.-4 -10-6 12B.=-3-19-10

Answers

Given:

[tex]\begin{gathered} A=\begin{bmatrix}{12} & {4} & {} \\ {-4} & {-10} & {} \\ {-6} & {12} & {}\end{bmatrix} \\ B=\begin{bmatrix}{8} & {9} & {} \\ {-3} & {-1} & {} \\ {-9} & {-10} & {}\end{bmatrix} \end{gathered}[/tex]

Now, let's find (-1/2)A.

Each term of the matrix A is multiplied by -1/2.

[tex]\begin{gathered} \frac{-1}{2}A=\frac{-1}{2}\begin{bmatrix}{12} & {4} & {} \\ {-4} & {-10} & {} \\ {-6} & {12} & {}\end{bmatrix} \\ =\begin{bmatrix}{\frac{-12}{2}} & {\frac{-4}{2}} & {} \\ {\frac{4}{2}} & {\frac{10}{2}} & {} \\ {\frac{6}{2}} & {-\frac{12}{2}} & {}\end{bmatrix} \\ =\begin{bmatrix}{-6} & {-2} & {} \\ {2} & {5} & {} \\ {3} & {-6} & {}\end{bmatrix} \end{gathered}[/tex]

Now let's find (-1/2)A+B.

To find (-1/2)A+B, the corresponding terms of the matrices are added together.

[tex]\begin{gathered} \frac{-1}{2}A+B=\begin{bmatrix}{-6} & {-2} & {} \\ {2} & {5} & {} \\ {3} & {-6} & {}\end{bmatrix}+\begin{bmatrix}{8} & {9} & {} \\ {-3} & {-1} & {} \\ {-9} & {-10} & {}\end{bmatrix} \\ =\begin{bmatrix}{-6+8} & {-2+9} & {} \\ {2-3} & {5-1} & {} \\ {3-9} & {-6-10} & {}\end{bmatrix} \\ =\begin{bmatrix}{2} & {7} & {} \\ {-1} & {4} & {} \\ {-6} & {-16} & {}\end{bmatrix} \end{gathered}[/tex]

Therefore,

[tex]undefined[/tex]

Interpreting the whale population on the graph. I think (A).

Answers

The y-intercept is the value in the vertical axis (y-value) when the value on the horizontal axis is zero (x = 0).

Looking at the horizontal axis, the value of x indicates the generation since 2007.

That means x = 0 indicates the generation in year 2007.

The value of y for x = 0 is 240, so the population in year 2007 is 240.

Correct option: A

Chloe deposits $2,000 in a money market account. The bank offers a simple interest rate of 1.2%. How much internet she earn in 10 years?

Answers

Given data:

deposits = $2,000

simple interest rate =1.2%

time =10 years

The formula to find the amount is,

[tex]A=\frac{\text{p}\cdot\text{n}\cdot\text{r}}{100}[/tex][tex]\begin{gathered} A=\frac{2000\cdot10\cdot1.2}{100} \\ A=\frac{24000}{100} \\ A=\text{ 240} \end{gathered}[/tex]The intrest she earn in 10 years is $240.

A play court on the school playground is shaped like a square joined by a semicircle. The perimeteraround the entire play court is 182.8 ft., and 62.8 ft. of the total perimeter comes from the semicircle.aWhat is the radius of the semicircle? Use 3.14 for atb.The school wants to cover the play court with sports court flooring. Using 3.14 for, how manysquare feet of flooring does the school need to purchase to cover the play court?

Answers

The total perimeter of the court is 182.8 ft, of this, 62.8ft represents the perimeter of the semicircle.

a)

The perimeter of the semicircle is calculated as the circumference of half the circle:

[tex]P=r(\pi+2)[/tex]

Now write it for r

[tex]\begin{gathered} \frac{P}{r}=\pi \\ r=\frac{P}{\pi} \end{gathered}[/tex]

Knowing that P=62.8 and for pi we have to use 3.14

[tex]\begin{gathered} r=\frac{62.8}{3.14} \\ r=20ft \end{gathered}[/tex]

The radius of the semicircle is r=20 ft

b.

To solve this exercise you have to calculate the area of the whole figure.

The figure can be decomposed in a rectangle and a semicircle, calculate the area of both figures and add them to have the total area of the ground.

Semicircle

The area of the semicircle (SC) can be calculated as

[tex]A_{SC}=\frac{\pi r^2}{2}[/tex]

We already know that our semicircla has a radius of 10ft so its area is:

[tex]A_{SC}=\frac{3.14\cdot20^2}{2}=628ft^2[/tex]

Rectangle

To calculate the area of the rectangle (R) you have to calculate its lenght first.

We know that the total perimeter of the court is 182.8ft, from this 62.8ft corresponds to the semicircle, and the rest corresponds to the rectangle, so that:

[tex]\begin{gathered} P_T=P_R+P_{SC} \\ P_R=P_T-P_{SC} \\ P_R=182.8-62.8=120ft \end{gathered}[/tex]

The perimeter of the rectangle can be calculated as

[tex]P_R=2w+2l[/tex]

The width of the rectangle has the same length as the diameter of the circle.

So it is

[tex]w=2r=2\cdot20=40ft[/tex]

Now we can calculate the length of the rectangle

[tex]\begin{gathered} P_R=2w+2l \\ P_R-2w=2l \\ l=\frac{P_R-2w}{2} \end{gathered}[/tex]

For P=120ft and w=40ft

[tex]\begin{gathered} l=\frac{120-2\cdot40}{2} \\ l=20ft \end{gathered}[/tex]

Now calculate the area of the rectangle

[tex]\begin{gathered} A_R=w\cdot l \\ A_R=40\cdot20 \\ A_R=800ft^2 \end{gathered}[/tex]

Finally add the areas to determine the total area of the court

[tex]\begin{gathered} A_T=A_{SC}+A_R=628ft^2+800ft^2 \\ A_T=1428ft^2 \end{gathered}[/tex]

Kyzell is traveling 15 meters per second. Which expression could be used to convert this speed to kilometers per hour.

Answers

Given:

Kyzell is traveling 15 meters per second

we need to convert meters per second to kilometers per hours

As we know:

1 km = 1000 meters

So, 1 meters = 1/1000 kilometers

And, 1 Hour = 60 minutes = 3600 seconds

So, 1 seconds = 1/3600 Hours

So,

[tex]15\frac{meters}{\sec onds}=15\cdot\frac{1}{1000}\cdot3600\cdot\frac{kilometes}{\text{hours}}=54\frac{kilometrers}{hours}[/tex]

So, the answer will be:

15 meters per second = 54 kilometers per hour

which answer is the right one according to the image below

Answers

To do that, we have to do the following:

[tex]\begin{gathered} t(s(x))=t(x\text{ -}7) \\ =4(x\text{ - }7)^2\text{ - }(x\text{ - }7)+3 \\ \\ \end{gathered}[/tex]

So, that would be the equivalent expression, because x is s(x), which is x - 7, so you have to replace every x value with (x - 7)

20) Determine if the number is rational (R) or irrational (I)

Answers

EXPLANATION:

Given;

Consider the number below;

[tex]97.33997[/tex]

Required;

We are required to determine if the number is rational or irrational.

Solution;

A number can be split into the whole and the decimal. The decimal part of it can be a recurring decimal or terminating decimal. A recurring decimal has its decimal digits continuing into infinity, whereas a terminating decimal has a specified number of decimal digits.

The decimal digits for this number can be expressed in fraction as;

[tex]Fraction=\frac{33997}{100000}[/tex]

In other words, the number can also be expressed as;

[tex]97\frac{33997}{100000}[/tex]

Therefore,

ANSWER: This is a RATIONAL number

assume the rate of inflation is 7% per year for the next 2 years. what will be the cost of goods 2 years from now adjusted for inflation if the goods cost $330.00 today? round to the nearest cent

Answers

To find the cost of the goods after two years we are going to use the formula:

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

where P is the cost now, r is the inglation rate in decimal form, n is the number of times the interest is taken per year and t is the time.

In this case we have P=$300.00, r=0.07, n=1 (once per year) and t=2 (two years). Plugging this values we have:

[tex]A=330(1+\frac{0.07}{1})^{1\cdot2}=377.82[/tex]

Therefore after two years the cost will be $377.82

Find functions f and g such that (f o g)(x) = [tex] \sqrt{2x} + 19[/tex]

Answers

We have the expression:

[tex](fog)(x)=\sqrt[]{2x}+19[/tex]

So:

[tex]g(x)=2x[/tex][tex]f(x)=\sqrt[]{x}+19[/tex]

***

Since we want to get the function g composed in the function f, and the result of this is:

[tex](fog)(x)=\sqrt[]{2x}+19[/tex]

When we replace g in f, we have to get as answer the previous expression. And by looking at it the only place where we will be able to replace values is where the variable x is located. The function f will have the "skeleton" or shape of the overall function and g will be injected in it.

From this, we can have that f might be x + 19 and g might be sqrt(2x), but the only options that are given such that when we replace g in x of f, are f = sqrt(x) + 19 and g = 2x.

Solve for x:
A
+79
X

Answers

Answer: -11

Step-by-step explanation: 66+46=112

180-112=68

79+?=68

79+-11=68

What is the value of the expression below when y=9 and z=6?

Answers

The numerical value of the expression 9y - 10z when y = 9 and z = 6 is 21.

This question is incomplete, the complete question is;

What is the value of the expression below when y = 9 and z = 6?

9y - 10z

What is the numerical value of the given expression?

An algebraic expression is simply an expression that is made up of constants and variables, including algebraic operations such as subtraction, addition, division, multiplication, et cetera.

Given the data in the question;

9y - 10zy = 9z = 6Numerical value of the expression = ?

To determine the numerical value of the expression, replace plug y = 9 and z = 6 into the expression and simplify.

9y - 10z

9( 9 ) - 10z

9( 9 ) - 10( 6 )

Multiply 9 and 9

81 - 10( 6 )

Multiply 10 and 6

81 - 60

Subtract 60 from 81

21

Therefore, the numerical value of the expression is 21.

Learn more about algebraic expressions here: brainly.com/question/4344214

#SPJ1

help me please i'm stuck Write a system of equations to describe the situation below, solve using an augmented matrix, and fill in the blanks. Myra owns a cake shop and she is working on two wedding cakes this week. The first cake consists of 3 small tiers and 4 large tiers, which will serve a total of 226 guests. The second one includes 1 small tier and 1 large tier, which is enough servings for 62 guests. How many guests does each size of tier serve? A small tier will serve ? guests and a large tier will serve ? guests.

Answers

the number of guests a small tier can serve is 22

the number of guest a large tier serves is 40

Explanation

Step 1

Set the equations

a) let

x represents the number of guest one small tier serves

y represents the number of guests one large tier serves

b) translate into math term

i)The first cake consists of 3 small tiers and 4 large tiers, which will serve a total of 226 guests,so

[tex]3x+4y=226\Rightarrow equation(1)[/tex]

ii) The second one includes 1 small tier and 1 large tier, which is enough servings for 62 guests,so

[tex]x+y=62\Rightarrow equation(2)[/tex]

Step 2

solve the equations:

[tex]\begin{gathered} 3x+4y=226\Rightarrow equation(1) \\ x+y=62\operatorname{\Rightarrow}equat\imaginaryI on(2) \end{gathered}[/tex]

a) isolate the x value in equation (2) and replace in equatino (1) to solve for y

[tex]\begin{gathered} x+y=62\Rightarrow equation(2) \\ subtract\text{ y in both sides} \\ x=62-y \end{gathered}[/tex]

replace into equation(1) and solve for y

[tex]\begin{gathered} 3x+4y=226\Rightarrow equation(1) \\ 3(62-y)+4y=226 \\ 186-3y+4y=226 \\ add\text{ like terms} \\ 186+y=226 \\ subtrac\text{ 186 in both sides} \\ 186+y-186=226-186 \\ y=40 \end{gathered}[/tex]

so, the number of guest a large tier serves is 40

b)now, replace the y value into equation (2) and solve for x

[tex]\begin{gathered} x+y=62\Rightarrow equation(2) \\ x+40=62 \\ subtract\text{ 40 in both sides} \\ x+40-40=62-40 \\ x=22 \end{gathered}[/tex]

so, the number of guests a small tier can serve is 22the number of guests a small tier can serve is 22

I hope this helps you

a store donated 2 and 1/4 cases of cranes to a daycare center each case holds 24 boxes of crayons each box holds 8 crayons how many crayons did the center receive

Answers

Answer:

The center recieved 432 crayons

Explanation:

Given the following information:

There are 2 and 1/4 cases

Each case holds 24 boxes of crayons

Each box holds 8 crayons.

The number of crayons the center receive is:

8 * 24 * (2 + 1/4)

= 8 * 24 * (8/4 + 1/4)

= 192 * (9/4)

= 1728/4

= 432

f(x)=1-x when f(x)=2

Answers

By solving the equation, we know that f(x) = 1 - x is - 1 when f(x) =  2.

What are equations?In mathematical equations, the equals sign is used to show that two expressions are equal.An equation is a mathematical statement that uses the word "equal to" in between two expressions of the same value.As an illustration, 3x + 5 equals 15.There are many different types of equations, including linear, quadratic, cubic, and others.The three primary types of linear equations are slope-intercept, standard, and point-slope equations.

So, f(x) = 1 - x when f(x)=  2:

Solve for f(x) as follows:

f(x) = 1 - xf(x) = 1 - 2f(x) = - 1

Therefore, by solving the equation, we know that f(x) = 1 - x is - 1 when f(x) =  2.

Know more about equations here:

brainly.com/question/2972832

#SPJ13

What function makes the HIV virus unique?

Answers

The function which makes the HIV virus unique is: B. It has viral DNA that is transmitted through indirect contact with infected persons.

HIV is an acronym or abbreviation for human immunodeficiency virus and it refers to a type of venereal disease that destabilizes and destroys the immune system of an infected person, thereby, making it impossible for antigens to effectively fight pathogens.

Generally, the high mutation or replication rate of the human immunodeficiency virus (HIV) owing to its enormous genetic diversity (deoxyribonucleic acid - DNA) makes it easily transmittable from an infected person to another.

This ultimately implies that, the HIV virus is unique among other viruses because it can be transmitted without having a direct contact with an infected person such as:

Sharing a hair clipper with him or her.

Using an object that has been infected by a HIV patient.

Additionally, it is extremely difficult to develop an effective and accurate vaccine against the HIV virus because it possesses a high error rate.

Graph the line with slope -2 passing through the point (3,5)

Answers

To graph the line, you need to know at least two points of it.

Knowing its slope and one point you can determine the equation of the line by using the point-slope form:

[tex]y-y_1=m(x-x_1_{})[/tex]

Where

m is the slope of the line

(x₁,y₁) are the coordinates of one point of the line

For m=-2 and (x₁,y₁)=(3,5) the equation of the line is:

[tex]y-5=-2(x-3)[/tex]

Next, replace the equation for any value of x and solve for y, for example, use x=2

[tex]y-5=-2(2-3)[/tex]

-Solve the difference within the parentheses then the multiplication

[tex]\begin{gathered} y-5=-2(-1) \\ y-5=2 \end{gathered}[/tex]

-Add 5 to both sides of the equation

[tex]\begin{gathered} y-5+5=2+5 \\ y=7 \end{gathered}[/tex]

The coordinates for the second point are (2,7)

Plot both points and link them with a line

solve the inequality for 5x + 9 ≤ 24

Answers

From the problem, we have an inequality of :

[tex]5x+9\le24[/tex]

Subtract 9 to both sides of the inequality :

[tex]\begin{gathered} 5x+9-9\le24-9 \\ 5x\le15 \end{gathered}[/tex]

Divide both sides by 5 :

[tex]\begin{gathered} \frac{5x}{5}\le\frac{15}{5} \\ x\le3 \end{gathered}[/tex]

The answer is x ≤ 3

A dilation with a scale factor of 4 is applied to the 3 line segment show on the resulting image are P'Q', A'B', And M'N'. Drag and drop the measures to correctly match the lengths of The images

Answers

Given:

Scale factor = 4 (Dilation)

PQ = 2 cm

AB = 1.5 cm

MN = 3 cm

Find-:

[tex]P^{\prime}Q^{\prime},A^{\prime}B^{\prime}\text{ and }M^{\prime}N^{\prime}[/tex]

Explanation-:

Scale factor = 4

So,

[tex]\begin{gathered} P^{\prime}Q^{\prime}=4PQ \\ \\ A^{\prime}B^{\prime}=4AB \\ \\ M^{\prime}N^{\prime}=4MN \end{gathered}[/tex]

So the value is:

[tex]\begin{gathered} P^{\prime}Q^{\prime}=4PQ \\ \\ P^{\prime}Q^{\prime}=4\times2 \\ \\ P^{\prime}Q^{\prime}=8\text{ cm} \end{gathered}[/tex][tex]\begin{gathered} A^{\prime}B^{\prime}=4AB \\ \\ A^{\prime}B^{\prime}=4\times1.5 \\ \\ A^{\prime}B^{\prime}=6\text{ cm} \end{gathered}[/tex][tex]\begin{gathered} M^{\prime}N^{\prime}=4MN \\ \\ M^{\prime}N^{\prime}=4\times3 \\ \\ M^{\prime}N^{\prime}=12\text{ cm} \end{gathered}[/tex]

The perimeter of a rectangular room is 80 feet. Let x be the width of the room (in feet) and let y be the length of the room (in feet). Write the equation that could model this situation.

Answers

Answer:

2x+2y=80

Step-by-step explanation:

a rectangles perimeter has the formula of width+width+length+length

we can combine like terms so we get 2x+2y and according to the problem this rectangle has the perimeter of 80

Other Questions
On october 19, 1781, where did british general lord cornwallis surrender 8,000 british soldiers and seamen to a larger franco-american force, effectively bringing an end to the american revolution?. The shaded triangle has an area of 4 cm?Find the area of the entire rectangleBe sure to include the correct unit in your answer. organizational design skills are critical to career success, but total organizational design or redesign typically is not put in the hands of newly hired managers. why then is it important for you early in your career to understand the structure and the specific differentiation and integration mechanisms of the organization you work in? gerritt wants to buy a car that costs $30,500. the interest rate on his loan is 5.63 percent compounded monthly and the loan is for 6 years. what are his monthly payments? The number of inequalitys and signs can be changed by the way Debra makes 26.40 from selling 52.8 ounces of lemonade. Find the unit price in dollars per ounce. If necessary, round your answer to the nearest cent. Find the value of this expression if x = 1 andy = -7x2y-9 Standard NCES.7.L.2.2-Two tall plants (homozygous dominant) are crossed. What are the expected phenotypes of the offspring?Group of answer choicesall short plantsall tall plantssome tall plants and some short plantsone tall plant and the rest short plants Select all the situations in which a proportional relationship is described.Jackson saves $10 in the first month and $30 in the next 3 months.Mia saves $8 in the first 2 months and $4 in the next month.Piyoli spends $2 in the first 2 days of the week and $5 in the next 5 days.Robert spends $2 in the first 3 days of the week and $5 in the next 4 days. HalpbutIDontActuallyNeedHalp;) *Provided in pictureee*Brainliest if you my bestieeeeeeee write a method named getmin that takes two int parameters and returns the lesser of the two values (assume the two values will never be equal). then write a second method getmin3 that takes 3 int parameters and returns the minimum of all three values (again assume none of the three parameters will be equal to each other). in your second method, be sure to call the first method (getmin) to accomplish the result. What is the final concentration when 288mL of water is added to 239mL of a 0.274M solution? A chocolate factory has a goal to produce10121012pounds of chocolate frogs per day. If the machines operate for712712hours per day making215215pounds of chocolate frogs per hour, will the chocolate factory make its goal?The chocolate factory meet their goal with the total being10121012pounds of chocolate frogs produced. in the context of elderly abuse, the states that an abuser is most likely to be an overworked and underappreciated family member who has major responsibility for the care of an older person. a. stressed caregiver hypothesis b. victimization hypothesis c. learned violence hypothesis d. dependency hypothesis Factor each polynomial by factoring out the greatest common factorminimum steps please How does Albert feel after he learns the source of the noise is Karens floor buffer? Why is equilibrium price represented by the intersection of the supply and demand curves in a particular market?. Whats the answer plss RATIOS, PROPORTIONS, AND PERCENTSCalculating income taxTeresa made $20,000 in taxable income last year.Suppose the income tax rate is 10% for the first $7500 plus 16% for the amount over $7500.How much must Teresa pay in income tax for last year? I need help with this math problem. how long is the hypotenuse of this right triangle?28 519023