The population of fruit flies in a laboratory grows geometrically and is checked everyday at noon. If the population began with 80 fruit flies and reached 125 in two days, what is the population after 4 days?

Answers

Answer 1

Answer:

[tex]\boxed{195}[/tex]

Step-by-step explanation:

The fruit flies grows geometrically.

[tex]125=80k^2[/tex]

Find the value of k.

[tex]\sqrt{\frac{125}{80} } =k[/tex]

[tex]1.25=k[/tex]

[tex]P=80(1.25)^t[/tex]

[tex]t[/tex] is number of days.

[tex]P=80(1.25)^4[/tex]

[tex]P=195[/tex]


Related Questions

Identify the value of the CRITICAL VALUE(S) used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. -0.218
b. -1.645
c. -1.946
d. -1.667

Answers

Answer:

C

Step-by-step explanation:

The critical value we are asked to state in this question is the value of the z statistic

Mathematically;

z-score = (x- mean)/SD/√n

From the question

x = 11.58

mean = 12

SD = 1.93

n = 80

Substituting this value, we have

z= (11.58-12)/1.93/√80 = -1.946

Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}

Answers

The area of the surface above the region R is 4096π square units.

Given that:

The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]

The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].

To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.

The integral for the area is given by:

[tex]Area = \int\int_R f(x, y) dA[/tex]

To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.

Using polar coordinates, we can parameterize the region R as follows:

x = rcos(θ)

y = rsin(θ)

where r goes from 0 to 8, and θ goes from 0 to 2π.

Now, rewrite the integral in polar coordinates:

[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]

Now, we can integrate with respect to r first and then with respect to θ:

[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]

Integrate with respect to r:

[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]

Now, we can integrate with respect to θ:

[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]

Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))

Area = 4096π + 128(0) - 0

Area = 4096π square units

So, the area of the surface above the region R is 4096π square units.

Learn more about Integration here:

https://brainly.com/question/31744185

#SPJ4

The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes

Answers

Answer:

the probability that one parachute of the  five parachute is damaged is 0.156

Step-by-step explanation:

From the given information;

Let consider X to be the altitude above the  ground that a parachute opens

Then; we can posit that the probability that the parachute is damaged is:

P(X ≤ 100 )

Given that the population mean μ = 155

the standard deviation σ = 30

Then;

[tex]P(X \leq 100 ) = ( \dfrac{X- \mu}{\sigma} \leq \dfrac{100- \mu}{\sigma})[/tex]

[tex]P(X \leq 100 ) = ( \dfrac{X- 155}{30} \leq \dfrac{100- 155}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq \dfrac{- 55}{30})[/tex]

[tex]P(X \leq 100 ) = (Z \leq -1.8333)[/tex]

[tex]P(X \leq 100 ) = \Phi( -1.8333)[/tex]

From standard normal tables

[tex]P(X \leq 100 ) = 0.0334[/tex]

Hence; the probability of the given parachute damaged is 0.0334

Let consider Q to be the dropped parachute

Given that the number of parachute be n= 5

The probability that the parachute opens in each trail be  p = 0.0334

Now; the random variable Q follows the binomial distribution with parameters n= 5 and p = 0.0334

The probability mass function is:

Q [tex]\sim[/tex] B(5, 0.0334)

Similarly; the event that one parachute is damaged is :

Q ≥ 1

P( Q ≥ 1 ) = 1 - P( Q < 1 )

P( Q ≥ 1 ) = 1 - P( Y = 0 )

P( Q ≥ 1 ) = 1 - b(0;5; 0.0334 )

P( Q ≥ 1 ) = [tex]1 -(^5_0)* (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = [tex]1 -( \dfrac{5!}{(5-0)!}) * (0.0334)^0*(1-0.0334)^5[/tex]

P( Q ≥ 1 ) = 1 -  0.8437891838

P( Q ≥ 1 ) = 0.1562108162

P( Q ≥ 1 ) [tex]\approx[/tex] 0.156

Therefore; the probability that one parachute of the  five parachute is damaged is 0.156

let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has

Answers

Answer:

The answer is below

Step-by-step explanation:

A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?

Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:

[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]

a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]

b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.

That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757

c) Let b be the amount of raw sugar should be stocked for the plant each day.

P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]

But P(x > a) = 0.05

Therefore:

[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]

a  ≅ 12

A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2

Answers

Answer:

3

Step-by-step explanation:

let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room

A living room is two times as long as the bedroom, so:

A = 2X

A living room is one and one-half times as wide as a bedroom, so:

B = 1.5Y

The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y

So, AB in terms of XY is:

A*B = (2X)*(1.5Y) = 3(X*Y)

It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the  bedroom.

A construction crew is lengthening a road. The road started with a length of 56 miles, and the crew is adding 3 miles to the road each day. Let L represent the total length of the road (in miles), and let D represent the number of days the crew has worked. Write an equation relating L to D. Then use this equation to find the total length of the road after the crew has worked 33 days.

Answers

Answer:

Below

Step-by-step explanation:

The initial length of the road was 56. 56 is the y-intercept assuming that the graph of this function is a line.

so the equation is:

y= mx+56

m is the slope of the function wich is by how much the function grows.

By analogy, m is the distance added to the road each day.

● y= 3x+56

X is the number of days.

■■■■■■■■■■■■■■■■■■■■■■■■■■

To find the length of the road after 33 days, replace x by 33.

y= 3*33+56 = 155

So after 33 days the road is 155 miles.

Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent

Answers

Answer:

a) $3700

b) $555

Step-by-step explanation:

The length of the loan is 3 years.

The interest after 3 years is $444.

The rate of the Simple Interest is 4%.

Simple Interest is given as:

I = (P * R * T) / 100

where P = principal (amount borrowed)

R = rate

T = length of years

Therefore:

[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]

P = $3700

She borrowed $3700

b) If the simple interest was 5%, then:

I = (3700 * 5 * 3) / 100 = $555

The interest would be $555.

Rewrite the equation in =+AxByC form. Use integers for A, B, and C. =−y6−6+x4

Answers

Answer:

6x + y = -18

Step-by-step explanation:

The given equation is,

y - 6 = -6(x + 4)

We have to rewrite this equation in the form of Ax + By = C

Where A, B and C are the integers.

By solving the given equation,

y - 6 = -6x - 24 [Distributive property]

y - 6 + 6 = -6x - 24 + 6 [By adding 6 on both the sides of the equation]

y = -6x - 18

y + 6x = -6x + 6x - 18

6x + y = -18

Here A = 6, B = 1 and C = -18.

Therefore, 6x + y = -18 will be the equation.

Please help with this question ASAP!
You are studying for the SAT and start the first week spending 2 hours studying. You plan to increase the amount you study by 10% each week. How many hours do you study in the 8th week?

Answers

Answer:

8w : 3.8974342 ≈ 3.9 or 4 (hope it help)

Step-by-step explanation:

1w : 2

2w : 2 + 10% = 2.2

3w : 2.2 + 10% = 2.42

4w : 2.42 + 10% = 2.662

5w : 2.662 + 10% = 2.9282

6w : 2.9282 + 10% = 3.22102

7w : 3.22102 + 10% = 3.543122

8w : 3.543122 + 10% = 3.8974342

3.8974342 ≈ 3.9 or 4

given sin theta=3/5 and 180°<theta<270°, find the following: a. cos(2theta) b. sin(2theta) c. tan(2theta)​

Answers

I hope this will help uh.....

convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.

Answers

Answer:

Standard form: [tex]12x+3y-2=0[/tex]

A = 12, B = 3 and C = -2

Step-by-step explanation:

Given:

The equation:

[tex]y= -4x + \dfrac{2}3[/tex]

To find:

The standard form of given equation and find A, B and C.

Solution:

First of all, let us write the standard form of an equation.

Standard form of an equation is represented as:

[tex]Ax+By+C=0[/tex]

A is the coefficient of x and can be positive or negative.

B is the coefficient of y and can be positive or negative.

C can also be positive or negative.

Now, let us consider the given equation:

[tex]y= -4x + \dfrac{2}3[/tex]

Multiplying the whole equation with 3 first:

[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]

Now, let us take all the terms on one side:

[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]

Now, let us compare with [tex]Ax+By+C=0[/tex].

So, A = 12, B = 3 and C = -2

The owner of a shoe store wanted to determine whether the average customer bought more than $100 worth of shoes. She randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below.
Use a TI-83, TI-83 Plus, or TI-84 calculator to test whether the mean is greater than $100 and then draw a conclusion in the context of the problem. Use α=0.05.
125 99 219 65 109 89 79 119 95 135
Select the correct answer below:
A) Reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
B) Reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
C) Fail to reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Answers

Answer:

D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Step-by-step explanation:

We are given that the owner of a shoe store randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below;

X: 125, 99, 219, 65, 109, 89, 79, 119, 95, 135.

Let [tex]\mu[/tex] = average customer bought worth of shoes.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] $100      {means that the mean is smaller than or equal to $100}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > $100      {means that the mean is greater than $100}

The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;

                            T.S.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = [tex]\frac{\sum X}{n}[/tex] = $113.4

             s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = $42.78

             n = sample of receipts = 10

So, the test statistics =  [tex]\frac{113.4-100}{\frac{42.78}{\sqrt{10} } }[/tex]  ~  [tex]t_9[/tex]

                                    =  0.991

The value of t-test statistics is 0.991.

Now, at a 0.05 level of significance, the t table gives a critical value of 1.833 at 9 degrees of freedom for the right-tailed test.

Since the value of our test statistics is less than the critical value of t as 0.991 < 1.833, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.

Therefore, we conclude that the mean is smaller than or equal to $100.

If a pair of dice are rolled,
what is the probability that at least
one die shows a 5?

Answers

Answer:

11/36

Step-by-step explanation:

Find the probability that neither dice shows a 5 (also means the dice can show any number except 5- where there are 5 possible choices out of 6):

= 5/6 x 5/6

=25/36

If we subtract the probability that neither dice shows a 5, we can obtain the probability that at least 1 dice shows a 5- (either one of them is 5, or both of them is 5)

1- 25/36

=11/36

expand (x+2y)^2 plzzzzzzzz​

Answers

(x + 2y) ^2

(x + 2y) (x + 2y)

x^2 + 2xy + 2xy + 4y^2

= x^2 + 4xy + 4y^2

A poll reported that 66 percent of adults were satisfied woth the job the major airlines were doing. Suppose 25 adults are selected at random and the number who are satisfied is recorded.
1. Explain why this is a binomial experiment.
A. This is a binomial experiment because there are three mutually exclusive outcomes for each​ trial, there is a fixed number of ​trials, the outcome of one trial does not affect the outcome of​ another, and the probability of success is the same for each trial.
B. This is a binomial experiment because there are two mutually exclusive outcomes for each​ trial, there is a random number of​ trials, the outcome of one trial does not affect the outcome of ​another, and the probability of success is the same for each trial.
C. This is a binomial experiment because there are two mutually exclusive outcomes for each​ trial, there is a fixed number of​ trials, the outcome of one trial does not affect the outcome of​ another, and the probability of success changes in each trial.
D. This is a binomial experiment because there are two mutually exclusive outcomes for each​ trial, there is a fixed number of ​trials, the outcome of one trial does not affect the outcome of ​another, and the probability of success is the same for each trial.
2) Find and interpret the probability that exactly 15 of them are satisfied with the airlines.

Answers

Answer:

A)Option D

B)P(X = 15) = 0.1325

Step-by-step explanation:

A) From the question, the information given follows binomial distribution because there are two mutually exclusive outcomes for each​ trial, there is a fixed number of trials. The outcome of one trial does not affect the outcome of ​another, and the probability of success is the same for each trial.

So option D is correct.

B) From the question, we are told that the poll reported that 66 percent of adults were satisfied with the job. Thus, probability is; p = 0.66

Let X be the number of adults satisfied with the job. Since 25 are selected,

Thus;

P(X = 15) = C(25, 15) * (0.66)^(15) * (1 - 0.66)^(25 - 15)

P(X = 15) = 3268760 × 0.00196407937 × 0.00002064378

P(X = 15) = 0.1325

Refer to the following wage breakdown for a garment factory:
Hourly Wages Number of employees
$4 up to $7 18
7 up to 10 36
10 up to 13 20
13 up to 16 6
What is the class interval for the preceding table of wages?
A. $4
B. $2
C. $5
D. $3

Answers

Answer:

The class interval is $3

Step-by-step explanation:

The class interval is simply the difference between the lower or upper class boundary or limit  of a class and the lower or upper class boundary or limit of the next class.

In this case for the class

$4 up to $7 18 and

$7 up to $10 36

The lower class boundary of the first class is $4 and the lower class boundary of the second class is $7

Hence the class interval = $7-$4= $3

Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....

Answers

Answer:

Hey there!

The common ratio is 5, because you multiply by 5 to get from one term to the next.

Hope this helps :)

Answer:

5

Step-by-step explanation:

To find the common ratio take the second term and divide by the first term

55/11 = 5

The common ratio would be 5

Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )

Answers

Answer:

[tex]\boxed{x = 9}[/tex]

Step-by-step explanation:

m = -1/3

b = 7

And y = 4 (Given)

Putting all of the givens in [tex]y = mx+b[/tex] to solve for x

=> 4 = (-1/3) x + 7

Subtracting 7 to both sides

=> 4-7 = (-1/3) x

=> -3 = (-1/3) x

Multiplying both sides by -3

=> -3 * -3 = x

=> 9 = x

OR

=> x = 9

Answer:

x = 9

Step-by-step explanation:

m = -1/3

b = 7

Using slope-intercept form:

y = mx + b

m is slope, b is y-intercept.

y = -1/3x + 7

Solve for x:

Plug y as 4

4 = 1/3x + 7

Subtract 7 on both sides.

-3 = -1/3x

Multiply both sides by -3.

9 = x

Linda, Reuben, and Manuel have a total of $70 in their wallets. Reuben has $10 more than Linda. Manuel has 2 times what Linda has. How much does each have? Amount in Linda's wallet: $ Amount in Reuben's wallet: $ Amount in Manuel's wallet:

Answers

Answer:

Linda has $15Reuben has $25Manuel has $30

Step-by-step explanation:

Together, they have 4 times what Linda has, plus $10. So, Linda has 1/4 of $60 = $15.

  Linda has $15

  Reuben has $25 . . . . . . $10 more than Linda

  Manuel has $30 . . . . . . twice what Linda has

A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80

Answers

Answer:

D.$80

Step-by-step explanation:

$5.26 x 15.5= $81.53

The closest amount to $81.53 is D.$80

You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day

Answers

Answer:

The required probability = 0.144

Step-by-step explanation:

Since the probability of making money is 60%, then the probability of losing money will be 100-60% = 40%

Now the probability we want to calculate is the probability of making money in the first two days and losing money on the third day.

That would be;

P(making money) * P(making money) * P(losing money)

Kindly recollect;

P(making money) = 60% = 60/100 = 0.6

P(losing money) = 40% = 40/100 = 0.4

The probability we want to calculate is thus;

0.6 * 0.6 * 0.4 = 0.144

Please answer this correctly without making mistakes

Answers

66.7

you will get the answer

Answer:

66.7

Step-by-step explanation:

The bicycle shop is 24.1 kilometers west of the train station meaning the distance between them is 24.1 kilometers.

The hardware store is 42.6 kilometers west of the bicycle shop meaning the distance between them is 42.6 kilometers.

Finally, you add both of the distances. (42.6 + 24.1)

You get the answer 66.7 kilometers.

Hope this helps!

Find the length of the following tangent segments to the circles centered at O and O's whose radii are 5 and 3 respectively and the distance between O and O's is 12. Find segment AB

Answers

Answer:

AB = 2 sqrt(35)   (or 11.83 to two decimal places)

Step-by-step explanation:

Refer to diagram.

ABO'P is a rectangle (all angles 90)

=>

PO'  =  AB

AB = PO' = sqrt(12^2-2^2) = sqrt(144-4) = sqrt(140) = 2sqrt(35)

using Pythagoras theorem.

A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?

Answers

Answer:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]

Step-by-step explanation:

Given that

3 white, 2 blue and 5 gray shirts are there.

To find:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?

Solution:

Here, total number of shirts = 3+2+5 = 10

First of all, let us learn about the formula of an event E:

[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]

[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]

[tex]P(First\ White) = \dfrac{3}{10}[/tex]

Now, this shirt is set aside.

So, total number of shirts left are 9 now.

[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]

So, the answer is:

Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]

Use the functions m(x) = 4x + 5 and n(x) = 8x − 5 to complete the function operations listed below. Part A: Find (m + n)(x). Show your work. (3 points) Part B: Find (m ⋅ n)(x). Show your work. (3 points) Part C: Find m[n(x)]. Show your work. (4 points)

Answers

Answer:

Step-by-step explanation:

Part A

(m + n)x = 4x + 5 + 8x - 5

(m + n)x = 12x   The fives cancel

Part B

(m - n)x = 4x + 5 - 8x + 5

(m - n)x = -4x + 10

Part C

The trick here is to put n(x) into m(x) wherever m(x) has an x.

m[n(x)] = 5(n(x)) + 5

m[n(x)] = 5(8x - 5) + 5

m[n(x)] = 40x - 20 + 5

m[n(x)] = 40x - 15

Evaluate the series

Answers

Answer:

the value of the series;

[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]

C) 59

Step-by-step explanation:

Recall that;

[tex]\sum_{1}^{n}a_n = a_1+a_2+...+a_n\\[/tex]

Therefore, we can evaluate the series;

[tex]\sum_{k=1}^{6}(25-k^2)[/tex]

by summing the values of the series within that interval.

the values of the series are evaluated by substituting the corresponding values of k into the equation.

[tex]\sum_{k=1}^{6}(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_{k=1}^{6}(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_{k=1}^{6}(25-k^2) =24+21+16+9+0+(-11)\\\sum_{k=1}^{6}(25-k^2) = 59\\[/tex]

So, the value of the series;

[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]

plzzzzz helpp j + 9 - 3 < 8

Answers

Answer:

j < 2

Step-by-step explanation:

Simplify both sides of the inequality and isolating the variable would get you the answer

please need help with this math question

Answers

Answer:

third option

Step-by-step explanation:

We just have to calculate 2x² - 4x - (x² + 6x). 2x² - x² = x² and -4x - 6x = -10x so the answer is x² - 10x.

Answer:

x^2-10x

Step-by-step explanation:

f(x)-g(x)

(2x^2-4x)-(x^2+6x)

carry through the negative

2x^2-4x-x^2-6x

x^2-10x

find the exact value of sin 0

Answers

Answer:

12/13

Step-by-step explanation:

First we must calculate the hypotenus using the pythagoran theorem

5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13

Now let's calculate sin0

sin O = 12/13

So the exact value is 12/13

Answer:

C.) 12/13

Step-by-step explanation:

In a right angle triangle MN = 12, ON = 5 and; angle N = 90°

Now,

For hypotenuse we will use Pythagorean Theorem

(MO)² = (MN)² + (ON)²

(MO)² = (12)² + (5)²

(MO)² = 144 + 25

(MO)² = 169

MO = √169

MO = 13

now,

Sin O = opp÷hyp = 12÷13

For each of the following research scenarios, decide whether the design uses a related sample. If the design uses a related sample, identify whether it uses matched subjects or repeated measures. (Note: Researchers can match subjects by matching particular characteristics, or, in some cases, matched subjects are naturally paired, such as siblings or married couples.)
You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described ___________a, b, or c_________________________.
a. uses a related sample - repeated measures
b. uses a related sample - matched subjects
c. does not use a related sample
John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample to lonely people to the sleep quality of a random sample of nonlonely people.
The design described ______a, b, or c_________________________.
a. does not use a related sample
b. uses a related sample (repeated measures)
c. uses a related sample (matched subjects)

Answers

Answer:

a. uses a related sample - repeated measures

c. uses a related sample (matched subjects)

Step-by-step explanation:

A) You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.  

The design described uses a related sample - repeated measures because the scores were compared on the Hoarding Severity scale before and after the treatment.

B) John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample of lonely people to the sleep quality of a random sample of nonlonely people.

The design described uses a related sample (matched subjects)

Other Questions
What properties must a quadrilateral possess in order for the quadrilateral to be classified as a.. trapezoid isosceles trapezoid The graphed line shown below is y = negative 2 x minus 8. Which equation, when graphed with the given equation, will form a system that has infinitely many solutions? y = negative (2 x + 8) y = negative 2 (x minus 8) y = negative 2 (x minus 4) y = negative (negative 2 x + 8) Solve with long division method 31/27 The Articles of Confederation united all states under one strong federal government. True or false? Newly independent nations in Latin America relied on goods and services from the US and Europe because the angle of elevation of the top of a tree from a point 27m away on the same horizontal ground as the foot on the tree is 30 degrees .find the height of the tree. During a summer trip, you observe that the bases of afternoon cumulus clouds are higher in Eastern Colorado compared to in Baltimore, Maryland. Based on concepts regarding stability and cloud development, explain why stratus clouds are typically observed along the coast of California. Team _____ provide(s) a way to talk about the behaviors that are expected of group members. For example, at the first day of cheerleading practice, the coach told the girls they were expected to be on time to every practice, to rehearse the routines at home, and to have fun. Akira receives a prize at a science fair for having the most informative project. Her trophy is in the shape of asquare pyramid and is covered in shiny gold foil.3 inHow much gold foil did it take to cover the trophy, including the bottom?inches Importers Direct arranged to have a French winery ship a large quantity of fine wine to the United States. By signing a(n) ______________, Importers Direct authorized its bank to make full payment to the French winery if and when the wine arrives at the Importers Direct warehouse in Philadelphia. Solve for x: 4 over x plus 4 over quantity x squared minus 9 equals 3 over quantity x minus 3. (2 points) Select one: a. x = -4 and x = -9 b. x = 4 and x = -9 c. x = -4 and x = 9 d. x = 4 and x = 9 Evaluate the expression. In the month of November, Carla Vista Co. Inc. wrote checks in the amount of $9,565. In December, checks in the amount of $11,465 were written. In November, $8,825 of these checks were presented to the bank for payment, and $10,285 in December. What is the amount of outstanding checks at the end of November? At the end of December? If an atom of rubidium (Rb) were to ionize, it would ______ ______ electron(s). In the California gold rush, a. few of the participants ended up staying in California. b. Chinese immigrants who arrived were unable to find work. c. a majority of the participants found some quantities of gold. d. upwards of ninety-five percent of the "Forty-niners" were men. e. most of the participants were seasoned miners. Need help plz Identify the various risks and benefits associated with overseas ventures as a mode of entry into global markets. boost in the local economic value, long setup time, high uncertainty, retain complete control, understand the local market needs, high setup cost of facilities Please answer this in two minutes What is (6b +4) when b is 2? NEED ASAPThe time period, prior events, and the cultural attitudes of the people involved are all part of what?A) historical imagingB) historical datingC) historical context D) historical organization What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?