Answer:
the required expression is [tex]E_2 - E_1[/tex] = 4[ 1 - [tex]e^{(-0.05t)}[/tex] ]
Explanation:
Given the data in the question;
Q = -0.2[ 1 - [tex]e^(-0.05t)[/tex] ]
ω = 100 rad/s
Torque T = 18 N-m
Electric power input = 2.0 kW
now, form the first law of thermodynamics;
dE/dt = dQ/dt + dw/dt = Q' + w'
dE/dt = Q' + w' ------ let this be equation 1
w' is the net power on the system
w' = [tex]w_{elect[/tex] - [tex]w_{shaft[/tex]
[tex]w_{shaft[/tex] = T × ω
we substitute
[tex]w_{shaft[/tex]= 18 × 100
[tex]w_{shaft[/tex] = 1800 W
[tex]w_{shaft[/tex] = 1.8 kW
so
w' = [tex]w_{elect[/tex] - [tex]w_{shaft[/tex]
w' = 2.0 kW - 1.8 kW
w' = 0.2 kW
hence, from equation 1, dE/dt = Q' + w'
we substitute
dE/dt = -0.2[ 1 - [tex]e^{(-0.05t)[/tex] ] + 0.2
dE/dt = -0.2 + 0.2[tex]e^{(-0.05t)[/tex] ] + 0.2
dE/dt = 0.2[tex]e^{(-0.05t)[/tex]
Now, the change in total energy, increment E, as a function of time;
ΔE = [tex]\int\limits^t_0}\frac{dE}{dt} . dt[/tex]
ΔE = [tex]\int\limits^t_0} 0.2e^{(-0.05t)} dt[/tex]
ΔE = [tex]\int\limits^t_0} \frac{0.2}{-0.05} [e^{(-0.05t)}]^t_0[/tex]
[tex]E_2 - E_1[/tex] = 4[ 1 - [tex]e^{(-0.05t)}[/tex] ]
Therefore, the required expression is [tex]E_2 - E_1[/tex] = 4[ 1 - [tex]e^{(-0.05t)}[/tex] ]
Iman wanted to find out at what temperature butter melts. She placed a cube of solid butter in a beaker. She put the beaker on a hot plate. She turned up the temperature dial one degree every two minutes. Then she recorded the temperature at which the butter started to melt.
Iman wanted to determine if her results were reliable. She decided to repeat the experiment. Which statement describes the main purpose of repeating the experiment?
to test a different substance
to see if the results are similar
to practice completing experiments
to determine if butter will melt twice
Answer:
Ans: To see if the results are similar
Two identical bulbs in parallel in a radio create a total resistance of 15 ohms in the circuit. What's the resistance of each of the bulbs A. 10 ohms B. 7.5 ohms C. 45 ohms D. 30 ohms
Answer
letter B is the answer because 7.5+7.5=15
The resistance of each of the bulbs will be 30 ohms. The correct option is D.
What is resistance?To resist the passage of current, use a resistor. When a resistor is included in a circuit, the amount of current that flows through it drops.
Using ohms as the unit, resistance acts as a gauge to quantify how easily current will flow through a circuit.
When resistance falls, current rises, and when resistance rises, current falls. In order to make sure that current flows in circuits at the proper rate, resistors are crucial.
Here, it is given that:
Total resistance is 15 ohms.
We know that, two identical resistors in parallel have an equivalent resistance half the value of either resistor.
So, the total resistance of 15 ohms have the resistance of each of the bulbs as 30 ohms.
Thus, the correct option is D.
For more details regarding resistance, visit:
https://brainly.com/question/29427458
#SPJ2
True or false, Increasing the spring force of the pressure plate that clamps the clutch disc to the flywheel increases torque capacity
but takes more foot pressure to operate the clutch pedal.
Answer: True
Explanation:
Sasha goes back through her architectural design books for inspiration and designs the new country club to have a Romanesque feel, using rounded arches for the doorways and windows and constructing the walls with extra thickness to give a feeling of imposing massiveness to the building. The client is mystified by Sasha’s approach. He says he can’t visualize it working at all and demands she rethink the entire design. What would be best for Sasha to do in response to this criticism?
She should create a computer animated view of the design to walk the client through it.
She should get a better idea for what the client wants and expects.
She should try a different architectural style for her design.
She should build a model of her design to show the client how it will look when finished.
Based on the concept that it is better to prevent falls happening in the first place, which of the following safety methods meets that criteria?
Answer:fall arrest harness
Explanation:cuz it’s just right
name the process by which mild steel can be converted into high carbon steel and explain it briefly ?
Answer:
please give me brainlist and follow
Explanation:
Mild steel can be converted into high carbons steel by which of the following heat treatment process? Explanation: Case hardening, also referred as carburizing increases carbon content of steel, thus, imparting hardness to steel.
A cylindrical vessel is pressurized to 1.7 MPa. The structure on which the vessel rests becomes damaged, resulting in uneven support that causes a twisting moment T0 of 8 106 N-m on the vessel. The vessel has an outer diameter of 2.5 m and a wall thickness of 50 mm. The steel wall has a uniaxial yield strength of 600 MPa. Determine the factor of safety with respect to yielding (a) assuming a maximum shear stress yield criterion and (b) assuming a von Mises yield criterion.
Answer:
a) 15.075 , b ) 12.9
Explanation:
pressure on cylindrical vessel = 1.7 MPa
Twisting moment due to pressure = To of 8( 10^6 ) N-m
outer diameter of vessel = 2.5 m
wall thickness of vessel = 50 mm
Steel wall uniaxial yield strength = 600 MPa
Calculate the factor of safety
a) assuming a max shear stress yield criterion
safety factor = 15.075
b) assuming a von Mises yield criterion
safety factor = 12.9
attached below is the detailed solution of the problem
The phasor technique is not valid if the frequencies of the sinusoids in the time domain are different. Part F - Use phasors to combine sinusoids The phasor technique makes it pretty easy to combine several sinusoidal functions into a single sinusoidal expression without using trigonometric identities. However, you cannot use the phasor technique in all cases. Select the expressions below for which the phasor technique cannot be used to combine the sinusoids into a single expression.
a. 45 sin(2500t – 50°) + 20 cos(1500t +20°)
b. 25 cos(50t + 160°) + 15 cos(50t +70°)
c. 100 cos(500t +40°) + 50 sin(500t – 120°) – 120 cos(500t + 60°) -100 sin(10,000t +90°) + 40 sin(10, 100t – 80°) + 80 cos(10,000t)
d. 75 cos(8t+40°) + 75 sin(8t+10°) – 75 cos(8t + 160°)
Answer:
a, c
Explanation:
As the problem statement tells you, the phasor technique cannot be used when the frequencies are different. The frequencies are different when the coefficients of t are different. The different ones are highlighted.
a. 45 sin(2500t – 50°) + 20 cos(1500t +20°)
b. 25 cos(50t + 160°) + 15 cos(50t +70°)
c. 100 cos(500t +40°) + 50 sin(500t – 120°) – 120 cos(500t + 60°) -100 sin(10,000t +90°) + 40 sin(10, 100t – 80°) + 80 cos(10,000t)
d. 75 cos(8t+40°) + 75 sin(8t+10°) – 75 cos(8t + 160°)
Answer:
A and CBy which the phaser technique cannot be used to combine the sinusoidal into a single expression.Una cuerda fuertemente estirada tiene sus puntos extremos fijos en x=0 y x=L. Si se le da un desplazamiento inicial F(x)=ax(L-x) desde la posición de equilibrio. Donde a es una constante y luego se suelta, encuentre el desplazamiento en cualquier tiempo t>0. Donde c=1/π.
Answer is in a photo. I couldn't attach it here, but I uploaded it to a file hosting. link below! Good Luck!
bit.[tex]^{}[/tex]ly/3a8Nt8n
Switching to first order kinetics, enzymes are immobilized in 6 mm radius (R) beads. Beads are immersed in a solution containing substrate at a concentration (CAs) of 22 gmol/m3. The observed reaction rate (rA,obs) of the heterogeneous reaction is 4.3 x 10-6 gmol/sec. The first order rate constant (k1) is 0.24 /sec. Calculate the hypothetical rate, r*As of the reaction in this system.
What is the function and role of product tear down charts, and how do engineers utilize them in the reverse engineering process?
Answer:
Product Teardown 28 pieces (1) Plastic packaging: protect and display product for purchase. (4) Exterior screws: hold case halves together. (1) Right case half: acts as part of a handle and contains the rest of the parts. (1) Left case half: acts as part of a handle and contains the rest of the parts.
Explanation:
A product teardown process is an orderly way to know about a particular product and identify its parts, system functionality to recognize modeling improvement and identify cost reduction opportunities. Unlike the traditional costing method, tear down analysis collects information to determine product quality and price desired by the consumers.
Answer:
?
Explanation:
. A fire hose with an inside diameter of 6.40 cm is connected to a water hydrant very close to the ground. The other end is attached to a nozzle with an inside diameter of 3.5 cm and is brought 8.0 m above the ground. The flow rate on the hose is 30.0 L/s. What is the pressure in the nozzle assuming the pressure inside the hose on the ground is 1.50 x 106 N/m2
Answer:
Solving
Explanation:
(TCO 3) Below is the frequency response of the IIR realization of an analog band-pass filter. What type of filter is this?
Answer:
Hello the frequency response is missing attached below is the missing image
answer : Elliptic Filter
Explanation:
The filter with such frequency response that is an analog band-pass filter as well is called an Elliptic filter.
And this is because an Elliptic filter posses a constant ripple in the stop band and a unity gain is seen in the pass band
A group of filmmaking students have produced four different short movies,
presentations about each one. Even though most of the content will be diffe
be the same for each production,
The compressed-air tank has an inner radius r and uniform wall thickness t. The gage pressure inside the tank is p and the centric axial load F is applied at the end cap. Use p = 1402 kPa, F= 13 kN, t 18 mm and r =306 mm.
Required:
Obtain the state of plane stress in the x - y coordinate system
Answer:
Explanation:
Given that:
The Inside pressure (p) = 1402 kPa
= 1.402 × 10³ Pa
Force (F) = 13 kN
= 13 × 10³ N
Thickness (t) = 18 mm
= 18 × 10⁻³ m
Radius (r) = 306 mm
= 306 × 10⁻³ m
Suppose we choose the tensile stress to be (+ve) and the compressive stress to be (-ve)
Then;
the state of the plane stress can be expressed as follows:
[tex](\sigma_ x) = \dfrac{Pd}{4t}+ \dfrac{F}{2 \pi rt}[/tex]
Since d = 2r
Then:
[tex](\sigma_ x) = \dfrac{Pr}{2t}+ \dfrac{F}{2 \pi rt}[/tex]
[tex](\sigma_ x) = \dfrac{1402 \times 306 \times 10^3}{2(18)}+ \dfrac{13 \times 10^3}{2 \pi \times 306\times 18 \times 10^{-3} \times 10^{-3}}[/tex]
[tex](\sigma_ x) = \dfrac{429012000}{36}+ \dfrac{13000}{34607.78467}[/tex]
[tex](\sigma_ x) = 11917000.38[/tex]
[tex](\sigma_ x) = 11.917 \times 10^6 \ Pa[/tex]
[tex](\sigma_ x) = 11.917 \ MPa[/tex]
[tex]\sigma_y = \dfrac{pd}{2t} \\ \\ \sigma_y = \dfrac{pr}{t} \\ \\ \sigma _y = \dfrac{1402\times 10^3 \times 306}{18} \ N/m^2 \\ \\ \sigma _y = 23.834 \times 10^6 \ Pa \\ \\ \sigma_y = 23.834 \ MPa[/tex]
When we take a look at the surface of the circular cylinder parabolic variation, the shear stress is zero.
Thus;
[tex]\tau _{xy} =0[/tex]
The two major forces opposing the motion of a vehicle moving on a level road are the rolling resistance of the tires, Fr, and the aerodynamic drag force of the air flowing around the vehicle, Fd, given respectively by Fr, = fW, Fd= CdA1/2 rhoV2 where f and Cd are constants known as the rolling resistance coefficient and drag coefficient, respectively, W and A are the vehicle weight and projected frontal area, respectively, V is the vehicle velocity, and rho is the air density. For a passenger car with W = 3,550 lbf, A = 23.3 ft^2, and Cd = 0.34, and where f = 0.02 and rho = 0.08 lbm/ft^3.
Required:
Determine the power required, in HP, to overcome rolling resistance and aerodynamic drag when V is 55 mph.
Answer:
The power required to overcome rolling resistance and aerodynamic drag is 19.623 h.p.
Explanation:
Let suppose that vehicle is moving at constant velocity. By Newton's Law of Motion, the force given by engine must be equal to the sum of the rolling resistance and the aerodynamic drag force of the air. And by definition of power, we have the following formula:
[tex]\dot W = \left(f\cdot W +\frac{\rho\cdot C_{D}\cdot A\cdot v^{2}}{2\cdot g_{c}} \right)\cdot v[/tex] (1)
Where:
[tex]\dot W[/tex]- Power, in pounds-force-feet per second.
[tex]f[/tex] - Rolling resistance coefficient, no unit.
[tex]W[/tex] - Weight of the passanger car, in pounds-force.
[tex]\rho[/tex] - Density of air, in pounds-mass per cubic feet.
[tex]C_{D}[/tex] - Drag coefficient, no unit.
[tex]A[/tex] - Projected frontal area, in square feet.
[tex]v[/tex] - Vehicle speed, in feet per second.
[tex]g_{c}[/tex] - Pound-mass to pound-force ratio, in pounds-mass to pound-force.
If we know that [tex]f = 0.02[/tex], [tex]W = 3,550\,lbf[/tex], [tex]\rho = 0.08\,\frac{lbm}{ft^{3}}[/tex], [tex]C_{D} = 0.34[/tex], [tex]A = 23.3\,ft^{2}[/tex], [tex]v = 80.685\,\frac{ft}{s}[/tex] and [tex]g_{c} = 32.174\,\frac{lbm}{lbf}[/tex], then the power required by the car is:
[tex]\dot W = \left(f\cdot W +\frac{\rho\cdot C_{D}\cdot A\cdot v^{2}}{2\cdot g_{c}} \right)\cdot v[/tex]
[tex]\dot W = 10901.941\,\frac{lbf\cdot ft}{s}[/tex]
[tex]\dot W = 19.623\,h.p.[/tex]
The power required to overcome rolling resistance and aerodynamic drag is 19.623 h.p.
A stainless steel ball (=8055 kg/m3, Cp= 480 J/kgK) of diameter D =15 cm is removed from theoven at a uniform temperature of 350oC. The ball is then subjectedto the flow of air at 1 atm pressure and 30oC with a velocityof 6 m/s. The surface temperature of the ball eventuallydrops to 250oC. Determine the average convection heat transfercoefficient during this cooling process and estimate howlong this process has taken.
Answer:
i) 25.04 W/m^2 .k
ii) 23.82 minutes = 1429.2 secs
Explanation:
Given data:
Diameter of steel ball = 15 cm
uniform temperature = 350°C
p = 8055 kg/m^3
Cp = 480 J/kg.k
surface temp of ball drops to 250°C
average surface temperature = ( 350 + 250 ) / 2 = 300°C
i) Determine the average convection heat transfer coefficient during the cooling process
Note : Obtain the properties of air at 1 atm at average film temp of 30°C from the table " properties of air " contained in your textbook
average convection heat transfer coefficient = 25.04 W/m^2 .k
ii) Determine how long this process has taken
Time taken by the process = 23.82 minutes = 1429.2 seconds
Δt = Qtotal / Qavg = 683232 / 477.92 = 1429.59 secs
attached below is the detailed solution of the given question