the solvent choice in a nucleophilic substitution reaction would affect which of the following? (select all that apply.) multiple select question. product functional group stereochemical outcomes mechanism of substitution product structure rate of reaction

Answers

Answer 1

The solvent choice in a nucleophilic substitution reaction would affect stereochemical outcomes, the product structure ,the rate of reaction.

The Nucleophilic substitution reactions are the type of the reactions in which the electron rich nucleophile will attacks the positively charged electrophile and to replace the leaving group.

The more polar the solvents are helpful in the nucleophilic substitutions. In the nucleophile the  ionic compound itself, and the more polar solvent helps to dissolve. Therefore, the polar solvents may be provide the additional stability to the ions. The Polar solvents will either decrease the nucleophilicity and it will not affect it, but do not increase the nucleophilicity.

To learn more about nucleophilic substitution here

https://brainly.com/question/2925960

#SPJ4


Related Questions

calculate the volume of a solution, in liters, prepared by diluting a 1.0 l solution of 0.40 m koh to 0.13 m.

Answers

The volume of a solution, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is approximately 3.08 liters.

To calculate the volume of a solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M, you can use the dilution formula:

M1V1 = M2V2

where M1 is the initial molarity of the solution (0.40 M), V1 is the initial volume of the solution (1.0 L), M2 is the final molarity of the solution (0.13 M), and V2 is the final volume of the solution (in liters) that we need to find.

Rearrange the formula to solve for V2:

V2 = (M1V1) / M2

Now, plug in the given values:

V2 = (0.40 M * 1.0 L) / 0.13 M

V2 = 0.40 L / 0.13

V2 ≈ 3.08 L

So, the volume of the diluted solution is approximately 3.08 liters.

Learn more about the volume of a solution at https://brainly.com/question/29262229

#SPJ11

The volume of the solution after dilution is approximately 3.08 liters.

To calculate the volume of the solution, we can use the formula:

V1C1 = V2C2

where V1 is the initial volume, C1 is the initial concentration, V2 is the final volume, and C2 is the final concentration.

Plugging in the values given in the question, we get:

(1.0 L)(0.40 M) = V2(0.13 M)

Solving for V2, we get:

V2 = (1.0 L)(0.40 M) / (0.13 M) = 3.08 L

Therefore, the volume of the solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is 3.08 L.
Hi! I'd be happy to help you calculate the volume of the solution. To do this, we'll use the dilution formula:

C1V1 = C2V2

where C1 and V1 represent the initial concentration and volume, and C2 and V2 represent the final concentration and volume.

1. Plug in the given values:
C1 = 0.40 M (initial concentration of KOH)
V1 = 1.0 L (initial volume of the solution)
C2 = 0.13 M (final concentration of KOH)

2. Rearrange the formula to solve for V2:
V2 = (C1V1) / C2

3. Substitute the values into the formula:
V2 = (0.40 M × 1.0 L) / 0.13 M

4. Calculate V2:
V2 ≈ 3.08 L

So, the volume of the solution after dilution is approximately 3.08 liters.

Learn more about solution here:

https://brainly.com/question/31522192

#SPJ11

a 20.00-ml sample of 0.3000 m hbr is titrated with 0.15 m naoh. what is the ph of the solution after 40.3 ml of naoh have been added to the acid? group of answer choices 10.87 1.00 3.13 13.14 11.05

Answers

The pH of the solution is 4.72. So the answer is not one of the provided choices.

To solve this problem, we can use the equation for the reaction between HBr and NaOH:

[tex]HBr + NaOH - > NaBr + H_2O[/tex]

We know the initial concentration of HBr is 0.3000 M, and the volume is 20.00 mL, so the initial moles of HBr is:

0.3000 M × 0.02000 L = 0.00600 moles HBr

When 40.3 mL of 0.15 M NaOH is added, we can calculate the moles of NaOH added:

0.15 M × 0.0403 L = 0.006045 moles NaOH

Since the reaction between HBr and NaOH is 1:1, the moles of HBr remaining is:

0.006045 moles NaOH - 0.00600 moles

HBr = 4.5 × 10^-5 moles HBr

We can calculate the new volume of the solution:

20.00 mL + 40.3 mL = 60.3 mL = 0.0603 L

Now, we can calculate the new concentration of HBr:

(4.5 × 10^-5 moles HBr) / (0.0603 L) = 0.000746 M HBr

Finally, we can calculate the pH using the equation for the dissociation of HBr in water:

[tex]HBr + H_2O - > H_3O+ Br^-[/tex]

The equilibrium expression is:

Ka = [H3O+][Br-] / [HBr]

Since the concentration of HBr is very small, we can assume that it dissociates completely, so:

[H3O+] = [Br-] = xKa = x^2 / 0.000746

Solving for x, we get:

x = √(Ka × 0.000746) = √(8.7 × 10^-10 × 0.000746) = 1.89 × 10^-5 M.

For such more questions on Equilibrium:

https://brainly.com/question/5081082

#SPJ11

phenacetin can be prepared from p-acetamidophenol, which has a molar mass of 151.16 g/mol, and bromoethane, which has a molar mass of 108.97 g/mol. the density of bromoethane is 1.47 g/ml. what is the yield in grams of phenacetin, which has a molar mass of 179.22 g/mol, possible when reacting 0.151 g of p-acetamidophenol with 0.12 ml of bromoethane?

Answers

The theoretical yield of phenacetin is 0.17922 g. However, the actual yield may be lower due to factors such as incomplete reaction, loss during purification, or experimental error.

To calculate the theoretical yield of phenacetin, we need to first determine the limiting reagent. The limiting reagent is the reactant that will be completely consumed in the reaction, thus limiting the amount of product that can be produced.

First, we need to convert the volume of bromoethane given in milliliters to grams, using its density:

0.12 ml x 1.47 g/ml = 0.1764 g bromoethane

Next, we can use the molar masses of p-acetamidophenol and bromoethane to determine the number of moles of each:

moles p-acetamidophenol = 0.151 g / 151.16 g/mol = 0.001 mol

moles bromoethane = 0.1764 g / 108.97 g/mol = 0.00162 mol

Since the reaction requires a 1:1 molar ratio of p-acetamidophenol to bromoethane, and the number of moles of p-acetamidophenol is smaller than the number of moles of bromoethane, p-acetamidophenol is the limiting reagent.

The theoretical yield of phenacetin can be calculated using the molar mass of phenacetin and the number of moles of p-acetamidophenol:

moles phenacetin = 0.001 mol p-acetamidophenol

mass phenacetin = 0.001 mol x 179.22 g/mol = 0.17922 g

For such more questions on Phenacetin:

https://brainly.com/question/29460577

#SPJ11

the gain or loss of electrons from an atom results in the formation of a (an)

Answers

The formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Atoms are composed of protons, neutrons, and electrons. The number of protons in an atom determines its atomic number and the element it represents. The electrons in an atom occupy different energy levels or shells, and these electrons participate in chemical reactions. The outermost shell of electrons, called the valence shell, is particularly important in chemical reactions because it determines the chemical properties of the atom.

When an atom gains or loses electrons, it becomes charged and is called an ion. The process of gaining or losing electrons is called ionization. When an atom loses one or more electrons, it becomes a positively charged ion called a cation. Cations have a smaller number of electrons than protons and have a net positive charge. For example, when the element sodium (Na) loses one electron, it becomes a sodium ion (Na+).

On the other hand, when an atom gains one or more electrons, it becomes a negatively charged ion called an anion. Anions have a larger number of electrons than protons and have a net negative charge. For example, when the element chlorine (Cl) gains one electron, it becomes a chloride ion (Cl-).

The formation of ions is a fundamental process in many chemical reactions. Ions can combine with each other to form ionic compounds, which are compounds composed of ions held together by electrostatic forces. For example, sodium ions (Na+) and chloride ions (Cl-) can combine to form sodium chloride (NaCl), which is common table salt.

Overall, the formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Visit to know more about Compound:-

brainly.com/question/26487468

#SPJ11

suppose of zinc chloride is dissolved in of a aqueous solution of potassium carbonate. calculate the final molarity of zinc cation in the solution. you can assume the volume of the solution doesn't change when the zinc chloride is dissolved in it.

Answers

The final molarity of zinc cation in the solution is 0.0122 M.

Assuming complete dissociation of zinc chloride, we can write the balanced chemical equation as:

[tex]ZnCl_2 (aq) + K_2CO_3 (aq) - > Zn_2+ (aq) + 2K+ (aq) + 2Cl- (aq) + (CO_3) ^{2-} (aq)[/tex]

First, we need to calculate the moles of zinc chloride present in the solution:

moles of ZnCl2 = (0.25 g / 136.30 g/mol) = 0.001833 mol

Since 1 mole of ZnCl2 produces 1 mole of Zn2+, the final molarity of zinc cation in the solution will be:

Molarity of [tex]Zn_{2+[/tex]= moles of [tex]Zn_{2+[/tex]

volume of solution in liters moles of Zn2+ = 0.001833 mol

volume of solution = 0.150 L

Molarity of Zn2+ = 0.001833 mol / 0.150 L = 0.0122 M.

For such more questions on Zinc chloride:

https://brainly.com/question/20689567

#SPJ11

The first ores that were widely smelted by humans to produce metal were those of ____________.
a. bronze
b. copper
c. gold
d. iron

Answers

The first ores that were widely smelted by humans to produce metal were those of copper, option .

Ore is a naturally occurring rock or silt that includes precious minerals that are concentrated above background levels and may be mined, processed, and sold profitably. Metals are the most common valuable minerals found in ore. The concentration of the desired ingredient in an ore is referred to as its grade.

To decide if a rock has a high enough grade to be worth mining and is thus regarded as an ore, the value of the metals or minerals it contains must be evaluated against the expense of extraction. An ore that contains many precious minerals is said to be complex. Typically, oxides, sulphides, silicates, or native metals like copper or gold are the minerals of interest.

Learn more about Ores:

https://brainly.com/question/28635854

#SPJ4

The first ores that were widely smelted by humans to produce metal were those of copper.

Metals are a crucial part of the history of mankind and cannot be left out. In fact, it was quite common for historians to describe particular historical eras using metals that were in use at the time. The Stone Age, Bronze Age, and Iron Age, among others, all existed. One of the metals that man has used since very ancient times is copper. In actuality, copper was the first metal that man ever discovered, in the year 9000 BCE. Gold, silver, tin, lead, and iron were also used in prehistoric times.

Chemically speaking, copper is an element known as Cuprum. Cu is its chemical symbol. Cuprum, a Latin word, literally translates as "from the island of Cyprus." Its colour is a reddish-brown metal.

Visit here to learn more about  copper : https://brainly.com/question/2289251
#SPJ11

To make a 1.0 M solution of KCl from 97.0 g of KCl, Blank 1 L of water is required. Round atomic masses to the nearest whole number. Include 3 sig figs total in your answer.​

Answers

To make a 1.0 M solution of KCl from 97.0 g of KCl, we need to dissolve the KCl in approximately 1.30 L of water.

How to find the volume of water

To make a 1.0 M solution of KCl, we need to dissolve 74.55 g of KCl in 1 L of water. However, we have 97.0 g of KCl, which is more than what we need.

We can calculate the volume of water required to dissolve 97.0 g of KCl and make a 1.0 M solution as follows:

First, we need to calculate the number of moles of KCl in 97.0 g:

moles of KCl = mass of KCl / molar mass of KCl

moles of KCl = 97.0 g / 74.55 g/mol

moles of KCl = 1.30 mol

Next, we can use the definition of molarity to calculate the volume of water required:

Molarity = moles of solute / volume of solution

1.0 M = 1.30 mol / volume of solution

volume of solution = 1.30 mol / 1.0 M

volume of solution = 1.30 L

Learn more about molarity at

https://brainly.com/question/14469428

#SPJ1

an experimental plot of ln(k) vs. 1/t is obtained in lab for a reaction. the slope of the best-fit line for the graph is -2905 k. what is the value of the activation energy for the reaction in kj/mol?

Answers

Multiplying the slope (-2905 k) by the gas constant (0.008314 kJ/mol K) gives the activation energy: 24.1 kJ/mol.

The slant of the best-fit line for the diagram of ln(k) versus 1/T is equivalent to - Ea/R, where Ea is the actuation energy for the response, R is the gas consistent, and T is the temperature in Kelvin. To decide the actuation energy, we really want to improve this condition to address for Ea.

Ea = - slant x R

We realize that the slant of the best-fit line is - 2905 K, and R is 8.314 J/(mol·K). In any case, the slant should be changed over completely to units of J/(mol·K) by duplicating by 1000, since we need the actuation energy in units of kJ/mol. Accordingly:

Ea = - (- 2905 K x 8.314 J/(mol·K)) x (1/1000 kJ/J)

Ea = 24.1 kJ/mol

The initiation energy for the response is 24.1 kJ/mol. This worth addresses the base energy expected for the reactants to defeat the energy hindrance and structure items. The higher the initiation energy, the more slow the response rate, as well as the other way around.

To learn more about activation energy , refer:

https://brainly.com/question/30578051

#SPJ4

which term best describes a solution in a typical kitchen that has as much dissolved solute as it can hold? responses

Answers

The term that best describes a solution in a typical kitchen that has as much dissolved solute as it can hold is "saturated solution."

A saturated solution is a solution that contains the maximum amount of solute that can dissolve in a given solvent at a particular temperature and pressure. If more solute is added to a saturated solution, it will not dissolve and will form a separate phase or precipitate.

In a kitchen setting, a common example of a saturated solution is a solution of table salt (sodium chloride) in water. At room temperature, water can dissolve a certain amount of salt, and once this limit is reached, the solution becomes saturated. If more salt is added to the solution, it will not dissolve and will settle at the bottom of the container.

It is important to note that the solubility of a substance can vary depending on factors such as temperature and pressure. Therefore, a solution that is saturated at one temperature or pressure may not be saturated under different conditions.

Learn more about saturated solution here:

https://brainly.com/question/1851822

#SPJ11

if each orange sphere represents 0.010 mol of sulfate ion, how many moles of acid and of base reacted?

Answers

The number of moles of acid and base that react depends on the stoichiometry of the chemical reaction and the amounts of reactants used

Without additional information about the chemical reaction or system being referred to, we cannot determine the number of moles of acid and base that reacted.

If we assume that the orange spheres represent sulfate ions in a specific reaction, then we would need to know the stoichiometry of the reaction to determine the number of moles of acid and base that reacted.

For example, if the reaction involved sulfuric acid ([tex]H_2SO_4[/tex]) and sodium hydroxide (NaOH) and the orange spheres represent sulfate ions ([tex](SO_4)^{2-[/tex]), then the balanced chemical equation would be:

[tex]H_2SO_4 + 2NaOH - > Na_2SO_4 + 2H_2O[/tex]

In this case, we would need to know the amount of sodium hydroxide used to determine the number of moles of acid and base that reacted. If we know the number of orange spheres representing sulfate ions and the amount of sodium hydroxide used, we can determine the moles of acid and base that reacted.

For such more questions on Stoichiometry:

https://brainly.com/question/30417834

#SPJ11

. the two main sources for the increase of carbon dioxide in the atmosphere are . select one:

Answers

Answer:

combustion

respiration by humans

Explanation:

burning of wood leaves release carbon dioxide which is a green house gas and detrimental to the climate

when cuso4.5h2o is dissolved in water what are the major species present in the solution besides the solvent molecules?

Answers

When CuSO4·5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution, besides the solvent molecules (water), are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

The dissolution process involves the dissociation of CuSO4·5H2O into its constituent ions:
CuSO4·5H2O → Cu²⁺ + SO₄²⁻ + 5H2O
The water molecules serve as the solvent, and the Cu²⁺ and SO₄²⁻ ions are the solute, forming the solution.

The compound dissociates in water, releasing the Cu2+ and SO42- ions, which become hydrated by water molecules. The five water molecules in the formula unit of the compound (CuSO4·5H2O) become part of the solvent and do not exist as distinct species in the solution.

So, in summary, the major species present in a solution of CuSO4·5H2O in water are Cu2+ cations and SO42- anions, along with water molecules as the solvent.

To learn more about solvent molecules, refer:-

https://brainly.com/question/9545412

#SPJ11

When CuSO4.5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution besides the solvent molecules are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

When CuSO4·5H2O is dissolved in water, the major species present in the solution besides the solvent molecules are Cu2+ ions and SO42- ions. The Cu2+ ions and SO42- ions come from the dissociation of the CuSO4 compound in water, while the H2O molecules are present as the solvent. The Cu2+ ions and SO42- ions interact with the water molecules through hydration and solvation, respectively, which affects the physical and chemical properties of the solution. The dissolution process can be represented by the following equation:

CuSO4.5H2O (s) → Cu²⁺ (aq) + SO₄²⁻ (aq) + 5H2O (l)

In this equation, CuSO4.5H2O dissociates into its constituent ions, Cu²⁺ and SO₄²⁻, while the water molecules from the pentahydrate become part of the solvent.

Learn more about solvent: https://brainly.com/question/25326161

#SPJ11

true or false a pure substance (such as h2o or iron) can only exist in three phases (solid, liquid, and gas)

Answers

A pure substance (such as H₂O or iron) can only exist in three phases (solid, liquid, and gas) - True.

A kind of matter with a predictable chemical composition and physical characteristics is referred to as a chemical substance. According to certain texts, a chemical compound cannot be physically divided into its component parts without rupturing chemical bonds. Chemical compounds, alloys, and simple substances (substances made up of a single chemical element) are all examples of chemical substances.

To distinguish them from mixes, chemical compounds are frequently referred to as 'pure'. Pure water is a popular illustration of a chemical substance; regardless of whether it is separated from a river or created in a lab, it has the same characteristics and hydrogen to oxygen ratio. Other chemicals that are frequently found in their purest forms are refined sugar (sucrose), gold, table salt (sodium chloride), and diamond (carbon). In reality, though, no material is completely pure, and chemical purity is determined by the chemical's intended application.

Learn more about Pure substance:

https://brainly.com/question/18452279

#SPJ4

if groundwater contaminant is not visible does that mean it is safe to drink? Explain

Answers

It depends on what you meant by saying not visible. Of it is not visible by using accurate measuring equipment then I think so, but if you mean that all transparent water is drinkable, then no. Think about this. When you put salt in water, you can't see it but it is still there: if you taste the water you can tell that there's salt in there. Let's say that instead of salt there are some bacteria, or some other type of salt which is not appropriate to drink at high levels, such as nitrates. I personally wouldn't recommend drinking from any type.of water unless you are not sure about its purity

which category of amino acid contains r groups that are hydrophobic? which category of amino acid contains r groups that are hydrophobic? polar acidic basic non-polar basic and acidic

Answers

The amino acid that contains the R groups that are hydrophobic are the non - polar.

The Amino acids are the building blocks of the molecules of the  proteins. These contains the one hydrogen atom and the one amine group, the one carboxylic acid group and the one side chain that is the R group will be attached to the central carbon atom.

The side chains of the non polar amino acids includes the long carbon chains or the carbon rings, which makes them bulky. These are the hydrophobic, that means they repel the water. Therefore the non-polar amino acids are the hydrophobic.

To learn more about amino acid here

https://brainly.com/question/12788134

#SPJ4

select the best possible answer. does the equilibrium favor the reactants or products in this substitution reaction?

Answers

The correct answer is option B. Equilibrium Favors the Products. Equilibrium is a state of balance in which the concentrations of reactants and products remain constant over time.

The concentrations of the reactants and products do not change in a substitution reaction once it has reached equilibrium.

This indicates that the forward response rate and the reverse reaction rate are equal. In this situation, the reaction favours the production of the products over the reactants since the equilibrium favours the products.

This indicates that the forward reaction is occurring at a faster rate than the reverse reaction.

As a result, the equilibrium will favour the products, and their concentrations will be higher than those of the reactants.

Complete Question:

Select  the best possible answer to this question:

Which of the following best describes the equilibrium of this substitution reaction?

A. Equilibrium favors the reactants

B. Equilibrium favors the products

C. Equilibrium is unaffected

D. Equilibrium is reversed

To learn more about Equilibrium visit:

https://brainly.com/question/23121462

#SPJ4

explain why conjugation of coupling reagent or the number of aromatic rings in the nucleophile makes a bigger difference in determining the lambda max of an azo dye? g

Answers

The lambda max (λmax) of an azo color is the wavelength at which the color retains light most unequivocally.

It is decided by the electronic structure of the color atom, which in turn depends on the nature and position of the chromophores and auxochromes within the atom.

A chromophore could be a gathering of iotas in an atom that retains light due to the nearness of delocalized π electrons.

An autochrome may be a gathering of molecules in an atom that changes the electronic properties of the chromophore and impacts the absorption spectrum of the particle.

In azo dyes, the chromophore is the azo gather (-N=N-), which incorporates a tall molar termination coefficient and assimilates emphatically within the unmistakable locale of the electromagnetic range.

The auxochromes are ordinarily fragrant rings, amino bunches, or carboxylic corrosive bunches, which can give or pull back electrons from the chromophore and move the λmax of the color.

When a coupling reagent is included in an azo color response, it responds with a diazonium salt to make an unused azo color. The structure of the coupling reagent can influence the λmax of the coming about color by modifying the electronic properties of the chromophore.

For case, a coupling reagent with an electron-donating gather can increment the electron thickness on the chromophore and move the λmax to a longer wavelength, while a coupling reagent with an electron-withdrawing bunch can diminish the electron thickness on the chromophore and move the λmax to a shorter wavelength.

The number of fragrant rings within the nucleophile can moreover influence the λmax of the azo dye. Fragrant rings are electron-rich and can give electrons to the chromophore, expanding its electron thickness and moving the λmax to a longer wavelength.

Hence, a nucleophile with different fragrant rings will have a more prominent impact on the λmax of the color than a nucleophile with only one fragrant ring.

In rundown, both the conjugation of the coupling reagent and the number of fragrant rings within the nucleophile can impact the electronic structure of the azo color and move its λmax.

Be that as it may, the impact of the nucleophile is ordinarily more critical since it specifically influences the electron thickness of the chromophore. 

To know more about coupling reactions refer to this :

https://brainly.com/question/19561214

#SPJ4

the nadh cofactor has a midpoint potential of -320 mv vs nhe. what fraction of a population of these cofactors would be in the nad form in a ph 7.0 solution with a potential of -300 mv vs nhe? -350 mv vs nhe?

Answers

The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -300 mV vs NHE is 0.015. The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -350 mV vs NHE is 0.065.

The NADH/NAD couple has a midpoint potential of -320 mV vs NHE. At pH 7.0, the NADH/NAD couple has an Nernst potential of -320 mV. To calculate the fraction of NADH cofactors in the NAD form at a given potential, we use the Nernst equation:

E = E0 - (RT/nF) ln ([NAD]/[NADH])

where E0 is the standard potential (-320 mV), R is the gas constant, T is the temperature, n is the number of electrons transferred (2 for NADH/NAD), F is the Faraday constant, and [NAD]/[NADH] is the ratio of the oxidized to reduced forms of the cofactor.

Solving for [NAD]/[NADH], we get:

[NAD]/[NADH] = e^((E-E0) nF/RT)

Plugging in the values for E and T, and assuming a 1:1 ratio of NADH to NAD, we get:

[NAD]/[NADH] = e^((E-E0) nF/RT) = e^((E-E0)/59.16)

At -300 mV vs NHE, we get:

[NAD]/[NADH] = e^((-300+320)/59.16) = e^(-0.533) = 0.59

So the fraction of NADH cofactors in the NAD form is

0.59/(1+0.59) = 0.015.

At -350 mV vs NHE, we get:

[NAD]/[NADH] = e^((-350+320)/59.16) = e^(-0.495) = 0.61

So the fraction of NADH cofactors in the NAD form is

0.61/(1+0.61) = 0.065.

To learn more about NADH cofactors, here

https://brainly.com/question/28051041
#SPJ4

when the reaction had finished, the solution was acidid. 25.0 ml of .5 mol l-1 na2co3 solution was required to neutralize the excess acid. what mass of magnesium carboante was orignally used

Answers

The mass of magnesium carbonate originally used was 2.108 g.

To solve this problem, we need to use stoichiometry and the concept of molarity. We know that the excess acid was neutralized by 25.0 ml of 0.5 mol L-1 Na2CO3 solution. This means that the amount of acid that reacted with the magnesium carbonate is equal to the amount of Na2CO3 in the solution.

First, let's calculate the amount of Na2CO3 in the solution:
0.5 mol L-1 x 0.025 L = 0.0125 mol Na2CO3

Since magnesium carbonate reacts with two moles of acid per mole of MgCO3, the amount of acid that reacted with the MgCO3 is twice the amount of Na2CO3:
0.0125 mol Na2CO3 x 2 = 0.025 mol H+

Now we can use the molarity of the acid to calculate the volume of acid that reacted with the MgCO3:
0.025 mol H+ / 0.1 mol L-1 = 0.25 L

Finally, we can use the volume of acid and the molarity of the acid to calculate the amount of MgCO3 that was originally used:
0.25 L x 0.1 mol L-1 = 0.025 mol MgCO3

To convert moles to mass, we need to use the molar mass of MgCO3:
0.025 mol x 84.31 g mol-1 = 2.108 g

Learn more about magnesium carbonate here: brainly.com/question/14954996

#SPJ11

it takes 500 j of work to compress quasi-statically 0.50 mol of an ideal gas to one-fifth its original volume. calculate the temperature of the gas, assuming it remains constant during the compression.

Answers

As the compression is carried out quasi-statically, the gas's temperature will not change during the process. The temperature of the gas is T= 60.65 K.

The temperature of the gas will remain constant during the compression process since it is being done quasi-statically.

This means that the temperature of the gas will remain constant throughout the compression process.

Since the amount of work (500 J) is given, the temperature of the gas can be determined using the equation U = (3/2)nRT, where U is the work, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Solving for T, we find that the temperature of the gas is T = (2/3)(500 J)/(0.50 mol)(8.31 J/mol K) = 60.65 K.

Complete Question:

It takes 500 J of work to compress 0.50 mol of an ideal gas quasi-statically to one-fifth its original volume. What is the temperature of the gas, assuming it remains constant during the compression?

To learn more about temperature visit:

https://brainly.com/question/2339046

#SPJ4

2.345 x 10² grams of H3PO4 will need how many grams of Mg(OH)2 in the reaction below?

(Mg = 24.31 g/mol; O = 16.00 g/mol; H = 1.01 g/mol; P = 30.97 g/mol)

3Mg(OH)2 + 2H3PO4 =
1Mg3(PO4)2 + 6H2O

Answers

Taking into account definition of reaction stoichiometry, 209.36 grams of Mg(OH)₂ are needed.

Reaction stoichiometry

In first place, the balanced reaction is:

3 Mg(OH)₂ + 2 H₃PO₄ → Mg₃(PO₄)₂ + 6 H₂O

By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:

Mg(OH)₂: 3 moles H₃PO₄: 2 molesMg₃(PO₄)₂: 1 mole H₂O: 6 moles

The molar mass of the compounds is:

Mg(OH)₂: 58.33 g/moleH₃PO₄: 98 g/moleMg₃(PO₄)₂: 262.87 g/moleH₂O: 18.02 g/mole

Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

Mg(OH)₂: 3 moles× 58.33 g/mole= 174.99 gramsH₃PO₄: 2 moles× 98 g/mole= 196 gramsMg₃(PO₄)₂: 1 mole× 262.87 g/mole= 262.87 gramsH₂O: 6 moles× 18.02 g/mole= 108.12 grams

Mass of Mg(OH)₂ needed

The following rule of three can be applied: If by reaction stoichiometry 196 grams of H₃PO₄ react with 174.99 grams of Mg(OH)₂, 2.345×10² grams of H₃PO₄ react with how much mass of Mg(OH)₂?

mass of Mg(OH)₂= (2.345×10² grams of H₃PO₄× 174.99 grams of Mg(OH)₂)÷ 196 grams of H₃PO₄

mass of Mg(OH)₂= 209.36 grams

Finally, 209.36 grams of Mg(OH)₂ is required.

Learn more about reaction stoichiometry:

brainly.com/question/24741074

#SPJ1

in this lab, surface water samples will be analyzed for trace (small) amounts of nitrate. which of the following are examples of the types of water that could be analyzed for this experiment? select all that apply. group of answer choices pond field source river water fountain sample pool stream

Answers

The types of water that could be analyzed for trace amounts of nitrate include: pond, field source, river water, stream, and fountain sample.

Nitrate is a common contaminant found in water sources due to agricultural practices, industrial activities, and urban runoff. Therefore, a wide range of water sources can be analyzed for trace amounts of nitrate, including ponds, field sources, river water, streams, and fountain samples.

Pool water is less likely to be analyzed for nitrate because it is often treated with chemicals like chlorine, which can affect the accuracy of the nitrate analysis. The selection of water sources for the nitrate analysis depends on the purpose of the experiment, the accessibility of the water sources, and the potential sources of contamination in the area.

To learn more about trace amounts of nitrate, here

https://brainly.com/question/29838196

#SPJ4

what is the molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water? question 36 options: 0.00220 m 2.20 m 12.9 m 129 m

Answers

, the molar concentration of the solution is 2.202 M. molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water

To calculate the molar concentration of a solution, we need to first determine the number of moles of the solute present in the solution, and then divide that by the volume of the solution in liters.

The molar mass of NaCl is 58.44 g/mol. Therefore, the number of moles of NaCl in 45.0 g can be calculated as:

mole= mass / molar mass = 45.0 g / 58.44 g/mol = 0.7709 mol

Next, we need to convert the volume of the solution from milliliters to liters:

volume = 350.0 ml = 0.3500

Finally, we can calculate the molar concentration (M) of the solution as:

M = moles / volume = 0.7709 mol / 0.3500 L = 2.202 M

Learn more about concentration  here:

https://brainly.com/question/30665317

#SPJ11

in the removal of a pollutant from wastewater, which of the following is true of the cost per unit of pollutant removed? it decreases as the toxicity of the pollutant increases. it decreases as the time passed before remediation increases. it increases as the concentration of the pollutant decreases. it increases as the concentration of the

Answers

pollutant increases.

The cost per unit of pollutant removed increases as the concentration of the pollutant increases. The higher the concentration of the pollutant, the more difficult it is to remove, and more expensive the technology and processes required to remove it. Therefore, the cost per unit of pollutant removed is generally higher for higher concentrations of pollutants.

how many moles of atoms are there in 1.00 lb (454g) of lead

Answers

we need to use the atomic weight of lead to convert the given weight in grams to moles. The atomic weight of lead is 207.2 g/mol.



First, let's convert the given weight in pounds to grams: 1.00 lb = 454 g
Next, let's calculate the number of moles of lead atoms in 454 g of lead: moles of lead atoms = (454 g) / (207.2 g/mol) = 2.19 mol.


Therefore, there are 2.19 moles of lead atoms in 1.00 lb (454g) of lead. To calculate the number of moles of atoms in 1.00 lb (454g) of lead, you need to use the formula: moles = mass (g) / molar mass (g/mol)

The molar mass of lead (Pb) is 207.2 g/mol. Using the given mass of 454g, the calculation is as follows:
moles = 454g / 207.2 g/mol = 2.19 moles
So, there are 2.19 moles of atoms in 1.00 lb (454g) of lead.

To know more about formula click here

brainly.com/question/29886204

#SPJ11

To determine how many moles of atoms are there in 1.00 lb (454g) of lead, you'll need to follow these steps:

Step 1: Convert weight to grams.
1.00 lb of lead is already given as 454g.

Step 2: Find the molar mass of lead.
Lead (Pb) has a molar mass of approximately 207.2 g/mol.

Step 3: Calculate the number of moles.
To find the moles, divide the mass of lead (454g) by its molar mass (207.2 g/mol).

Moles = 454g / 207.2 g/mol

Your answer: There are approximately 2.19 moles of atoms in 1.00 lb (454g) of lead.

To know more about molar mass of lead:

https://brainly.com/question/19477776

#SPJ11

154.42g of oxygen gas (O2) react with an excess of ethane (C2H6) produces how many moles of water vapor (H20)?

Answers

For every 60 grammes of ethane, 108 grammes of water are produced. We therefore obtain 10.8 g of water from the combustion of 6 g of ethane. As a result, is created in 0.6 moles.

How are moles determined when vapour pressure is involved?

The mole fraction of the solvent must be multiplied by the partial pressure of the solvent in order to determine an ideal solution's vapour pressure. The vapour pressure would be 2.7 mmHg, for example, if the mole fraction is 0.3 and the partial pressure is 9 mmHg.

One mol of the solute is contained in one thousand grammes of the solvent (water) in a one molal solution. It follows that the solution's vapour pressure is 12.08 kPa.

learn more about mole fraction

https://brainly.com/question/29367909

#SPJ1

If in cup 1 you have a 40,000 ppm of a solution and you transfer one drop from cup 1 to cup 2 and add 9 drops of
water. You continue this process for the next two cups, how many ppm do you have in cup 4? (please help this is so confusing.)

Answers

The dilution ration is 1÷10 (1 drop of concentrated solution in 10 drops of diluted solution).

If we do that 4 times we repeat the same dilution with the same dilution ratio of 1÷10 (numerically is 0,1). Therefore we can multiply the solution ratio by itself 4 times.

0,1⁴ = 10^-4

This means that we end up with a solution which concentration is 10^-4 times the beginning concentration. Therefore the final concentration is

40 000 ppm × 10^-4 = 4ppm

PS: we can do this because we have the same unit of measurement for the volumes of both the concentrated solution and the diluted one (drops)

a buffer solution has 0.750 m h2co3 and 0.650 m hco3−. if 0.020 moles of hcl is added to 275 ml of the buffer solution, what is the ph after the addition? the pka of carbonic acid is 6.37.

Answers

The pH after the addition of the 0.020 moles of HCl is added to 275 ml of the buffer solution is 6.40.

A buffer solution is an acidic or basic aqueous solution made up of a combination of a weak acid and its conjugate base, or vice versa (more specifically, a pH buffer or hydrogen ion buffer). When a modest amount of a strong acid or base is applied to it, the pH hardly changes at all.

A multitude of chemical applications employ buffer solutions to maintain pH at a practically constant value. Numerous biological systems employ buffering to control pH in the natural world.

275mL buffer 1L/1,1000 mL 0.75 mol H2CO3/ 1L Solution = 0.206 mol H2CO3

275 mL buffer 1L/ 1,000 mL 0.65 mol HCO3- / 1L Solution= 0.179 mol HCO3-

pH = 6.37 + log(0.179 mol + 0.020 mol / 0.206 mol + 0.020 mol)

pH = 6.37 + 0.0293

pH =  6.40.

Learn more about Buffer solution:

https://brainly.com/question/27371101

#SPJ4

How many moles of h2 can be produced from x grams of mg in magnesium-aluminum alloy? the molar mass of mg is 24. 31 g/mol?

Answers

The number of moles of H₂ that can be produced from x grams of Mg is (x / 24.31)

The balanced chemical equation for the reaction between Mg and HCl is,

Mg + 2HCl → MgCl₂ + H₂

This equation shows that 1 mole of Mg reacts with 2 moles of HCl to produce 1 mole of H₂. Therefore, the number of moles of H₂ that can be produced from x grams of Mg can be calculated as follows:

Calculate the number of moles of Mg in x grams:

Number of moles of Mg = mass of Mg / molar mass of Mg

Number of moles of Mg = x / 24.31

Use the mole ratio between Mg and H₂ to calculate the number of moles of H₂ produced:

Number of moles of H₂ = Number of moles of Mg × (1 mole of H₂ / 1 mole of Mg)

Number of moles of H₂ = (x / 24.31) × (1/1)

To know more about moles, here

brainly.com/question/26416088

#SPJ4

when a 2.5 liter vessel is filled with an unknown gas at stp, it weighs 2.75 g more than when it is evacuated. determine the molar mass of the unknown gas

Answers

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

https://brainly.com/question/22997914

#SPJ4

The molar mass of the unknown gas is 27.0 g/mol.

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, the pressure is 1 atm, the volume is 2.5 L, and the temperature is 273.15 K.

To find the number of moles of gas present, we can rearrange the ideal gas law equation to solve for n:

n = PV/RT

Substituting the values at STP, we get:

n = (1 atm) x (2.5 L) / [(0.08206 L atm/mol K) x (273.15 K)]

n = 0.1018 moles

The difference in weight between the gas-filled vessel and the evacuated vessel is 2.75 g, which is the weight of 0.1018 moles of the unknown gas.

So the molar mass of the gas can be calculated as:

molar mass = mass / moles

molar mass = 2.75 g / 0.1018 mole

molar mass = 27.0 g/mol

Therefore, the molar mass of the unknown gas is 27.0 g/mol.

Learn more about , the molar mass

brainly.com/question/22997914

Other Questions
In the US, 42% of people have type A blood, 10% have type B, 4% have type AB, and 44% have type O. People with type Band type AB blood can receive type B blood. What percentage of people can receive transfusions of type B blood? find the value of x joseph haydn wrote symphonies in his lifetime. a. over one hundred b. forty-one c. sixty-eight d. nine given that the absolute value of the difference of the two roots of $ax^2 + 5x - 3 = 0$ is $\frac{\sqrt{61}}{3}$, and $a$ is positive, what is the value of $a$? What happened to African American slaves of Loyalists after they fought in the American Revolution? (2 points)Became doctorsRan for political officeStarted schools for slave childrenWere reclaimed by their owners 20. The volume of a large crate is 84 yd. It is 23 yd wide and 4 yd high. What is the length of the crate? point-of-sale terminals record purchase information and electronically send it in a flow of information that initially travels from blank______ to blank______. given two orbitals as linear combinations of two atomic orbitals on carbon atom in ethene: where the hydrogen-like atomic orbitals are orthonormal. what is the value of the overlap integra consider a solution formed by the dissolving of sodium acetate (nac2h3o2) in pure water. is the resulting solution acidic, basic or neutral? why? Question 12 2 points Save Answer Almari inc. has a return on assets (ROA) of 5.5% and a return on equity (ROE) of 13.5%. Furthermore, we know that the firm's total assets turnover is 3. What is Fama's Q- Select two companies - large or mid-caps - from any country of your choice and estimate their daily returns for at least 5 years of data. Also, estimate the daily return on the country's stock index for the same duration.a. Plot the histograms (with a bin size of 0.1% or lower) of daily returns of the two stocks and the index and comment on the riskiness of the three assets, i.e., comment on their standard deviations as well as the skewness.b. Construct an equally weighted portfolio of the two stocks and plot a histogram of the daily return of that portfolio. What changes do you observe? university researchers create a positive externality because what they discover in their research labs can easily be learned by others who haven't contributed to the research costs. suppose that the federal government gives grants to these researchers equal to the their per-unit production externality. what is the relationship between the equilibrium quantity of university research and the socially optimal quantity of university research produced? consider a system where the optimal page size to ensure a good trade-off between fragmentation and page table entries using the formula is 999 bytes: here, s is the average size of process and e is the size of an entry in the page table. however, a decision was made to go with a page-size of 1024 bytes. is this a good design choice? group of answer choices true false when configuring the virtual network for a vm in vmware workstation, which network adapter option should you choose if you want the vm to share the host's ip address to allow the vm to access network resources on the physical network? Christine is reviewing her credit scores form the three major credit bureaus. Her experian score is 765 her equifax score is 748, and her transunion score is 758 what is Christines median credit score? (Round to the nearest whole point if applicable) Please see the photos and answer thanks Common stock value-Constant growth McCracken Roofing, Inc, common stock paid a dividend of$1.47per share last year. The company expects earnings and dividends to grow at a rate of7%per year for the foreseeable future. a. What required rate of return for this stock would result in a price per share of$22?b. If McCracken expects both earnings and dividends to grow an an annual rate of11%, what required rate of return would result in a price per share of$22? Match these items.1. the science of classification2. all organisms of a kind in an area3. Linnaeusa group of organisms that are capable of reproducing more4. of that group5. the science of heredity (inheritance)NEXT QUESTIONO ASK FOR HELPpopulationfixity of specieskindtaxonomygenetics Sophia estimates the rate of growth of dividends for XYC will be 15% for the next 3 years. The market capitalization rate for XYC is 11%. After this initial period of 3 years, the dividend is expected to grow at a rate of 4% forever after. You forecast that the dividend next year (this includes 1 year of growth at a rate of 15%) will be $0.84. Calculate Sophia's intrinsic value for XYC Which literary device would best help the reader understand the author's point of view about a culture? . an allusion. an ironic toneC. a historical settingD. personification