The sum of the digits of a two-digit number is 5. If nine is subtracted from the number, the digits will be reversed. Find the Algebraic equation by replacing the tens digit with x.

Answers

Answer 1

Let a be the number in the 10s place and b in the 1s place. Then the original two-digit number is 10a + b.

The sum of the digits is 5:

a + b = 5

Subtract 9 from the original number, and we get the same number with its digits reversed:

(10a + b) - 9 = 10b + a

Simplifying this equation gives

9a - 9b = 9

or

a - b = 1

Add this to the first equation above:

(a + b) + (a - b) = 5 + 1

2a = 6

a = 3

Then

3 - b = 1

b = 2

So the original number is 32. Just to check, we have 3 + 2 = 5, and 32 - 9 = 23.


Related Questions

Bart bought a digital camera with a list price of $219 from an online store offering a 6 percent discount. He needs to pay $7.50 for shipping. What was Bart's total cost? A. $205.86 B. $211.50 C. $213.36

Answers

Answer:

Barts total cost is (c)213.36

Step-by-step explanation:

First, you subtract 6% from $219

=204.92

add shipping,

+7.50

=213.36

Hope this helps <3

Answer:

C. $213.36

Step-by-step explanation:

The original price is $219 and the discount is 6% which is equal to $13.14

$219 - $13.14 + $7.50 (shipping cost) = $213.36

How to calculate a circumference of a circle?

Answers

Answer: Pi multiplied by the diameter of the circle

Step-by-step explanation:

Answer:

The formula for finding the circumference of a circle is [tex]C = 2\pi r[/tex]. You substitute the radius of the circle for [tex]r[/tex] and multiply it by [tex]2\pi[/tex].

The graph of a linear equation g(x)=-1/3x +2 can be obtained from the graph f(x)=1/3x by using infinite sets of elementary translation (i.e reflection and shifting). List out five of those sets

Answers

Answer:

{Rx, T(-6, 4)}{Rx, T(-3, 3)}{Rx, T(0, 2)}{Rx, T(3, 1)}{Rx, T(9, -1)}

Step-by-step explanation:

We assume you are not interested in five infinite sets of translations. Rather, we assume you want to pick 5 translations from the infinite set of possibilities.

The attached graph shows f(x), g(x), and 5 lines (dashed or dotted) that represent possible reflections and shifts of the function f(x).

The function f1 represents a reflection of f(x) about the x-axis, followed by a left-shift of 6 units. To make it match g(x), we need to shift it upward 4 units. Then the set if translations is ...

  g(x) = f(x) ... {reflected over the x-axis, shifted left 6, shifted up 4}

Along the same lines, other possibilities are ...

  g(x) = f(x) ... {reflected over the x-axis, shifted left 3, shifted up 3}

  g(x) = f(x) ... {reflected over the x-axis, shifted left 0, shifted up 2}

  g(x) = f(x) ... {reflected over the x-axis, shifted right 3, shifted up 1}

  g(x) = f(x) ... {reflected over the x-axis, shifted right 9, shifted down 1}

___

Additional comment

All of the transformations listed above use reflection in the x-axis. Reflection could use the y-axis, as well. Reflection of the basic function f(x) in the y-axis will have the identical effect as reflection in the x-axis. The listed translations would apply unchanged.

How many real roots and how many complex roots exist for the polynomial
F(x) - X4+ x2 - 5x2 + x -- 6?
O A. 2 real roots and 2 complex roots
B. O real roots and 4 complex roots
O c. 3 real roots and 1 complex root
D. 4 real roots and 0 complex roots

Answers

Answer:

D. 4 real roots and 0 complex roots

Step-by-step explanation:

If I assume that the function you are saying is

[tex]F(x)=x^4+x^3-5x^2+x-6[/tex]

There should be up to "4 roots," there can't be more or less than 4 total solutions. First, we need to check how many sign changes are there in this function. There are 3 positive real roots. Now lets check for negative roots.

[tex]F(-x)=x^4-x^3-5x^2-x-6[/tex]

There are is only 1 negative real root. Since we basically have 4 real roots, and the max is 4. There should be 4 real roots and 0 complex roots.

A lottery game has balls numbered 1 through 21. What is the probability of selecting an even numbered ball or an 8? Round to nearest thousandth

Answers

Answer: 0.476

Step-by-step explanation:

Let A = Event of choosing an even number ball.

B = Event of choosing an 8 .

Given, A lottery game has balls numbered 1 through 21.

Sample space: S= {1,2,3,4,5,6,7,8,...., 21}

n(S) = 21

Then, A= {2,4,6,8, 10,...(20)}

i.e. n(A)= 10

B= {8}

n(B) = 1

A∪B = {2,4,6,8, 10,...(20)} = A

n(A∪B)=10

Now, the probability of selecting an even numbered ball or an 8 is

[tex]P(A\cup B)=\dfrac{n(A\cup B)}{n(S)}[/tex]

[tex]=\dfrac{10}{21}\approx0.476[/tex]

Hence, the required probability =0.476

Mai invests $20,000 at age 20. She hopes the investment will be worth $500,000 when she turns 40. If the interest compounds continuously, approximately what rate of growth will she need to achieve her goal? Round to the nearest tenth of a percent.

Answers

Answer:16.1%

Step-by-step explanation:

Answer:

The investment needs the rate of growth to be approximately 16.1%.

Step-by-step explanation:

All sides of the building shown above meet at right angles. If three of the sides measure 2 meters, 7 meters, and 11 meters as shown, then what is the perimeter of the building in meters?

Answers

Answer:

Perimeter= 40 units

Step-by-step explanation:

Ok

We are asked to look for the perimeter.

We have some clue given.

All at right angle and some sides are given it's full length.

We have the bae to be 11 unit

The height to be 7 unit.

What this mean is that taking either the base or the height should sum up to either 11 or 7 respectively.

Let's go for the other side of the height.

Let's take all the vertical height and sum it up to 7 because the right side is equal to 7.

So we have 7+7+11

But it's not complete yet.

We are given a dimension 2.

And the 2 is in two places so it's total 2*2= 4

The two is for a small base .

The base is actually an extra to the 11 of the other base.

So summing up

We have 2*11 + 2*7 + 2*2

Perimeter= 22+14+4

Perimeter= 40 units

Find the slope of the line passing through the points (-3, -8) and (4,6).

Answers

Answer:

slope = 2

Step-by-step explanation:

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have

[tex](-3;\ -8)\to x_1=-3;\ y_1=-8\\(4;\ 6)\to x_2=4;\ y_2=6[/tex]

Substitute:

[tex]m=\dfrac{6-(-8)}{4-(-3)}=\dfrac{6+8}{4+3}=\dfrac{14}{7}=2[/tex]

The formula for the slope m of the line that passes through two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is the following:

[tex]m=\dfrac{y_1-y_2}{x_1-x_2}[/tex]

We have points (4,6) and (-3,-8). Let's plug these values into the formula for slope:

[tex]m=\dfrac{6-(-8)}{4-(-3)}[/tex]

[tex]=\dfrac{14}{7}=2[/tex]

The slope of the line passing through the two points is 2. Let me know if you need any clarifications, thanks!

Please help
ASAP

ANSWERS

A-48.21
B-66.35
C-53.68
D-28.34

Answers

Answer:

B

Step-by-step explanation:

Using the cosine ratio in the right triangle

cos54° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{39}{AB}[/tex] ( multiply both sides by AB )

AB × cos54° = 39 ( divide both sides by cos54° )

AB = [tex]\frac{39}{cos54}[/tex] ≈ 66.35 → B

Hypothesis Testing
Problem 1. Adults saving for retirement
In a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement. Does
the sample evidence suggest that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement? Use a 0.05 level of significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why.
8. What do you conclude?
Problem 2: Google Stock
Google became a publicly traded company in August 2004. Initially, the stock traded over 10 million shares each day! Since the initial offering, the volume of stock traded daily has
decreased substantially. In 2010, the mean daily volume in Google stock was 5.44 million shares, according to Yahoo!Enance. A random sample of 35 trading days in 2014 resulted in a
sample mean of 3.28 million shares with a standard deviation of 1.68 million shares. Does the evidence suggest that the volume of Google stock has changed since 2007? Use a 0.05 level of
significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why
8. What do you conclude?

Answers

Answer:

Problem 1: We conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.

Problem 2: We conclude that the volume of Google stock has changed.

Step-by-step explanation:

Problem 1:

We are given that in a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement.

Let p = proportion of adult Americans without a high school diploma who are worried about having enough saved for retirement

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 50%    {means that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement}

Alternate Hypothesis, [tex]H_A[/tex] : p > 50%     {means that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement}

This is a right-tailed test.

The test statistics that would be used here is One-sample z-test for proportions;

                       T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of adult Americans who were worried about having enough saved for retirement = [tex]\frac{156}{295}[/tex] = 0.53

           n = sample of adult Americans = 295

So, the test statistics =  [tex]\frac{0.53-0.50}{\sqrt{\frac{0.50(1-0.50)}{295} } }[/tex]

                                    =  1.03

The value of z-test statistics is 1.03.

Also, the P-value of the test statistics is given by;

              P-value = P(Z > 1.03) = 1 - P(Z [tex]\leq[/tex] 1.03)

                           = 1 - 0.8485 = 0.1515

Now, at a 0.05 level of significance, the z table gives a critical value of 1.645 for the right-tailed test.

Since the value of our test statistics is less than the critical value of z as 1.03 < 1.645, so we insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.

Therefore, we conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.

Problem 2:

We are given that a random sample of 35 trading days in 2014 resulted in a  sample mean of 3.28 million shares with a standard deviation of 1.68 million shares.

Let [tex]\mu[/tex] = mean daily volume in Google stock

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 5.44 million shares    {means that the volume of Google stock has not changed}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 5.44 million shares     {means that the volume of Google stock has changed}

This is a two-tailed test.

The test statistics that would be used here is One-sample t-test statistics because we don't know about the population standard deviation;

                       T.S.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean volume in Google stock = 3.28 million shares

            s = sample standard deviation = 1.68 million shares

           n = sample of trading days = 35

So, the test statistics =  [tex]\frac{3.28-5.44}{\frac{1.68}{\sqrt{35} } }[/tex]  ~ [tex]t_3_4[/tex]

                                    =  -7.606

The value of t-test statistics is -7.606.

Also, the P-value of the test statistics is given by;

              P-value = P([tex]t_3_4[/tex] < -7.606) = Less than 0.05%

Now, at a 0.05 level of significance, the t table gives a critical value of -2.032 and 2.032 at 34 degrees of freedom for the two-tailed test.

Since the value of our test statistics doesn't lie within the range of critical values of t, so we sufficient evidence to reject our null hypothesis as it will fall in the rejection region.

Therefore, we conclude that the volume of Google stock has changed.

2) A basketball player scores 70% of his shots on average. What is the probability that he scores at least 18 successful shots tonight if he gets 20 shots?

Answers

Answer:

3.54%

Step-by-step explanation:

This question represents a binomial distribution. A binomial distribution is given by:

[tex]P(x)=\frac{n!}{(n-x)!x!} p^xq^{n-x}[/tex]

Where n is the total number of trials, p is the probability of success, q is the probability of failure and x is the number of success.

Given that:

A basketball player scores 70% of his shots on average, therefore p = 70% = 0.7. Also q = 1 - p = 1 - 0.7 = 0.3.

The total number of trials (n) = 20 shots

The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20)

P(x = 18) = [tex]\frac{20!}{(20-18)!18!}*0.7^{18}*0.3^{20-18}=0.0278[/tex]

P(x = 19) = [tex]\frac{20!}{(20-19)!19!}*0.7^{19}*0.3^{20-19}=0.0068[/tex]

P(x = 20) = [tex]\frac{20!}{(20-20)!20!}*0.7^{20}*0.3^{20-20}=0.0008[/tex]

The probability that he scores at least 18 successful shots tonight if he gets 20 shots = P(x = 18) + P(x = 19) + P(x = 20) = 0.0278 + 0.0068 + 0.0008 = 0.0354 = 3.54%

Find the difference of functions at x= - 3, (g - f)(-3), given f(x) and g(x): g(x) = x^2−15, and f(x) =2x

Answers

Answer:

0

Step-by-step explanation:

Solution:-

We are given two functions as follows:

                      [tex]f ( x ) = x^2 - 15\\\\g ( x ) = 2x[/tex]

We need to determine the composite function defined as ( g - f ) ( x ). To determine this function we need to make sure that both function exist for all real positive value of x.

The function f ( x ) is a quadratic function which has real values for all values of x. Similarly, function g ( x ) is a linear line that starts from the origin. Hence, both functions are defined over the domain ( -∞, ∞ )

We will perform arithmetic operation of subtracting function f ( x ) from g ( x ) as follows:

                       [tex][ g - f ] ( x ) = g ( x ) - f ( x )\\\\\\( g - f ) ( x ) = x^2 - 15 - 2x\\\\[/tex]

Now evaluate the above determined function at x = -3 as follows:

                       [tex]( g - f ) ( -3 ) = ( -3 )^2 - 2 ( -3 ) - 15\\\\( g - f ) ( -3 ) = 9 + 6 - 15\\\\( g - f ) ( -3 ) = 0[/tex]

Copy the problem, mark the givens in the diagram. Given: CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC, Prove: CR ≅ HS

Help urgently needed

Answers

Explanation:

1. CS ≅ HR, ∠CHS ≅ ∠HCR, ∠CSH ≅ ∠HRC — given

2. ∆CRH ~ ∆HSC — AA similarity theorem

3. ∠SCH ≅ ∠RHC — corresponding angles of similar triangles are congruent

4. CH ≅ HC — reflexive property of congruence

5. ∆CRH ≅ ∆HSC — SAS congruence theorem

6. CR ≅ HS — CPCTC

Which sequence of transformations on preimage Triangle ABC will NOT produce the image A’B’C’

Answers

Answer:

b

Step-by-step explanation:

A sector with a central angle measure of 200 degrees has a radius of 9 cm. What is the area of the sector?

Answers

Answer:

[tex]\boxed{Area\ of\ sector = 141.4\ cm^2}[/tex]

Step-by-step explanation:

Radius = r = 9 cm

Angle = θ = 200° = 3.5 radians

Now,

[tex]Area \ of \ sector = \frac{1}{2} r^2 \theta[/tex]

Area = 1/2 (9)²(3.5)

Area = 1/2 (81)(3.5)

Area = 282.7 / 2

Area of sector = 141.4 cm²

Answer:

45 pi cm^2 or 141.3 cm^2

Step-by-step explanation:

First find the area of the circle

A = pi r^2

A = pi (9)^2

A = 81 pi

A circle has 360 degrees

The shaded part has 200

The fraction that is shaded is

200/360 =5/9

Multiply by the total area

5/9 * 81 pi

45 pi

Using 3.14 for pi

141.3

45 pi cm^2 or 141.3 cm^2

The solutions to the inequality ys-x+1 are shaded on
the graph. Which point is a solution?
(2, 3)
(3,-2)
(2.1)
(-1,3)

Answers

Answer:

the solutions to the inequality ys-x+1 are shaded on the graph. which point is B. (3 ,-2)

I need help with this !!

Answers

Answer:

A

Step-by-step explanation:

When subtracting 7 on the left of the equation, he also needs to subtract 7 from the right of the equation.

Step 2 should be:

⅓X +7 -7= 15 -7

What he is trying to do here by subtracting 7 is to move all the constants, that is numbers without any variables such as x, to one side of the equation.

⅓X= 8

X= 8 ×3

X= 24

A circle is centered at CC-1, -3) and has a radius of 6.
Where does the point P(-6, -6) lie?
Choose 1 answer:
Inside the circle
On the circle
Outside the circle

Answers

Answer:

outside the circle i think

Step-by-step explanation:

Answer:

inside the circle

Step-by-step explanation:

Is 3 a solution to the equation 6x – 7 = 12?

Answers

Answer:

3 is not a solution

Step-by-step explanation:

6x – 7 = 12?

Substitute 3 in for x and see if the equation is true

6*3 - 7 = 12

18-7 = 12

11 =12

This is false so 3 is not a solution

Answer: 3.2

6x = 12 +7
6x = 19
x = 19 / 6
x = 3.2 (1 dp)

I HOPE THIS HELPS:)

Find the largest integer which belongs to the following interval: [−∞, 31]

Answers

Answer:

Largest integer in the interval [−∞, 31] is 31.

Step-by-step explanation:

Given the interval: [−∞, 31]

To find: The largest integer in this interval.

Solution:

First of all, let us learn about the representation of intervals.

Two kind of brackets can be used to represent the intervals. i.e. () and [].

Round bracket means not included in the interval and square bracket means included in the interval.

Also, any combination can also be used.

Let us discuss one by one.

1. [p, q] It means the interval contains the values between p and q. Furthermore, p and q are also included in the interval.

Smallest p

Largest q

2. (p, q) It means the interval contains the values between p and q. Furthermore, p and q are not included in the interval.

Smallest value just greater than p.

Largest value just smaller than q.

3. [p, q) It means the interval contains the values between p and q. Furthermore, p is included in the interval but q is not included in the interval.

Smallest value p.

Largest value just smaller than q.

4. (p, q] It means the interval contains the values between p and q. Furthermore, p is not included in the interval but q is included in the interval.

Smallest value just greater than p.

Largest value q.

As per above explanation, we can clearly observe that:

The largest integer which belongs to the following interval: [−∞, 31] is 31.

need help thanksssssssss

Answers

Answer:

Volume: 112 m³.

Surface area: 172 m².

Step-by-step explanation:

The volume is the base times height times length. So, the volume will be 2 * 8 * 7 = 16 * 7 = 112 m³.

The surface area is 2lw + 2lh + 2wh. l = 8; w = 7; h = 2.

2(8)(7) + 2(8)(2) + 2(7)(2) = 2 * 56 + 2 * 16 + 2 * 14 = 112 + 32 + 28 = 112 + 60 = 172 m².

Hope this helps!

WILL MARK AS BRAINLIEST 4. Suppose there is a card game where you are dealt a hand of three cards. You have already learned that the total number of three-card hands that can be dealt from a deck of 52 cards is: 52C3=52!/49!3! 52C3=22100 Calculate the probability of getting a hand that has exactly two aces in it (A A X). Do this by finding out the number of possible hands that have exactly two aces, and then dividing by the total possible number of three-card hands that is stated above. Part A: Use the multiplication principle to tell the total number of three-card hands (permutations) that can be made with two aces. (2 points) Part B: In the answer from Part I, each two-ace hand got counted twice. For example, A A X got counted as a separate hand from A A X. Since order should not matter in a card hand, these are really the same hand. What is the actual number of two-ace hands (combinations) you can get from a deck of 52 cards?(2 points) Part C: Find the probability of drawing a three-card hand that includes two aces from a deck of 52 cards. Write your answer as a fraction. (2 points)

Answers

Answer:

Part A- 6

Part B- 3

Part C- 3/22100

Step-by-step explanation:

Part A-

Use the permutation formula and plug in 3 for n and 2 for k.

nPr=n!/(n-k)!

3P2=3!/(3-2)!

Simplify.

3P2=3!/1!

3P2=6

Part B-

Use the combination formula and plug in 3 for n and 2 for k.

nCk=n!/k!(n-k)!

3C2=3!/2!(3-2)!

Simplify.

3C2=3!/2!(1!)

3C2=3

Part C-

It is given that the total number of three-card hands that can be dealt from a deck of 52 cards is 22100. Use the fact that the probability of something equals the total successful outcomes over the sample space. In this case the total successful outcomes is 3 and the sample space is 22100.

I believe the answer is 3/22100

I honestly suck at probability but I tried my best.

The cost of plastering the 4 walls of a room which is 4m high and breadth one third of its length is Rs. 640 at the rate of Rs. 5/m². What will be the cost of carpeting its floor at the rate of Rs. 250/m².​

Answers

Answer:

Rs. 32,000

Step-by-step explanation:

height = 4m

let length = x m

breadth = x/3 m

Area of the 4 walls = 2(length × height) + 2(breadth × height)

Area = 2(4×x) + 2(4 × x/3) = 8x + (8x)/3

Area = (32x)/3 m²

1 m² = Rs. 5

The cost for an area that is (32x)/3 m²=  (32x)/3  × 5 Rs.

The cost of plastering 4 walls at Rs.5 per m² = 640

(32x)/3  × 5  = 640

(160x)/3 = 640

x = length = 12

Area =  (32x)/3 m² = (32×12)/3 = 128m²

The cost of carpeting its floor at the rate of Rs. 250/m²:

= 128m² × Rs. 250/m² = 32,000

The cost of carpeting its floor at the rate of Rs. 250/m² = Rs. 32,000

Need Answers ASAP!!!!

Answers

Answer:

15.9degrees

Step-by-step explanation:

in photo above

Answer:

[tex]\boxed{15.95\°}[/tex]

Step-by-step explanation:

The angle can be found by using trigonometric functions.

tan (θ) = [tex]\frac{opposite}{adjacent}[/tex]

tan (θ) = [tex]\frac{4}{14}[/tex]

θ = [tex]tan^{-1} \frac{4}{14}[/tex]

θ = 15.9453959

θ ≈ 15.95

25 points will mark brainlest as part of the save nature campaign the city Forest department has decided to grow more trees to kick off the campaign they start by planting 2 pine trees it has been decided that every year they will increase the amount of trees but 1 tree less than the square of the previous year's count which of the following recursives formulas can be used to determine the total number of tree planted in the future assume there is in limited space for trees and n is the number of years of the program's operation

Answers

Answer:

N(n+1) = N(n)^2 - 1, n>=0, N(0) = 2

or equivalently

N(n) = N(n-1)^2 - 1, n>0, N(0) = 2

Step-by-step explanation:

Year 0 = 2 trees

year 1 = 2^2-1 = 3

year 2 = 3^2-1 =8

year 2 = 8^2-1 =63

...

Recursive formula

Let

n = integer year number

N(n) = number of trees to plant in year n

N(n+1) = N(n)^2-1, n>=0, N(0) = 2

or equivalently

N(n) = N(n-1)^2, n>0, N(0) = 2

Whats the options???

The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2. What is the lateral area of the smaller cylinder? 17.1π mm2 33.6π mm2 60π mm2 84π mm2

Answers

Answer:

84π mm^2

Step-by-step explanation:

formula for circumference is 2πr where r is the radius of circle

Given,The circumference of the base of a cylinder is 24π mm

Thus,

2πr= 24π mm

=> r = 24π mm/2π = 12 mm

________________________________________

A similar cylinder has a base with circumference of 60π mm.

radius for this cylinder will be

2πr= 60π mm

r =   60π mm/2π = 30mm

______________________________________________

Given

The lateral area of the larger cylinder is 210π mm2

lateral area of cylinder is given by  2πrl

where l is the length of cylinder

thus,

r for larger cylinder = 30mm

2π*30*l  = 210π mm^2

=> l = 210π mm^2/2π*30 = 3.5 mm

___________________________________________

the lateral area of the smaller cylinder

r = 12 mm

l = 3.5 mm as both larger and smaller cylinder are same

2πrl  =  2π*12*3.5 mm^2 = 84π mm^2 answer

Answer:

33.6pi mm2 is the correct answer

edge 2021

Step-by-step explanation:

The circumference of the base of a cylinder is 24π mm. A similar cylinder has a base with circumference of 60π mm. The lateral area of the larger cylinder is 210π mm2.

What is the lateral area of the smaller cylinder?

17.1π mm2

33.6π mm2

60π mm2

84π mm2

A manufacturing process that produces electron tubes is known to have a 10% defective rate. Suppose a random sample of 15 tubes is selected from the manufacturing process. a) Find the probability that no more than two defectives are found?

Answers

Answer:

Probability of obtaining no more than two defective tubes = 0.816

Step-by-step explanation:

The Probability of obtaining no more than two defective tubes in a randomly selected sample of 15 tubes is obtained using the binomial distribution formula: nCr × p^r × q^(n -r).

Where n is number of samples;

r is maximum number of defective tubes, r ≤ 2;

p is probability of defective tubes = 10% or 0.1

q is probability of non-defective tubes, q = 1 - p

Further explanations and calculations are given in the attachment below:

Luke is organising a camping trip for the youth club. He is looking at the temperature and rainfall charts for Brighton and Newquay. What is the probability of it raining in July in Brighton? Give your answer as a fraction.

Answers

Answer:

The answer is 15.6/31 or 1/2

Step-by-step explanation:

The data in the question is sufficient to find an answer for it.

1. I look at the temperature and rainfall chart for Brighton, United Kingdom.

2. Check for rainy season and dry season.

3. The rainy season lasts approximately 5 months while the dry season (which still has some rainfall) lasts approximately 7 months. All together, 12 months of the calendar year.

4. July happens to fall within the dry season. The temperature and rainfall statistics are observed.

The number of rainfall days is 15.6 and we know there are 31 days in July.

If the approximate number of days it rains in Brighton, in July, is 15.6 then the probability of rainfall in the month is 15.6/31 which is = 0.503 or 0.5

Therefore, there's a 50% chance of having rainfall in Brighton, on any day in the month of July.

In fraction, 0.5 = 1/2

2.CommerceThe weight distribution of parcels sent in a certain manner is normal with meanvalue 12 pounds and standard deviation 3.5 pounds. The parcel service wishes to establish aweight valuecbeyond which there will be a surcharge. What value ofcis such that 99% ofall parcels are under the surcharge weight

Answers

Answer:

the value of c is  20.155 such that 99% of all parcels are under the surcharge weight.

Step-by-step explanation:

Given that :

The mean value [tex]\mu[/tex] = 12

The standard deviation [tex]\sigma[/tex] = 3.5

Let Consider Q to be the weight of the parcel that is normally distributed .

Then;

Q [tex]\sim[/tex] Norm(12,3.5)

The objective is to determine thewight  value of c under which there is a surcharge

Also, let's not that 99% of all the parcels are below the surcharge

However ;

From the Percentiles table of Standard Normal Distribution;

At 99th percentile; the value for Z = 2.33

The formula for the Z-score is:

[tex]Z = \dfrac{X- \mu}{\sigma}[/tex]

[tex]2.33 = \dfrac{X - 12}{3.5}[/tex]

2.33 × 3.5 = X - 12

8.155 = X - 12

- X = - 12 - 8.155

- X = -20.155

 X = 20.155

the weight  value of c under which there is a surcharge = X + 1 (0) since all the  pounds are below the surcharge

c = 20.155 + 1(0)

c = 20.155

Thus ; the value of c is  20.155 such that 99% of all parcels are under the surcharge weight.

A rectangle's length and width are in a ratio of 10:1. The perimeter is 66 feet. What are the length and width?

Answers

hii

Step-by-step explanation:

length-10x

width-x

perimeter-2(l+b)

66=2(10x+x)

66-2=10x+x

64=11x

x=11/64

lenght-11

width-64

Length-11
Width-64
Hope it helps
Other Questions
"A municipality has a tax rate of 18 mills. A piece of real property in the municipality is assessed at $180,000 and has a fair market value of $165,000. The annual tax liability on the property is:" PLSSSS HELPPP. The price of a tennis racquet is inversely proportional to its weight. If a 20 oz. racquet cost $30.00, what would a 25 oz. racquet cost? Which of the following is NOT true about bonds? (Select all that apply) A: The maturity value of a bond is the initial investment plus interest. B: Bonds have regularly scheduled interest payments. C: You cannot lose your money when purchasing a bond. D: The higher the default risk of a bond, the higher its coupon rate. E: Bonds are more stable investment than stocks. F: Corporate bonds have lower risk of default than government bonds What were three things that Germany was required to do as a result of the treaty that ended World War I? i attached the question in the image below Marta Fuentes had a balance of $1,200.50 in her checking account. The bank issued her a credit of$505 and charged her $12 for new checks. Thee will be no outstanding checks or deposits. Whatshould her checkbook balance be? Which equation shows y-5=x converted to slope intercept form. Which of the following is an aldehyde? Look at this chart of chronological events from Outcasts United. A flowchart of five boxes. Box 1 reads, Luma arrives at the center in a Volkswagen Beetle. Box 2 reads, Luma begins to coach the boys. Box 3 reads, Luma learns about the boys' past histories. Box 4 is blank. Box 5 reads, Luma quits Ashton's and opens a cleaning business. Which sentence best fills in the blank? Luma talks with Beatrice outside the apartment. Luma gives Jeremiah rides to every practice. Luma begins a team for fifteen-year-olds and under. Luma finds volunteer tutors for her players. Find the equation of the line. Explain why the roles and responsibilities of the vice president may change from administration toadministration. which of the following systems brings about specialization? A. Mixed farming B. mixed cropping C. monoculture D. shifting cultivation What is the image of (-8, 10) when reflected in the y-axis? What problem or issue did the submarine solve Which of the following equations is of a parabola with a vertex at (0, 6)?O y= (x - 6)2O y= (x + 6)2O y=x2-6Oy= x2 + 6 On July 9, Mifflin Company receives a $10,400, 90-day, 8% note from customer Payton Summers as payment on account. What entry should be made on July 9 to record receipt of the note although the collapse of prices on the new york stock exchange in october 1929 caused severe problems in the united states, it also had immediate and disastrous consequences in europe because A company paid dividends of $15,000, generated total sales of $845,000, and incurred total expenses of $792,000 in the current year. If ending retained earnings is $165,000, what was beginning retained earnings? pleaz!!! some body help with number #4 at the bottom Find the area in square centimeters of the composite shape shownbelow. Enter only a number as your answer.AE13 cmD11 cm7 cmB18 cmC