Answer:
900L per minute
Step-by-step explanation:
1- 70 - 20 = 50
2- in this 50 min the 45000L was drowned
3- 45000L / 50 = 900L
.. ..
Circle O below has radius 1. Eight segment lengths are labeled with lowercase letters. Six of these equal a trigonometric function of theta. Your answer to this problem should be a six letter sequence whose letters represent the segment lengths that equal the following functions (in the correct order):
sin(theta),
cos(theta),
tan(theta),
csc(theta),
sec(theta),
cot(theta).
So, for example, you would answer a,k,h,c,b,d if you thought
sin(theta) = a,
cos(theta) = k,
tan(theta) = h,
csc(theta) = c,
sec(theta) = b,
cot(theta) = d.
I was able to come up with:
sin(theta) = d,
cos(theta) = a,
tan(theta) = h,
csc(theta) = f,
sec(theta) = g,
cot(theta) = h.
Answer:
32
Step-by-step explanation:
Please answer this question now
Answer:
Step-by-step explanation:
The side y is across from the angle Y which is 68 degrees. Angle Y is next to both the hypotenuse (14 units) and adjacent to the side XY (5 units). If we are finding side y, we need to use one of the trig ratios that relates the angle Y to the side across from it. That would be either the sin of Y which is the side opposite y) over the hypotenuse (14) or the tan of Y which is the side opposite over the side adjacent. Either one will get you the side lengths within a tenth or hundredth of each other. Let's do both, just because. First the sine:
[tex]sin(68)=\frac{y}{14}[/tex] and
14sin(68) = y so
y = 12.98 and rounded to the nearest tenth is 13.0
Now the tangent:
[tex]tan(68)=\frac{y}{5}[/tex] and
5tan(68) = y so
y = 12.37 and rounded to the nearest tenth is 12.4.
As an integer, your answer would be 13; as a decimal it would be the 12.4
Apparently, either is fine.
4 men can make 4 Cupboards in 4 days ; how many cupboards can 14 men make in 14 days?
Answer:
49 cupboards
Step-by-step explanation:
See the steps below, it is self-explanatory:
4 men ⇒ 4 days ⇒ 4 cupboards4 men ⇒ 1 day ⇒ 1 cupboard1 man ⇒ 1 day ⇒ 1/4 cupboard14 men ⇒ 1 day ⇒ 14/4 cupboards14 men ⇒ 14 days ⇒ 14*14/4 cupboardsAs 14*14/4= 49, the answer is 49 cupboards
Which expression is equivalent to StartFraction (2 m n) Superscript 4 Baseline Over 6 m Superscript negative 3 Baseline n Superscript negative 2 Baseline EndFraction? Assume m not-equals 0, n not-equals 0. StartFraction 8 m Superscript 7 Baseline n Superscript 6 Baseline Over 3 EndFraction StartFraction 10 m Superscript 7 Baseline n Superscript 6 Baseline Over 3 EndFraction StartFraction 8 m Superscript 16 Baseline n Superscript 12 Baseline Over 3 EndFraction StartFraction m Superscript 4 Baseline n Superscript 6 Baseline Over 3 EndFraction
Answer:
[tex]\dfrac{8m^7n^6}{3}[/tex]
Step-by-step explanation:
[tex]\dfrac{(2mn)^4}{6m^{-3}n^{-2}}=\dfrac{2^4}{6}m^{4-(-3)}n^{4-(-2)}=\boxed{\dfrac{8m^7n^6}{3}}[/tex]
__
The applicable rules of exponents are ...
(a^b)^c = a^(bc)
1/a^b = a^-b
(a^b)(a^c) = a^(b+c)
Answer:
A
Step-by-step explanation:
what is 3x^3 - 11x^2 - 26x + 30 divided by x-5?
Answer:
Most likely the answer is
3x^2+4x-6
Answer:
3x^2+4x-6 is correct
Transversal m intersects lines a, b, and c such that m∠1=42° and m∠2=140° and m∠3=138°. Which lines are parallel?
Answer:
Lines a and c.
Step-by-step explanation:
m∠1=42° and m∠3=138°. 42 + 138 = 180, so the two angles form a 180° angle. That means that lines a and c are parallel.
Hope this helps!
Answer:A is parallel to C
Step-by-step explanation:
Statement | Reason
42*+138*=180* |Corresponding angles
There fore A||C aka a parallel to c
42*+140*=180* | Same side int. angles
Therefore A no || B aka A is not parallel to B
138*=140* | Same side int. Angles
Therefore B And C are not parallel and A,B. and C are not parallel
The answer is A||C or A is parallel to C
Graph the system of inequalities presented here on your own paper, then use your graph to answer the following questions:
y > −4x − 1
y is less than 3 over 2 times x minus 1
Part A: Describe the graph of the system, including shading and the types of lines graphed. Provide a description of the solution area. (6 points)
Part B: Is the point (−1, −1) included in the solution area for the system? Justify your answer mathematically. (4 points)
(10 points)
Answer:
Check below
Step-by-step explanation:
Hi there let's graph.
[tex]y>-4x-1\\ y<\frac{3}{2} x-1[/tex]
(Check below)
A) Looking at the pair of inequalities, the solutions is the interval that have the common points that satisfy both inequalities. Look at the graph for the point (6,4) this point satisfy both inequalities.
Plugging in those values (6,4)
[tex]4>-4(6)-1\\4>-25 \\\\[/tex]
Similarly for the second inequality
[tex]4 < 3/2(6)-1\\4<8[/tex]
Since the signal is lesser (<) and greater than (>) the lines are dashed.
B) No. (-1,-1) does not belong to any of those intervals. Check below. By the same procedure above. Check it out algebraically:
-1>4-1
-1>3 False!
And
-1<-3/2-1
-1<-1 False
Write an equation of the line that passes through the point (–4, 6) with slope –4.
Answer:
y = - 4x - 10
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = - 4 , thus
y = - 4x + c ← is the partial equation
To find c substitute (- 4, 6) into the partial equation
6 = 16 + c ⇒ c = 6 - 16 = - 10
y = - 4x - 10 ← equation of line
Answer:
y = -4x+10
Step-by-step explanation:
Using the slope intercept form of a line
y = mx+b where m is the slope and b is the y intercept
y = -4x +b
Substituting the point in
6 = -4(-4) + b
6 = 16+b
Subtract 16 from each side
-10 =b
The equation is
y = -4x+10
(1.6x+1.8)÷2.4−0.8=4.2
Answer:
x = 6.375
Step-by-step explanation:
Step 1:
4.2+0.8 = 5
(1.6x+1.8)÷2.4 = 5
Step 2:
5 · 2.4 = 12
1.6x + 1.8 = 12
Step 3:
12 - 1.8 = 10.2
1.6x = 10.2
Step 4:
10.2 ÷ 1.6 = 6.375
x = 6.375
Please help out show work ty!
Answer:
C
Step-by-step explanation:
This is because it has a constant rate of change.
5 x 1.5 = 7.5
6 x 1.5 = 9
7 x 1.5 = 10.5
You can find this image by dividing y by x and testing this rate of change on the other y values. Thus C is correct.
Use the zero product property to find the solutions to the equation x2 – 15x – 100 = 0.
Answer:
x= 20 x =-5
Step-by-step explanation:
x^2 – 15x – 100 = 0.
What two numbers multiply to -100 and add to -15
-20 * 5 = -100
-20 +5 = -15
(x-20) (x+5) =0
Using the zero product property
x-20 =0 x+5 = 0
x= 20 x =-5
x = 20 and x = -5
Step-by-step explanation:
x² – 15x – 100 = 0
First, find factors that multiply to get -100 and add to -15.
These factors are -20 and 5.
So we have (x - 20)(x + 5) = 0.
Now use the zero product property to get x - 20 = 0 or x + 5 = 0.
Solving from here, we get x = 20 or x = -5.
What is the 52nd term of -11,-2,7,16,25,34
Answer:
448
Step-by-step explanation:
Formula
tn = a + (n - 1)d
Givens
a = - 11
n = 52
d = 9
Solution
t52 = -11 + (51)*9
t52 = - 11 + 459
t52 = 448
7. The radius of a cylinder whose curved surface area is 2640 2 and height 21 cm is _________. (a) 100 ° (b) 50° (c) 80° (d) 90°
Answer:
The answer is 21.25cm
Step-by-step explanation:
Hope i am marked as brainliest
A certain ferry moves up and down a river between Town A and B. It takes the ferry two hours to travel to Town A and only an hour and thirty minutes to return to Town B. If the current is 5mph how far apart are the two cities?
Answer:
The distance between two cities is 60 miles.
Step-by-step explanation:
Time taken to travel from B to A = 2 hours
Time taken to travel from A to B = 1.5 hours
Current speed = 5 mph
Let the speed of ferry in still water = u mph
When the ferry moves with the current, it will taken lesser time (i.e. A to B) and when it moves against the current it will take more time (i.e. B to A).
Let the distance between the two cities A and B = D miles
While moving with the current, speed = [tex](u+5)\ mph[/tex]
While moving against the current, speed = [tex](u-5)\ mph[/tex]
Formula for Distance = Speed [tex]\times[/tex] Time
Distance traveled in each case is same i.e. D.
So,
[tex]D = (u+5) \times 1.5 = (u-5) \times 2\\\Rightarrow 1.5u+7.5=2u-10\\\Rightarrow 0.5u =17.5\\\Rightarrow u = \dfrac{175}{5}\\\Rightarrow u = 35 \ mph[/tex]
Now,
[tex]D = (u+5) \times 1.5\\\Rightarrow D =(35+5) \times 1.5\\\Rightarrow D =(40) \times 1.5\\\Rightarrow \bold{D =60\ miles}[/tex]
So, the distance between two cities is 60 miles.
Answer:
I believe that the answer is 60 miles
Step-by-step explanation:
PLEASE HELP!!!
What does it mean to say that a data point has a residual of -1?
Answer: Option C, 1 unit bellow.
Step-by-step explanation:
The residual of a data point is equal to the vertical distance between the point and the regression line
If the data point is above the line, the residual is positive
if the data point is below the line, the residual is negative.
So here we have a negative residual equal to -1
This would mean that our point is 1 unit below the regression line.
Then the correct option is C.
Answer:
The answer is 1 unit below.
Step-by-step explanation:
This is because the residual is the difference between the actual value of a dependent variable & the value predicted by a regression equation. So if the data point has a residual of -1, that means that the data point lies 1 unit below the regression line.
HELLLPPPP ,The value for the missing side is: 25. 4 5. None of these choices are correct.
Answer: The missing side is 5 units.
Step-by-step explanation:
Pythagorean Theorem states that a^2+b^2=c^2. Let the hypotenuse be x.
[tex]4^2+3^2=x^2\\16+9=x^2\\25=x^2\\\sqrt{25}=\sqrt{x^2}\\\left[\begin{array}{c}x=5\end{array}\right][/tex]
Hope it helps <3
will mark brainliest!!!plz helppp
Answer:
(5,-6)
Step-by-step explanation:
ONE WAY:
If [tex]f(x)=x^2-6x+3[/tex], then [tex]f(x-2)=(x-2)^2-6(x-2)+3[/tex].
Let's simplify that.
Distribute with [tex]-6(x-2)[/tex]:
[tex]f(x-2)=(x-2)^2-6x+12+3[/tex]
Combine the end like terms [tex]12+3[/tex]:
[tex]f(x-2)=(x-2)^2-6x+15[/tex]
Use [tex](x-b)^2=x^2-2bx+b^2[/tex] identity for [tex](x-2)^2[/tex]:
[tex]f(x-2)=x^2-4x+4-6x+15[/tex]
Combine like terms [tex]-4x-6x[/tex] and [tex]4+15[/tex]:
[tex]f(x-2)=x^2-10x+19[/tex]
We are given [tex]g(x)=f(x-2)[/tex].
So we have that [tex]g(x)=x^2-10x+19[/tex].
The vertex happens at [tex]x=\frac{-b}{2a}[/tex].
Compare [tex]x^2-10x+19[/tex] to [tex]ax^2+bx+c[/tex] to determine [tex]a,b,\text{ and } c[/tex].
[tex]a=1[/tex]
[tex]b=-10[/tex]
[tex]c=19[/tex]
Let's plug it in.
[tex]\frac{-b}{2a}[/tex]
[tex]\frac{-(-10)}{2(1)}[/tex]
[tex]\frac{10}{2}[/tex]
[tex]5[/tex]
So the [tex]x-[/tex] coordinate is 5.
Let's find the corresponding [tex]y-[/tex] coordinate by evaluating our expression named [tex]g[/tex] at [tex]x=5[/tex]:
[tex]5^2-10(5)+19[/tex]
[tex]25-50+19[/tex]
[tex]-25+19[/tex]
[tex]-6[/tex]
So the ordered pair of the vertex is (5,-6).
ANOTHER WAY:
The vertex form of a quadratic is [tex]a(x-h)^2+k[/tex] where the vertex is [tex](h,k)[/tex].
Let's put [tex]f[/tex] into this form.
We are given [tex]f(x)=x^2-6x+3[/tex].
We will need to complete the square.
I like to use the identity [tex]x^2+kx+(\frac{k}{2})^2=(x+\frac{k}{2})^2[/tex].
So If you add something in, you will have to take it out (and vice versa).
[tex]x^2-6x+3[/tex]
[tex]x^2-6x+(\frac{6}{2})^2+3-(\frac{6}{2})^2[/tex]
[tex](x+\frac{-6}{2})^2+3-3^2[/tex]
[tex](x+-3)^2+3-9[/tex]
[tex](x-3)^2+-6[/tex]
So we have in vertex form [tex]f[/tex] is:
[tex]f(x)=(x-3)^2+-6[/tex].
The vertex is (3,-6).
So if we are dealing with the function [tex]g(x)=f(x-2)[/tex].
This means we are going to move the vertex of [tex]f[/tex] right 2 units to figure out the vertex of [tex]g[/tex] which puts us at (3+2,-6)=(5,-6).
The [tex]y-[/tex] coordinate was not effected here because we were only moving horizontally not up/down.
There are 25 students in Mr. Jones’ art class. Mr. Jones is planning a project where each student needs 0.3 jar of paint. Exactly how much paint does Mr. Jones need for the art project?
Answer:
7.5 jars
Step-by-step explanation:
There are 25 students in the art class.
Mr Jones is planning that for the project, each of the 25 students will need 0.3 jar of paint.
The amount of paint Mr Jones needs for this project is therefore the product of the number of students in the class by the amount of paint each student needs.
That is:
25 * 0.3 = 7.5 jars of paint
Mr Jones needs 7.5 jars of paint for the art project.
Find the value of x in the
following parallelogram:
2x - 10
2x + 50
Answer:
The value of x is 35
Step-by-step explanation:
In order to calculate the value of x in the following parallelogram: 2x - 10
2x + 50, we would have to calculate the following formula:
m<QPS+m<PQR=180°
According to the given data we have the following:
m<QPS=2x - 10
m<PQR=2x + 50
Therefore, 2x - 10+2x + 50=180
4x+40=180
x=140/4
x=35
Please help me.. T-T
Step-by-step explanation:
The inequality is [tex]\frac{x}{-3}[/tex] >2
[tex]\frac{x}{-3}[/tex] > 2 multiply each side by -3 x < 2*(-3) the sign is switched since we multiplied by a negative number x < -6x is less than -6 and -6 is excluded so it will be represented by an empty circle and a line going toward negative values
so it's D
plz HELPPPP with this):
Answer:
Graph 4
Step-by-step explanation:
The graph of f(x) = x^3 includes point (0, 0) since f(0) = 0^3 = 0.
The exponent of x is 3. This is not a linear function.
Negative values of x cubed are negative, and positive values of x cubed are positive.
For x < 0, f(x) < 0, and for x > 0, f(x) > 0.
Answer: Graph 4.
Y varies directly as cube root of
[tex]x[/tex]
And y=3 when
[tex]x = 27[/tex]
A. Find the value of the constant
B. Find the relationship
C. Find the value of y when
[tex]x = 8[/tex]
Step-by-step explanation:
Y varies directly as cube root of x is written as
y = k³√x
where k is the constant of proportionality
A).when y = 3
x = 27
We have
[tex]3 = k \sqrt[3]{27} [/tex]
But ³√27 = 3
That's
3 = 3k
Divide both sides by 3
k = 1
The value of the constant is 1B).The value of the relationship is
[tex]y = \sqrt[3]{x} [/tex]C).When x = 8
We have
[tex]y = \sqrt[3]{8} [/tex]y = 2Hope this helps you
If mArc N P is 6 more than 5 times the measure of Arc M N , what is mArc N P ?
139°
145°
151°
174°
Answer: the answer is 151
Step-by-step explanation:
Answer:
c
Step-by-step explanation:
PLZ HELP ASAPPP!! I'M NOT 100% SURE ON HOW TO DO THIS
Answer:
1) 4a + 8
2) 12a² - 8a
3) 2a² + 8a
4) 4 - 6a
Step-by-step explanation:
The GCF of two numbers is the greatest common number each of the original two numbers can be divided by to get a whole number.
Hope it helps <3
Answer:
4 4a+8
4a [tex]12a^{2}[/tex]+8a
2a [tex]2a^{2} +8a[/tex]
2 4-6a
Step-by-step explanation:
Okay basicly you wand to find the biggest number that can go into both numbers
like the greatest common fact for 4a+8 would be 4 since only one of the numbers have an a you would just leave that out
Since you can take a 4 and an a out of [tex]12a^{2} \\[/tex] and out of 8a the greatest common factor would be 4a
Since you are able to take a 2 and an a out of [tex]2a^{2} +8a[/tex] your greatest common factor would be a
Since the largest number that can go into 4 and 6 is 2 your answer would be 2
Hope this helps you understand!
I'm going to mark whoever gets it right as brainliest Fred's coffee shop sells two blends of beans at the following prices. a) House Blend ($3.50/lb) b) Exotic Blend ($4.00/lb). House blend is 1/2 Costa Rican beans and 1/2 Ethiopian beans. Exotic blend is 1/4 Costa Rican beans and 3/4 Ethiopian beans. Every day Fred receives 200 lbs of Costa Rican Beans and 330 lbs of Ethiopian beans. Which inequality is a constraint? * 1/2x+1/4y or = to 530 x < or = 200
Answer:
(1/2)x + (1/4)y <= 200
Step-by-step explanation:
If
x = # of lbs of House blend he makes/sells a day
y = # of lbs of Exotic blend he makes/sells a day
then constraints are
(1/2)x + (1/4)y <= 200 ....................(1)
x+y <= 530 .....................................(2)
The exact answer choices are not very clear from the question, but either (or both) (1) or (2) must be one of them. If not, please edit question or add a comment to show the answer choices.
Which statements about the hyperbola are true? Check
all that apply.
There is a vertex at (-3, 6).
The center of the hyperbola is at (-3,5).
There is a vertex at (-5,5).
The transverse axis is vertical.
The directrices are horizontal lines
Answer:
Options (1), (2), (4) and (5) are correct.
Step-by-step explanation:
Characteristics of the given hyperbola,
1). Vertex of the given hyperbola are at (-3, 6) and (-3, 4).
2). Since center of a hyperbola is the center of a line joining vertices of the hyperbola,
Center of the given parabola will be,
[tex](\frac{-3-3}{2},\frac{6+4}{2})[/tex] ⇒ (-3, 5)
3). Vertical line joining the foci of the hyperbola is the transverse axis.
4). A line perpendicular to the transverse axis and passing through the center will be the conjugate axis.
5). Directrices of a horizontal hyperbola are the horizontal lines.
Therefore, Options (1), (2), (4) and (5) are correct.
Answer:
check photo. <3
Step-by-step explanation:
What is the length of the line?
Answer:
[tex]\boxed{\sqrt{37} }[/tex]
Step-by-step explanation:
Use Pythagorean theorem.
Create a right triangle, with legs of length 6 and 1 units. Find the length of hypotenuse.
[tex]6^2+1^2 =c^2 \\36+1=c^2 \\37=c^2 \\c=\sqrt{37}[/tex]
Answer:
When you use Pythagorean theorem, the answer is √37.
Step-by-step explanation:
find two rational numbers whose sum is -10,0,15
Answer:
Sum of two rational numbers-
-10 = -5+-5
0= -5+5
15= 10+5
Step-by-step explanation:
The figure above shows a right-angled triangle OAB. AOC is a minor sector enclosed in the triangle. If OA = 7 cm, AB = 6 cm, calculate the area and perimeternof the shaded region. PLEASE HELP!
Answer:
Step-by-step explanation:
Given that:
OA = 7 cm, AB = 6 cm. ∠A = 90°, OA = OC = 7 cm
Using Pythagoras theorem: OB² = OA² + AB²
OB² = 6² + 7²=85
OB = √85 = 9.22 cm
to find ∠O, we use sine rule:
[tex]\frac{AB}{sin(O)}=\frac{OB}{sin(A)}\\ \\sin(O)=\frac{AB*sin(A)}{OB}=\frac{6*sin(90)}{9.22} =0.65 \\\\O=sin^{-1}0.65=40.6^o[/tex]
AOC is a minor sector with radius 7 cm and angle 40.6
The Area of the triangle OAB = 1/2 × base × height = 1/2 × OA × AB = 1/2 × 7 × 6 = 21 cm²
Area of sector OAC = [tex]\frac{\theta}{360}*\pi r^2=\frac{40.6}{360}*\pi *7^2=17.37 \ cm^2[/tex]
Area of shaded region = The Area of the triangle OAB - Area of sector OAC = 21 - 17.37 = 3.63 cm²
Perimeter of arc AC = [tex]\frac{\theta}{360}*2\pi r=\frac{40.6}{360}*2\pi *7=4.96\ cm[/tex]
CB = OB - OC = 9.22 - 7 = 2.22
Perimeter of shaded region = AB + CB + arc AC = 6 + 2.22 + 4.96 = 13.18 cm
what is the vertex of g(x)=-3x^2+18x+2? a) (3,-25) b) (-3,-25) c) (3,29) d) (-3,29)
C). (3, 29) would be your answer.
Explanation?:
Rewrite the equation in vertex form.
y = -3(x - 3)^2 + 29
use the vertex form, y = a(x - h)^2 + k, to determine the values of a, h, and k.
a = -3
h = 3
k = 29
The vertex = (h, k)/(3, 29)
Hope this helps!
Answer:
It would be c
Step-by-step explanation: