The sun is made up mostly of plasma material. Option D
Plasma is considered the fourth state of matter, distinct from gases, liquids, and solids. It is a highly ionized gas consisting of charged particles, including electrons and ions. The sun is primarily composed of plasma due to the extremely high temperatures and intense energy present in its core.
The sun's core has a temperature of about 15 million degrees Celsius (27 million degrees Fahrenheit), which is hot enough to strip electrons from atoms, creating a plasma state. The high temperature and pressure cause hydrogen atoms to undergo nuclear fusion, resulting in the release of vast amounts of energy in the form of light and heat.
This fusion process involves the conversion of hydrogen nuclei (protons) into helium nuclei, releasing enormous energy in the process. The intense heat and pressure within the sun's core sustain this fusion reaction, powering the sun and providing the energy that is radiated out into space as sunlight.
Plasma is an electrically conductive state of matter, meaning it can carry electric currents. The sun's plasma exhibits complex dynamics, including the generation of magnetic fields, solar flares, and coronal mass ejections.
In summary, the sun is primarily composed of plasma material due to the extreme temperatures and intense energy within its core. The plasma state allows for nuclear fusion to occur, releasing the immense energy that sustains the sun's radiative output.
Option D
For more such question plasma material visit:
https://brainly.com/question/30475382
#SPJ8
Which imaging technique uses X-rays to make cross-sectional images of the body?
O MRI
CT scan
X-ray imaging
ultrasound
Answer: Computed tomography (CT) is an imaging tool that combines x-rays with computer technology to produce a more detailed, cross-sectional image of your body. A CT scan lets your doctor see the size, shape, and position of structures that are deep inside your body, such as organs, tissues, or tumors.
So, the answer must be a CT scan. I may be wrong.
Answer:
B. CT SCAN
Explanation:
Edge 2021
which letter represents the way the wave is moving?
Wouldn't it be B because it's a majority pointing to it?
Sorry if i'm wrong.
A 3.00 x 10^2-W electric immersion heater is
used to heat a cup of water. The cup is made
of glass and its mass is 3.00 10^2 g. It con-
tains 250 g of water at 15° C. How much time
is needed for the heater to bring the water to
the boiling point? Assume the temperature of
the cup to be the same as the temperature of
the water at all times and no heat is lost to
the air.
Answer
t = 367.77 s = 6.13 min
Explanation:
According to the law of conservation of energy:
[tex]Heat\ Supplied\ By \ Heater = Heat\ Absorbed\ by\ Glass + Heat\ Absorbed\ by\ Water\\Pt = m_gC_g\Delta T_g + m_wC_w\Delta T_w\\[/tex]
where,
P = Electric Power of Heater = 300 W
t = time required = ?
m_g = mass of glass = 300 g = 0.3 kg
m_w = mass of water = 250 g = 0.25 kg
C_g = speicific heat of glass = 840 J/kg.°C
C_w = specific heatof water = 4184 J/kg.°C
ΔT_g = ΔT_w = Change in Temperature of Glass and water = 100°C - 15°C
ΔT_g = ΔT_w = 85°C
Therefore,
[tex](300\ W)(t) = (0.3\ kg)(840\ J/kg.^oC)(85^oC)+(0.25\ kg)(4184\ J/kg.^oC)(85^oC)\\[/tex]
t = 367.77 s = 6.13 min
A pendulum is constructed from a heavy metal rod and a metal disk, both of uniform mass density. The center of the disk is bolted to one end of the rod, and the pendulum hangs from the other end of the rod. The rod has a mass of =1.0 kg and a length of =49.8 cm. The disk has a mass of =4.0 kg and a radius of =24.9 cm. The acceleration due to gravity is =9.8 m/s2.
The pendulum is held with the rod horizontal and then released. What is the magnitude of its angular acceleration at the moment of release?
The magnitude of the angular acceleration of the pendulum at the moment of release is; α = 18.45 rad/s²
We are given;
Mass of rod; m = 1 kg
Length of rod; L = 49.8 cm = 0.498 m
Mass of Disk; M = 4 kg
Radius of disk; r = 24.9 cm = 0.249 m
Let us first calculate the torque acting from the formula;
τ = mg(L/2) + MgL
Thus;
τ = (1 × 9.8 × (0.498/2)) + (4 × 9.8 × 0.498)
τ = 21.96 N.m
Using parallel axis theorem, we can find the moment of inertia about the given axis as;
I = (mL²/3) + ½MR² + ML²
Plugging in the relevant values gives;
I = (1 * 0.498²/3) + ½(4 * 0.249²) + (4 * 0.498²)
I = 1.19 kg.m²
The angular acceleration is given by the formula;
α = I/τ
α = 21.96/1.19
α = 18.45 rad/s²
Read more at; https://brainly.com/question/23321366
A 10Ω and a 15Ω resistor are connected in series across a 110V potential difference. (Can you find them) please help
A) what is the total resistance of the circuit?
B) what is the current through each resistor?
C) what is the voltage drop across each resistor
Answer:
(A) The total resistance of the circuit is 25 Ω
(B) The current through each resistor is 4.4 A
(C) For 10Ω: Potential drop = 44 V
For 15Ω: Potential drop = 66 V
Explanation:
Given;
potential difference, V = 110V
resistors in series, = 10Ω and a 15Ω
(A) The total resistance of the circuit is calculated as follows;
Rt = 10Ω + 15Ω = 25Ω
(B) The current through each resistor;
Same current will flow through the two resistors since they are in series.
I = V/Rt
I = 110 / 25
I = 4.4 A
(C) The voltage drop across each resistor;
For 10Ω: Potential drop = IR₁ = 4.4 x 10 = 44 V
For 15Ω: Potential drop = IR₂ = 4.4 x 15 = 66 V
The concept of photons applies to which regions of the electromagnetic spectrum?
A. visible light only
B. infrared light, visible light, and UV light only
C. X-rays and gamma rays only
D. all regions of the spectrum
Answer:
D. all regions of the spectrum
Explanation:
I did some research ; )
When the electrons reach the collector, they flow towards the positivly charged grid. The resulting current is measured. Note that as the electrons accelerate from the cathode toward the grid, they collide with the mercury atoms. Assume that these collisions are completely elastic. How does the collected current vary if the ΔVgridΔVgrid is slowly increased? View Available Hint(s)
Answer:
We can conclude by saying that in the beginning current will increase but after sometime, it becomes saturated.
Explanation:
Note: No information on change in number of electron generated.
Since there is a collision, the electrons emitted will not reach the collector at same time. As the voltage is increased, the the speed with which the electrons will reach the collector starts to increase. Due to this, electric current will first increases till all the emitted electrons reach the collector. Since we are not provided with the information that number of electrons generated are changing, after increasing voltage current will increase for some time and then reaches a saturated state.
We can conclude by saying that in the beginning current will increase but after sometime it becomes saturated.
can y'all put any workouts to lose weight pls
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to greatest:
a. Hollow Cylinder
b. Solid Cylinder
c. Hollow Sphere
d. Solid Sphere
Answer:
acceleration are
hollow cylinder < hollow sphere < solid cylinder < solid sphere
Explanation:
To answer this question, let's analyze the problem. Let's use conservation of energy
Starting point. Highest point
Em₀ = U = m g h
Final point. To get off the ramp
Em_f = K = ½ mv² + ½ I w²
notice that we include the kinetic energy of translation and rotation
energy is conserved
Em₀ = Em_f
mgh = ½ m v² +1/2 I w²
angular and linear velocity are related
v = w r
w = v / r
we substitute
mg h = ½ v² (m + I / r²)
v² = 2 gh [tex]\frac{m}{m+ \frac{I}{r^2} }[/tex]
v² = 2gh [tex]\frac{1}{1 + \frac{I}{m r^2} }[/tex]
this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)
v² = v₀² + 2 a L
where L is the length of the plane
v² = 2 a L
a = v² / 2L
we substitute
a = [tex]g \ \frac{h}{L} \ \frac{1}{1+ \frac{I}{m r^2 } }[/tex]
let's use trigonometry
sin θ = h / L
we substitute
a = g sin θ \ \frac{h}{L} \ \frac{1}{1+ \frac{I}{m r^2 } }
the moment of inertia of each object is tabulated, let's find the acceleration of each object
a) Hollow cylinder
I = m r²
we look for the acerleracion
a₁ = g sin θ [tex]\frac{1}{1 + \frac{mr^2 }{m r^2 } }[/tex]1/1 + mr² / mr² =
a₁ = g sin θ ½
b) solid cylinder
I = ½ m r²
a₂ = g sin θ [tex]\frac{1}{1 + \frac{1}{2} \frac{mr^2}{mr^2} }[/tex] = g sin θ [tex]\frac{1}{1+ \frac{1}{2} }[/tex]
a₂ = g sin θ ⅔
c) hollow sphere
I = 2/3 m r²
a₃ = g sin θ [tex]\frac{1}{1 + \frac{2}{3} }[/tex]
a₃ = g sin θ [tex]\frac{3}{5}[/tex]
d) solid sphere
I = 2/5 m r²
a₄ = g sin θ [tex]\frac{1 }{1 + \frac{2}{5} }[/tex]
a₄ = g sin θ [tex]\frac{5}{7}[/tex]
We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)
a) a₁ = g sin θ ½ = g sin θ [tex]\frac{105}{210}[/tex]
b) a₂ = g sinθ ⅔ = g sin θ [tex]\frac{140}{210}[/tex]
c) a₃ = g sin θ [tex]\frac{3}{5}[/tex]= g sin θ [tex]\frac{126}{210}[/tex]
d) a₄ = g sin θ [tex]\frac{5}{7}[/tex] = g sin θ [tex]\frac{150}{210}[/tex]
the order of acceleration from lower to higher is
a₁ <a₃ <a₂ <a₄
acceleration are
hollow cylinder < hollow sphere < solid cylinder < solid sphere
Light from the Sun is converted into
.... by plants.
Answer:
Explanation:
The answer is chemical energy
What are the benefits when you engage in physical fitness?
Answer:
manage your weight better, have stronger bones, have lower blood pressure, less risk of a heart attack, etc.
Answer:
You become healthier, your body starts regulating better, you get stronger bones and muscles, and you lower the risk of diabetes,heart problems and other diseases.
Two in-phase loudspeakers that emit sound with the same frequency are placed along a wall and are separated by a distance of 8.00 m. A person is standing 12.0 m away from the wall, equidistant from the loudspeakers. When the person moves 3.00 m parallel to the wall, she experiences destructive interference for the second time. What is the frequency of the sound
Answer: [tex]278\ Hz[/tex]
Explanation:
Given
Distance between two speakers is 8 m
Man is standing 12 away from the wall
When the person moves 3 parallel to the wall
the parallel distances from the speaker become 4+3, 4-3
Now, the difference of distances from the speaker is
[tex]\Delta d=\sqrt{12^2+(4+3)^2}-\sqrt{12^2-(4-3)^2}\\\Delta d=1.85\ m[/tex]
Condition for destructive interference is
[tex]\Delta d=(2n-1)\dfrac{\lambda }{2}=(2n-1)\dfrac{\nu }{2f}\\\\\Rightarrow f=(2n-1)\dfrac{v}{2\Delta d}[/tex]
for second destructive interference; n=2
[tex]\Rightarrow f=(2\times 2-1)\dfrac{343}{2\times 1.85}=278.10\approx 278\ Hz[/tex]
1. The block shown below is being putled to the right on a horizontal table,
Which labeled vectors represent all the forces acting on the block?
Answer:
E
Explanation:
Particles q1 = +8.0 UC, 92 = +3.5 uc, and
q3 = -2.5 uC are in a line. Particles qi and q2 are
separated by 0.10 m and particles q2 and q3 are
separated by 0.15 m. What is the net force on
particle q2?
Answer:
-22.3
Explanation:
Acellus
The net force on particle q2 is 21.7 N.
The given parameters:
Charge on particle 1, q1 = 8 μCCharge on particle 2, q2 = 3.5 μCCharge on particle 3, q3 = -2.5 μCDistance between particle 1 and particle 2 = 0.1 mDistance between particle 2 and particle 3, = 0.15 mThe net force on particle q2 is calculated as follows;
[tex]Q_2_{net} = q_{12} \ + \ q_{23}\\\\Q_2_{net} = \frac{kq_1q_2}{r_{12} ^2} \ + \ \frac{kq_2q_3}{r_{23}^2} \\\\Q_2_{net} = \frac{9\times 10^9 \times 8 \times 10^{-6} \times 3.5 \times 10^{-6} }{0.1^2} \ + \ \frac{9 \times 10^9 b\times 3.5 \times 10^{-6} \times (-2.5) \times 10^{-6} }{0.15^2} \\\\Q_2_{net} = 25.2 \ N \ - \ 3.5 \ N\\\\Q_2_{net} = 21.7 \ N[/tex]
Thus, the net force on particle q2 is 21.7 N.
Learn more about Coulomb's law here: https://brainly.com/question/24743340
Which of the following questions could you ask if you wanted to expand on the following piece of data?
Standardized testing helps hold schools and teachers accountable for students' performance.
A. Are there any negative effects associated with standardized testing?
B. How effective are the tests at assessing whether a student has learned a particular skill?
C. Who decides what should be included in a standardized test?
D. All of the above are correct.
Answer pls quick or dont i dk what to say
Answer:
C!
Explanation:
Cold fronts generally advance at average speeds of 20 to 25 mph. toward the east — faster in the winter than summer — and are usually oriented along a northeast to southwest line.
Answer:
I think not sure B sorry if this is wrong yay if im right
Explanation:
Two balloons become equally charged once they are rubbed against each other. If the force between the balloons is 6.2 * 10^23 N, what would happen to the force if the charge were to triple on one of the balloons?
A) the force would triple
B) the force would become one-nineth
Please Help with this
Answer:
Answer will be the 2nd one. I think it will be the Answer
If the length of the standing wave below is 2 meters, what is the wavelength of the standing
wave? *
Answer:
fffffgggggggggggggghhh
if the dissipated power between a and b equal 210 watt then VB equal
Answer:
correct answer is A
Explanation:
The diagram shows a series circuit with three resistors and two power sources.
In a series circuit the current through the entire circuit is constant and the resistance is the sum of the resistances in the circuit.
When the power sources are placed in opposite position the voltage between them is subtracted.
V_b - 30 = I (10 + 4 + 6)
V_b = I (20) - 30
V_b = 30 - 2 20
V_b = 10 V
the correct answer is A
Lee and Leigh are twins. At their first birthday party, Lee is placed on a spaceship that travels away from the earth and back at a steady 0.714 c . The spaceship eventually returns, landing in the swimming pool at Leigh's eleventh birthday party. When Lee emerges from the ship, how old is he?
a. He is still only 1 year old
b. He is 8 years old
c. He is also 11 years old
d. He is 18 years old
Answer:
b. He is 8 years old
Explanation:
We will use Einstein's formula for time dilation, to calculate the age of Lee. Because Lee was traveling comparable to the speed of light, his age must be lesser than Leigh.
[tex]T = \frac{T_o}{\sqrt{1-\frac{v^2}{c^2} } }[/tex]
where,
T₀ = Time on Earth = ?
T = Relative Time = 10 years
v = relativistic speed of Lee = 0.714 c
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]10\ years = \frac{T_o}{\sqrt{1-\frac{(0.714\ c)^2}{c^2} } } \\\\[/tex]
T₀ = 7 years
Hence, the age of Lee will be:
[tex]Lee's\ Age = 1\ year + 7\ years = 8\ years[/tex]
b. He is 8 years old
What is the average speed of the bicyclist's ride?
A.45m/s
B.7.5m/s
C45mi/hr
D.7.5mi/hr
Just as optical astronomers observe the visible light emitted by objects such as stars and galaxies, radio astronomers can also observe the radio waves emitted by these objects, as well as the radio waves emitted by gas and dust. However, radio telescopes are different from optical telescopes in important ways. In general, compared to optical telescopes, radio telescopes are larger. more curved. more expensive. smaller. This is because
Answer:
Radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths
Explanation:
In general radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths.
The main difference between radio telescopes and other telescopes especially optical telescopes is based on size and wavelength of both telescopes
6.
3. A 7.6 kg object is pulled 6.0 m at a constant
velocity of 5.0 m/s along a horizontal surface by
a force of 2.0 N. What is the work done on the
object to overcome friction?
Answer:
12 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 7.6 kg
Distance (d) = 6 m
Velocity (v) = 5 m/s
Force (F) = 2 N
Workdone (Wd) =.?
Workdone can be defined as the product of force and distance moved in the direction of the force. Mathematically, it is expressed as:
Workdone = Force × distance
Wd = F × d
With the above formula, we can obtain the workdone as follow:
Distance (d) = 6 m
Force (F) = 2 N
Workdone (Wd) =.?
Wd = F × d
Wd = 2 × 6
Wd = 12 J
Thus, the workdone is 12 J
Which segments show changes of state that absorb heat? Check all that apply.
B–C
C–D
D–C
D–E
E–F
Answer:
B-C
D-E
Explanation:
Trust
Answer:
B-C and D-E are correct
Explanation:
In a swimming pool, two sets of waves were produced in different ways. One set of waves was produced by a child jumping into the water off of a diving board A second set of waves was produced by the same child rapidly kicking his legs while seated on the edge of the pool. Which wave model corresponds to each set of waves produced? Use evidence and scientific reasoning to support your answer.
Answer: The wave B is just 10x larger
Explanation:
The wave produced by rapidly kicking his legs while seated on the edge of the pool is A while the wave produced by jumping into the Pool is B.
What is a wave?A wave is a disturbance along a medium which transmits energy. In this case, we have two scenarios. One generates a wave that can be shown with repeated patterns while the other generates a wave showing only one pattern.
As such, the wave produced by rapidly kicking his legs while seated on the edge of the pool is A while the wave produced by jumping into the Pool is B.
Learn more about waves:https://brainly.com/question/3639648
#SPJ2
molecules , like hormones , are made up of which of the following
A. cells
B. Atoms
C. Tissues
D. Organs
Answer:
atoms
Explanation:
Hormones are derived from amino acids or lipids. Amine hormones originate from the amino acids tryptophan or tyrosine. Larger amino acid hormones include peptides and protein hormones. Steroid hormones are derived from cholesterol.
Please help me with 1&2
Answer:
1: A
Explanation:
Two students engaged in a tug of war each pull a rope in opposite directions with a force of 400 N. The net force on the rope is ?
Answer:
The net force is 0.
Explanation:
If I pull to the left with 400 N and you pull to the right with 400 N, we're going in opposite directions. If the left is negative (-400N) and the right is positive (+400N), add them to get the resultant force.
As you look out of your dorm window, a flower pot suddenly falls past. The pot is visible for a time t, and the vertical length of your window is Lw. Take down to be the positive direction, so that downward velocities are positive and the acceleration due to gravity is the positive quantity g. Assume that the flower pot was dropped by someone on the floor above you (rather than thrown downward). If the bottom of your window is a height hb above the ground, what is the velocity vground of the pot as it hits the ground? You may introduce the new variable vb, the speed at the bottom of the window, defined by
vb = Lwt + gt2.
Answer:
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
Explanation:
From the information given:
The avg. velocity post the window is;
[tex]v_{avg} = \dfrac{L_w}{t}[/tex]
[tex]v_b[/tex] = velocity located at the top of the window
[tex]v_b[/tex] = velocity situated at the bottom of the window
Using the equation of kinematics:
[tex]v_b = v_t + gt[/tex]
Hence,
[tex]v_t = v_b - gt[/tex]
To determine the average velocity as follows:
[tex]v_{avg} = \dfrac{1}{2} (v_t + v_b)\dfrac{L_w}{t}= \dfrac{1}{2}(v_b - gt +v_b) \\ \\\dfrac{L_w}{t} = v_b - \dfrac{1}{2}gt \\ \\ v_b = \dfrac{L_w}{t }+ \dfrac{1}{2} gt\\ \\ = \dfrac{1}{t} \Bigg(L_w + \dfrac{1}{2}gt^2 \Bigg) \\ \\[/tex]
where;
[tex]v_b[/tex] = velocity gained when fallen through the height h.
Similarly, using the equation of kinematics, we have;
[tex]v_b^2 = 2gh \\ \\h = \dfrac{v_b^2}{2g}[/tex]
[tex]\implies \dfrac{(L_w + \dfrac{1}{2} gt^2_^2}{2gt^2}[/tex]
Thus, the velocity at the ground is;
[tex]v^2_{grround} = v_b^2 + 2ghb[/tex]
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]