The Wall Street Journal's Shareholder Scoreboard tracks the performance of 1000 major U.S. companies (The Wall Street Journal, March 10, 2003). The performance of each company is rated based on the annual total return, including stock price changes and the reinvestment of dividends. Ratings are assigned by dividing all 1000 companies into five groups from A (top 20%), B (next 20%), to E (bottom 20%). Shown here are the one-year ratings for a sample of 60 of the largest companies. Do the largest companies differ in performance from the performance of the 1000 companies in the Shareholder Scoreboard? Use ?= .05.
A=5, B=8, C=15, D=20, E=12
1. What is the test statistic?
2. What is the p-value?

Answers

Answer 1

To compare the performance of the largest companies with that of the 1000 companies in the Shareholder Scoreboard, we can use a chi-square goodness-of-fit test.

The expected frequencies for each group of companies can be calculated as follows:

Expected frequency for group A = 0.2 x 1000 = 200

Expected frequency for group B = 0.2 x 1000 = 200

Expected frequency for group C = 0.2 x 1000 = 200

Expected frequency for group D = 0.2 x 1000 = 200

Expected frequency for group E = 0.2 x 1000 = 200

The observed frequencies for the sample of 60 largest companies are:

Observed frequency for group A = 5

Observed frequency for group B = 8

Observed frequency for group C = 15

Observed frequency for group D = 20

Observed frequency for group E = 12

To calculate the chi-square statistic, we can use the formula:

χ2 = Σ[(O-E)2/E]

where O is the observed frequency and E is the expected frequency.

Using this formula, we get:

χ2 = [(5-200)2/200] + [(8-200)2/200] + [(15-200)2/200] + [(20-200)2/200] + [(12-200)2/200]

   = 660.5

The degrees of freedom for this test are df = k - 1, where k is the number of categories. In this case, k = 5, so df = 4.

Using a chi-square distribution table with df = 4 and α = 0.05, we find the critical value to be 9.488.

The p-value for the test can be calculated using a chi-square distribution table or a statistical software. Using a chi-square distribution calculator with df = 4 and χ2 = 660.5, we get a p-value of approximately 0.

Therefore, we can conclude that the largest companies differ significantly in performance from the performance of the 1000 companies in the Shareholder Scoreboard.

To know more about statistic , refer here :

https://brainly.com/question/31538429#

#SPJ11


Related Questions

Find the linearization L(x,y) of the function at each point. f(x,y)= x2 + y2 +1 a. (3,2) b. (2.0)

Answers

a. For the point (3,2), the linearization L(x,y) of the function f(x,y) = x^2 + y^2 + 1 is:

L(x,y) = f(3,2) + fx(3,2)(x-3) + fy(3,2)(y-2)

where fx(3,2) and fy(3,2) are the partial derivatives of f(x,y) with respect to x and y, respectively, evaluated at (3,2).

f(3,2) = 3^2 + 2^2 + 1 = 14

fx(x,y) = 2x, so fx(3,2) = 2(3) = 6

fy(x,y) = 2y, so fy(3,2) = 2(2) = 4

Substituting these values into the linearization formula, we get:

L(x,y) = 14 + 6(x-3) + 4(y-2)

       = 6x + 4y - 8

Therefore, the linearization of f(x,y) at (3,2) is L(x,y) = 6x + 4y - 8.

b. For the point (2,0), the linearization L(x,y) of the function f(x,y) = x^2 + y^2 + 1 is:

L(x,y) = f(2,0) + fx(2,0)(x-2) + fy(2,0)(y-0)

where fx(2,0) and fy(2,0) are the partial derivatives of f(x,y) with respect to x and y, respectively, evaluated at (2,0).

f(2,0) = 2^2 + 0^2 + 1 = 5

fx(x,y) = 2x, so fx(2,0) = 2(2) = 4

fy(x,y) = 2y, so fy(2,0) = 2(0) = 0

Substituting these values into the linearization formula, we get:

L(x,y) = 5 + 4(x-2)

       = 4x - 3

Therefore, the linearization of f(x,y) at (2,0) is L(x,y) = 4x - 3.

To know more about linearization , refer here :

https://brainly.com/question/20286983#

#SPJ11

the probability that x is less than 1 when n=4 and p=0.3 using binomial formula

Answers

The probability that x is less than 1 when n=4 and p=0.3 using the binomial formula, the probability that x is less than 1 when n=4 and p=0.3 is 0.2401.

The probability that x is less than 1 when n=4 and p=0.3 using the binomial formula we can follow these steps:
Identify the parameters.
In this case, n = 4 (number of trials), p = 0.3 (probability of success), and x < 1 (number of successes).
Use the binomial formula.
The binomial formula is P(x) = C(n, x) * p^x * (1-p)^(n-x)

where C(n, x) is the number of combinations of n things taken x at a time.
Calculate the probability for x = 0.
For x = 0, the formula becomes P(0) = C(4, 0) * 0.3^0 * (1-0.3)^(4-0).
C(4, 0) = 1, so P(0) = 1 * 1 * 0.7^4 = 1 * 1 * 0.2401 = 0.2401.
Sum the probabilities for all x values less than 1.
Since x < 1, the only possible value is x = 0.

Therefore, the probability that x is less than 1 when n=4 and p=0.3 is 0.2401.

Read more about probability.

https://brainly.com/question/30034780

#SPJ11

what on base percentage would you predict if the batting average was .206? as always, you must show all work. (.1)

Answers

We would predict an on-base percentage of approximately .290 for a player with a batting average of .206, assuming average values for walks, hit by pitch, and sacrifice flies.

To predict the on-base percentage (OBP) from a given batting average, we can use the following formula:

OBP = (Hits + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Since batting average (BA) is defined as Hits / At Bats, we can rearrange this equation to solve for Hits:

Hits = BA * At Bats

Substituting this expression for Hits in the OBP formula, we get:

OBP = (BA * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Now we can plug in the given batting average of .206 and solve for OBP:

OBP = (.206 * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Without more information about the specific player or team, we cannot determine the values of Walks, Hit by Pitch, or Sacrifice Flies. However, we can make a prediction based solely on the batting average. Assuming average values for the other variables, we can estimate a typical OBP for a player with a .206 batting average.

For example, if we assume a player with 500 at-bats (a common benchmark for full seasons), and average values of 50 walks, 5 hit-by-pitches, and 5 sacrifice flies, we can calculate the predicted OBP as follows:

OBP = (.206 * 500 + 50 + 5) / (500 + 50 + 5 + 5)

= (103 + 50 + 5) / 560

= 0.29

To know more about average refer to-

https://brainly.com/question/24057012

#SPJ11

what is the probability that the first person who subscribes to the five second rule is the 5th person you talk to

Answers

The probability that the first person who subscribes to the five-second rule is the 5th person you talk to is q⁴ * p.

To calculate the probability that the first person who subscribes to the five-second rule is the 5th person you talk to, we need to consider the following terms: probability, independent events, and complementary events.

Step 1: Determine the probability of a single event.
Let's assume the probability of a person subscribing to the five-second rule is p, and the probability of a person not subscribing to the five-second rule is q. Since these are complementary events, p + q = 1.

Step 2: Consider the first four people not subscribing to the rule.
Since we want the 5th person to be the first one subscribing to the rule, the first four people must not subscribe to it. The probability of this happening is q * q * q * q, or q⁴.

Step 3: Calculate the probability of the 5th person subscribing to the rule.
Now, we need to multiply the probability of the first four people not subscribing (q^4) by the probability of the 5th person subscribing (p).

The probability that the first person who subscribes to the five-second rule is the 5th person you talk to is q⁴ * p.

To learn more about Probability

https://brainly.com/question/24870672

#SPJ11

Jim and Ed are debating the answer to the equation m
23.2.
Which statement is true?
Jim states that m is equal to 23.
Ed states that m is equal to
4
2.23-
3/8 = 0.28
Jim's answer of 2 is correct because he divided by
to get his answer.
Jim's answer of 2 is correct because he divided by to get his answer.
Ed's answer of is correct because he multiplied by to get his answer
Ed's answer of is correct because he divided by to get his answer.

Answers

The statement that is true include the following: D. Ed's answer of 3/8 is correct because he divided 1/4 by 2/3 to get his answer.

What is the multiplication property of equality?

In Mathematics and Geometry, the multiplication property of equality states that both sides of an equation will remain the same and equal, when both sides of the equations are multiplied by the same number.

By multiplying both sides of the given equation by 3/2, we have the following correct answer;

m = (1/4) ÷ (2/3)

m = (1/4) × (3/2)

m = (1 × 3) / (4 × 2)

m = (3/8)

In this context, we can reasonably infer and logically deduce that Jim's answer of 2 2/3 is incorrect while Ed's answer of 3/8 is correct because he divided the numerical value 1/4 by the numerical value 2/3 to get his answer.

Read more on multiplication property of equality here: brainly.com/question/17565345

#SPJ1

Complete Question:

Jim and Ed are debating the answer to the question 2/3m = 1/4

Which statement is true?

Jim states that m is equal to 2 2/3.

Ed states that m is equal to 3/8

Jim's answer of 2 2/3 is correct because he divided 2/3 by 1/4 to get his answer.

Jim's answer of 2 2/3 is correct because he divided 1/4 by 2/3 to get his answer.

Ed's answer of 3/8 is correct because he multiplied 1/4 by 2/3 to get his answer

Ed's answer of 3/8 is correct because he divided 1/4 by 2/3 to get his answer.

Find the distance, d, between the point S(5,10,2) and the plane 1x+1y+10z -3. The distance, d, is (Round to the nearest hundredth.)

Answers

The distance from the point S with coordinates (5, 10, 2) to the plane defined by the equation x + y + 10z - 3 = 0 is estimated to be around 2.77 units.

What is the distance between the point S(5,10,2) and the plane x + y + 10z - 3 = 0?

The distance between a point and a plane can be calculated using the formula:

d = |ax + by + cz + d| / √(a² + b² + c²)

where (a, b, c) is the normal vector to the plane, and (x, y, z) is any point on the plane.

The given plane can be written as:

x + y + 10z - 3 = 0

So, the coefficients of x, y, z, and the constant term are 1, 1, 10, and -3, respectively. The normal vector to the plane is therefore:

(a, b, c) = (1, 1, 10)

To find the distance between the point S(5, 10, 2) and the plane, we can substitute the coordinates of S into the formula for the distance:

d = |1(5) + 1(10) + 10(2) - 3| / √(1² + 1² + 10²)

Simplifying the expression, we get:

d = |28| / √(102)d ≈ 2.77 (rounded to the nearest hundredth)

Therefore, the distance between the point S(5, 10, 2) and the plane x + y + 10z - 3 = 0 is approximately 2.77 units.

Learn more about normal vector

brainly.com/question/31435693

#SPJ11

Let a belong to a ring R. let S= (x belong R such that ax = 0) show that s is a subring of R

Answers

S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.

To show that S is a subring of R, we need to verify the following three conditions:

1. S is closed under addition: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Adding these equations, we get a(x + y) = ax + ay = 0 + 0 = 0. Thus, x + y belongs to S.

2. S is closed under multiplication: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Multiplying these equations, we get a(xy) = (ax)(ay) = 0. Thus, xy belongs to S.

3. S contains the additive identity and additive inverses: Since R is a ring, it has an additive identity element 0. Since a0 = 0, we have 0 belongs to S. Also, if x belongs to S, then ax = 0, so -ax = 0, and (-1)x = -(ax) = 0. Thus, -x belongs to S.

Therefore, S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.

To know more about subrings refer here :

https://brainly.com/question/14099149#

#SPJ11

consider the function f ' (x) = x2 x − 56 (a) find the intervals on which f '(x) is increasing or decreasing. (if you need to use or –, enter infinity or –infinity, respectively.) increasing

Answers

, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

To find the intervals on which f'(x) is increasing or decreasing, we need to first find the critical points of f(x), i.e., the values of x where f'(x) = 0 or where f'(x) does not exist. Then, we can use the first derivative test to determine the intervals of increase and decrease.

We have:

f'(x) = x^2 - 56

Setting f'(x) = 0, we get:

x^2 - 56 = 0

Solving for x, we obtain:

x = ±sqrt(56) = ±2sqrt(14)

So, the critical points of f(x) are x = -2sqrt(14) and x = 2sqrt(14).

Now, we can use the first derivative test to find the intervals of increase and decrease. We construct a sign chart for f'(x) as follows:

|       -    2sqrt(14)   +    2sqrt(14)   +

f'(x) | - 0 + 0 +

From the sign chart, we see that f'(x) is negative on the interval (-infinity, -2sqrt(14)), and positive on the interval (-2sqrt(14), 2sqrt(14)) and (2sqrt(14), infinity).

Therefore, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

Learn more about intervals here:

https://brainly.com/question/13708942

#SPJ11

calculate the taylor polynomials 2 and 3 centered at =0 for the function ()=7tan().

Answers

The taylor polynomials for 2 is [tex]7 + 7x^2[/tex] and for 3 is [tex]7x + (7/3)x^3.[/tex]

What is the taylor polynomials for 2 and 3?

To find the Taylor polynomials for a function, we need to calculate the function's derivatives at the point where we want to center the polynomials. In this case, we want to center the polynomials at x=0.

First, let's find the first few derivatives of[tex]f(x) = 7tan(x):[/tex]

[tex]f(x) = 7tan(x)[/tex]

[tex]f'(x) = 7sec^2(x)[/tex]

[tex]f''(x) = 14sec^2(x)tan(x)[/tex]

[tex]f'''(x) = 14sec^2(x)(2tan^2(x) + 2)[/tex]

[tex]f''''(x) = 56sec^2(x)tan(x)(tan^2(x) + 1) + 56sec^4(x)[/tex]

To find the Taylor polynomials, we plug these derivatives into the Taylor series formula:

[tex]P_n(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + ... + (f^n(0)x^n)/n![/tex]

For n=2:

[tex]P_2(x) = f(0) + f'(0)x + (f''(0)x^2)/2![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2[/tex]

[tex]= 7 + 7x^2[/tex]

So the second-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_2(x) = 7 + 7x^2.[/tex]

For n=3:

[tex]P_3(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + (f'''(0)x^3)/3![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2 + (14sec^2(0)(2tan^2(0) + 2)x^3)/6[/tex]

[tex]= 7x + (7/3)x^3[/tex]

So the third-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_3(x) = 7x + (7/3)x^3.[/tex]

Learn more about polynomials

brainly.com/question/11536910

#SPJ11

8.8.10: a recursive definition for full binary trees. (? Here is a definition for a set of trees called full binary trees. Basis: A single vertex with no edges is a full binary tree. The root is the only vertex in the tree. root - v Recursive rule: If T1 and T2 are full binary trees, then a new tree T' can be constructed by first placing T1 to the left of T2, adding a new vertex v at the top and then adding an edge between v and the root of T1 and an edge between v and the root of T2. The new vertex v is the root of T'. root - T' T1 T2 Note that it makes a difference which tree is placed on the left and which tree is placed on the right. For example, the two trees below are considered to be different full binary trees: O (a) Draw all possible full binary trees with 3 or fewer vertices. (b) Draw all possible full binary trees with 5 vertices. (c) Draw all possible full binary trees with 7 vertices. (d) The function v maps every full binary tree to a positive integer. v(T) is equal to the number of vertices in T. Give a recursive definition for v(T).

Answers

(a) There are four possible full binary trees with 3 or fewer vertices:

O     O     O     O

                                     |     |     |     |

                                     O     O     O     O

(b) There are six possible full binary trees with 5 vertices:

 O             O         O         O       O

   / \           / \       / \       / \     / \

  O   O         O   O     O   O     O   O   O   O

 /               |         |         |     |   |

O                O         O         O     O   O

(c) There are 20 possible full binary trees with 7 vertices. Drawing them all out would be tedious, so here is a sample of six trees:

  O                    O                 O

      / \                  / \               / \

     O   O                O   O             O   O

    /                        /                 / \

   O                        O                 O   O

                          /   \

                         O     O

        O                   O                 O

       / \                 / \               / \

      O   O               O   O             O   O

         /                 /     \               / \

        O                 O       O             O   O

        O                   O                 O

       / \                 / \               / \

      O   O               O   O             O   O

       \                     /                 / \

        O                   O                 O   O

        O                   O                 O

       / \                 / \               / \

      O   O               O   O             O   O

         /                   /     \         /   \

        O                   O       O       O     O

        O                   O                 O

       / \                 / \               / \

      O   O               O   O             O   O

           \                   /           /   \

            O                 O           O     O

        O                   O                 O

       / \                 / \               / \

      O   O               O   O             O   O

         /                   /     \           / \

        O                   O       O         O   O

(d) The function v(T) can be defined recursively as follows:

If T is a single vertex, then v(T) = 1.

Otherwise, let T1 and T2 be the two subtrees of T, and let v1 = v(T1) and v2 = v(T2). Then v(T) = 1 + v1 + v2.

Learn more about binary trees here

https://brainly.com/question/31377401

#SPJ11

how long does it take for a deposit of $1200 to double at 5ompounded continuously?

Answers

It takes approximately 13.86 years for a deposit of $1200 to double at 5% compounded continuously.

The formula for continuous compounding is given by:

A = Pe^(rt)

In this case, we want to find the time it takes for a deposit of $1200 to double. That means we want to find the value of t when A = 2P = $2400.

So we can write:

2400 = 1200e^(0.05t)

Dividing both sides by 1200:

2 = e^(0.05t)

Taking the natural logarithm of both sides:

ln(2) = 0.05t

Solving for t:

t = ln(2) / 0.05

Using a calculator, we get:

t ≈ 13.86 years

Therefore, it takes approximately 13.86 years for a deposit of $1200 to double at 5% compounded continuously.

To know more about compound interest refer here:

https://brainly.com/question/14295570

#SPJ11

Given: RS and TS are tangent to circle V at R and T, respectively, and interact at the exterior point S. Prove: m∠RST= 1/2(m(QTR)-m(TR))

Answers

Given: RS and TS are tangents to the circle V at R and T, respectively, and intersect at the exterior point S.Prove: m∠RST= 1/2(m(QTR)-m(TR))

Let us consider a circle V with two tangents RS and TS at points R and T respectively as shown below. In order to prove the given statement, we need to draw a line through T parallel to RS and intersects QR at P.As TS is tangent to the circle V at point T, the angle RST is a right angle.

In ΔQTR, angles TQR and QTR add up to 180°.We know that the exterior angle is equal to the sum of the opposite angles Therefore, we can say that angle QTR is equal to the sum of angles TQP and TPQ. From the above diagram, we have:∠RST = 90° (As TS is a tangent and RS is parallel to TQ)∠TQP = ∠STR∠TPQ = ∠SRT∠QTR = ∠QTP + ∠TPQThus, ∠QTR = ∠TQP + ∠TPQ Using the above results in the given expression, we get:m∠RST= 1/2(m(QTR)-m(TR))m∠RST= 1/2(m(TQP + TPQ) - m(TR))m ∠RST= 1/2(m(TQP) + m(TPQ) - m(TR))m∠RST= 1/2(m(TQR) - m(TR))Hence, proved that m∠RST = 1/2(m(QTR) - m(TR))

Know more about tangents to the circle  here:

https://brainly.com/question/30951227

#SPJ11

Find the values of x for which the function is continuous. (Enter your answer using interval notation.) f(x) = −x − 3 if x < −3 0 if −3 ≤ x ≤ 3 x + 3 if x > 3

Answers

The values of x for which the function is continuous in interval notation are:  (-∞, -3] ∪ [-3, 3] ∪ [3, ∞).

Given the function, f(x) = −x − 3 if x < −3, 0 if −3 ≤ x ≤ 3, and x + 3 if x > 3

We have to find the values of x for which the function is continuous. To find the values of x for which the function is continuous, we have to check the continuity of the function at the critical point, which is x = -3 and x = 3.

Here is the representation of the given function:

f(x) = {-x - 3 if x < -3} = {0 if -3 ≤ x ≤ 3} = {x + 3 if x > 3}

Continuity at x = -3:

For the continuity of the given function at x = -3, we have to check the right-hand limit and left-hand limit.

Let's check the left-hand limit.  LHL at x = -3 :  LHL at x = -3

=  -(-3) - 3

= 0

Therefore, Left-hand limit at x = -3 is 0.

Let's check the right-hand limit. RHL at x = -3 :  RHL at x = -3 = 0

Therefore, the right-hand limit at x = -3 is 0.

Now, we will check the continuity of the function at x = -3 by comparing the value of LHL and RHL at x = -3. Since the value of LHL and RHL is 0 at x = -3, it means the function is continuous at x = -3.

Continuity at x = 3:

For the continuity of the given function at x = 3, we have to check the right-hand limit and left-hand limit.

Let's check the left-hand limit. LHL at x = 3:  LHL at x = 3

= 3 + 3

= 6

Therefore, Left-hand limit at x = 3 is 6.

Let's check the right-hand limit. RHL at x = 3 : RHL at x = 3

= 3 + 3

= 6

Therefore, the right-hand limit at x = 3 is 6.

Now, we will check the continuity of the function at x = 3 by comparing the value of LHL and RHL at x = 3.

Since the value of LHL and RHL is 6 at x = 3, it means the function is continuous at x = 3.

Therefore, the function is continuous in the interval (-∞, -3), [-3, 3], and (3, ∞).

Hence, the values of x for which the function is continuous in interval notation are:  (-∞, -3] ∪ [-3, 3] ∪ [3, ∞).

To know more about continuous visit:

https://brainly.com/question/31523914

#SPJ11

7. The area of the outer curved surface of a cylindrical jar is 1584 square centimeters. The height of the jar is 28 centimeters.

a) What is the circumference of the jar?

b) What is the radius of the jar?

Answers

a. The circumference of the jar is 56.57 cm

b. The radius is 9cm

What is curved surface area of a cylinder?

The curved surface area of a cylinder is calculated using the formula, curved surface area of cylinder = 2πrh, where 'r' is the radius and 'h' is the height of the cylinder.

C.S.A = 2πrh

C = 2πr

therefore ;

C.S.A = C × h. where c is the circumference

1584 = c × 28

c = 1584/28

c = 56.57 cm

therefore the circumference is 56.57

b) C = 2πr

r = 56.57/6.28

r = 9cm

therefore the radius is 9 cm

learn more about curved surface area of cylinder from

https://brainly.com/question/23426060

#SPJ1

(a) Suppose a van is traveling E on Cobblestone Way and turns onto Winter Way heading NE. What is the measure of the angle created by the van's turning? Explain your answer. (b) Suppose a van is traveling SW on Winter Way and turns left onto River Road. What is the measure of the angle created by the van's turning? Explain your answer. (c) Suppose a van is traveling NE on Winter Way and turns right onto River Road. What is the measure of the angle created by the van's turning? Explain your answer

Answers

(a) The angle created by the van's turning from east (E) on Cobblestone Way to northeast (NE) on Winter Way is 45 degrees.

(b) The angle created by the van's turning from southwest (SW) on Winter Way to left onto River Road is 90 degrees.

(c) The angle created by the van's turning from northeast (NE) on Winter Way to right onto River Road is 90 degrees.

(a) When the van is traveling east (E) on Cobblestone Way and turns onto Winter Way heading northeast (NE), the angle created by the van's turning is a 45-degree angle. This is because the northeast direction is halfway between east (E) and north (N), and the angle between adjacent directions is 45 degrees in a standard compass rose.

(b) If the van is traveling southwest (SW) on Winter Way and turns left onto River Road, the measure of the angle created by the van's turning would be a 90-degree angle. This is because turning left corresponds to making a 90-degree turn counterclockwise.

(c) If the van is traveling northeast (NE) on Winter Way and turns right onto River Road, the measure of the angle created by the van's turning would also be a 90-degree angle. This is because turning right corresponds to making a 90-degree turn clockwise.

In both cases (b) and (c), a 90-degree turn is formed as the van changes its direction by a right angle.

To know more about angles , visit:

https://brainly.com/question/28894360

#SPJ11

Exercise 10.21. Let Xi,X2,X3,... be i.i.d. Bernoulli trials with success probability p and SkXiXk. Let m< n. Find the conditional probability mass function s , e]k) of Sm, given Sn-k. (a) Identify the distribution by name. Can you give an intuitive explanation for the answer? (b) Use the conditional probability mass function to find E[Sm Sn1

Answers

We are given i.i.d. Bernoulli trials with success probability p, and we need to find the conditional probability mass function of Sm, given Sn-k. The distribution that arises in this problem is the binomial distribution.

The binomial distribution is the probability distribution of the number of successes in a sequence of n independent Bernoulli trials, with a constant success probability p. In this problem, we are considering a subsequence of n-k trials, and we need to find the conditional probability mass function of the number of successes in a subsequence of m trials, given the number of successes in the remaining n-k trials. Since the Bernoulli trials are independent and identically distributed, the probability of having k successes in the remaining n-k trials is given by the binomial distribution with parameters n-k and p.

Using the definition of conditional probability, we can write:

P(Sm = s | Sn-k = k) = P(Sm = s and Sn-k = k) / P(Sn-k = k)

=[tex]P(Sm = s)P(Sn-k = k-s) / P(Sn-k = k)[/tex]

=[tex](n-k choose s)(p^s)(1-p)^(m-s) / (n choose k)(p^k)(1-p)^(n-k)[/tex]

where (n choose k) =n! / (k!(n-k)!)  is the binomial coefficient.

We can use this conditional probability mass function to find E[Sm | Sn-k]. By the law of total expectation, we have:

[tex]E[Sm] = E[E[Sm | Sn-k]][/tex]

=c[tex]sum{k=0 to n} E[Sm | Sn-k] P(Sn-k = k)\\= sum{k=0 to n} (m(k/n)) P(Sn-k = k)[/tex]

where we have used the fact that E[Sm | Sn-k] = mp in the binomial distribution.

Thus, the conditional probability mass function of Sm, given Sn-k, leads to an expression for the expected value of Sm in terms of the probabilities of Sn-k.

Learn more about bernoulli here:

https://brainly.com/question/30509621

#SPJ11

Determine the TAYLOR’S EXPANSION of the following function:9z3(1 + z3)2 .HINT: Use the basic Taylor’s Expansion 11+u = ∑[infinity]n=0 (−1)nun to expand 11+z3 and thendifferentiate all the terms of the series and multiply by 3z.3

Answers

The Taylor series expansion of the function f(z) = 9[tex]z^3[/tex](1 + [tex]z^3[/tex])[tex].^2[/tex] is:

f(z) = 27[tex]z^2[/tex] + 54[tex]z^5[/tex] + 45[tex]z^\frac{8}{2}[/tex]

To find the Taylor series expansion of the function f(z) = 9z^3(1 + z^3)^2, we first expand (1+[tex]z^3[/tex]) using the binomial theorem:

(1 + [tex]z^3[/tex]) = 1 + 2[tex]z^3[/tex] + [tex]z^6[/tex]

Now, we can substitute this expression into f(z) and get:

f(z) = 9[tex]z^3[/tex](1 + 2[tex]z^3[/tex] + [tex]z^6[/tex])

To find the Taylor series expansion of f(z), we need to differentiate this expression with respect to z, and then multiply by (z - 0)n/n! for each term in the series.

Let's start by differentiating the expression:

f'(z) = 27[tex]z^2[/tex](1 + 2[tex]z^3[/tex] + [tex]z^6[/tex]) + 9[tex]z^3[/tex](6[tex]z^2[/tex] + 2(3[tex]z^5[/tex]))

Simplifying this expression, we get:

f'(z) = 27[tex]z^2[/tex] + 54[tex]z^5[/tex] + 27[tex]z^8[/tex] + 54[tex]z^5[/tex] + 18[tex]z^8[/tex]

f'(z) = 27[tex]z^2[/tex] + 108[tex]z^5[/tex] + 45[tex]z^8[/tex]

Now, we can write the Taylor series expansion of f(z) as:

f(z) = f(0) + f'(0)z + (f''(0)/2!)[tex]z^2[/tex] + (f'''(0)/3!)[tex]z^3[/tex] + ...

where f(0) = 0, since all terms in the expansion involve powers of z greater than or equal to 1.

Using the derivatives of f(z) that we just calculated, we can write the Taylor series expansion as:

f(z) = 27[tex]z^2[/tex] + 54[tex]z^5[/tex] + 45[tex]z^8[/tex] + ...

For similar question on Taylor series

https://brainly.com/question/29733106

#SPJ11

To begin, we will use the basic Taylor's Expansion formula, which is: 1 + u = ∑[infinity]n=0 (−1)nun. The Taylor's expansion of the function 9z³(1 + z³)² is: ∑[infinity] n=0 (-1)^n (27n) z^(3n+2)

We will substitute z^3 for u in the formula, so we get:

1 + z^3 = ∑[infinity]n=0 (−1)nz^3n

Now we will expand (1+z^3)^2 using the formula (a+b)^2 = a^2 + 2ab + b^2, so we get:

(1+z^3)^2 = 1 + 2z^3 + z^6

We will substitute this into the original function:

9z^3(1+z^3)^2 = 9z^3(1 + 2z^3 + z^6)

= 9z^3 + 18z^6 + 9z^9

Now we will differentiate all the terms of the series and multiply by 3z^3, as instructed:

d/dz (9z^3) = 27z^2

d/dz (18z^6) = 108z^5

d/dz (9z^9) = 243z^8

Multiplying by 3z^3, we get:

27z^5 + 108z^8 + 243z^11

So, the Taylor's Expansion of the given function is:

9z^3(1+z^3)^2 = ∑[infinity]n=0 (27z^5 + 108z^8 + 243z^11)


To determine the Taylor's expansion of the function 9z³(1 + z³)², follow these steps:

1. Use the given basic Taylor's expansion formula for 1/(1+u) = ∑[infinity] n=0 (-1)^n u^n. In this case, u = z³.

2. Substitute z³ for u in the formula:
1/(1+z³) = ∑[infinity] n=0 (-1)^n (z³)^n

3. Simplify the series:
1/(1+z³) = ∑[infinity] n=0 (-1)^n z^(3n)

4. Now, find the square of this series for (1+z³)²:
(1+z³)² = [∑[infinity] n=0 (-1)^n z^(3n)]²

5. Differentiate both sides of the equation with respect to z:
2(1+z³)(3z²) = ∑[infinity] n=0 (-1)^n (3n) z^(3n-1)

6. Multiply by 9z³ to obtain the Taylor's expansion of the given function:
9z³(1 + z³)² = ∑[infinity] n=0 (-1)^n (27n) z^(3n+2)

So, the Taylor's expansion of the function 9z³(1 + z³)² is:

∑[infinity] n=0 (-1)^n (27n) z^(3n+2)

Learn more about Taylor's expansion at: brainly.com/question/31726905

#SPJ11

assume a is 100x10^6 which problem would you solve, the primal or the dual

Answers

Assuming that "a" refers to a matrix with dimensions of 100x10^6, it is highly unlikely that either the primal or dual problem would be solvable using traditional methods.

if "a" is assumed a much smaller matrix with dimensions that were suitable for traditional methods, then the answer would depend on the specific problem being solved and the preference of the solver.

In general, the primal problem is used to maximize a linear objective function subject to linear constraints, while the dual problem is used to minimize a linear objective function subject to linear constraints.

So, if the problem involves maximizing a linear objective function, then the primal problem would likely be solved.

If the problem involves minimizing a linear objective function, then the dual problem would likely be solved.

Read more about the Matrix.

https://brainly.com/question/31017647

#SPJ11

Saskia constructed a tower made of interlocking brick toys. There are x^2 +5 levels in this model. Each brick is 3x^2 – 2 inches high. Which expression shows the total height of this toy tower?

Answers

The expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

What is the total height of the toy tower?

Saskia constructed a tower made of interlocking brick toys.

There are

[tex]x^2 +5[/tex]

levels in this model.

Each brick is

[tex]3x^2 – 2[/tex]

inches high. To find the total height of the toy tower, we multiply the number of levels by the height of each brick. The height of each brick is given as

[tex]3x^2 – 2 inches.[/tex]

So, total height of the toy tower is

[tex](x² + 5) × (3x² – 2) inches= 3x^4 + 13x^2 - 10[/tex]

Therefore, the expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

Find the square root of 21046 by division method.​

Answers

By long division method 21046 has a square root of 144.9.

How to use long division?

Here is one way to find the square root of 21046 by division method:

Group the digits of the number into pairs from right to left: 21 04 6.Find the largest integer whose square is less than or equal to 21, which is 4. This will be the first digit of the square root.Subtract the square of this digit from the first pair of digits, 21 - 16 = 5. Bring down the next pair of digits, making the dividend 504.Double the first digit of the current root (4 × 2 = 8) and write it as the divisor on the left. Find the largest digit to put in the second place of the divisor that, when multiplied by the complete divisor (i.e., 8x), is less than or equal to 50.

    4 8 .

21║504

    4 8

    135

     128

Bring down the next pair of digits (46), and append them to the remainder (7), making 746. Double the previous root digit (8) to get 16, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 16x), is less than or equal to 746.

      48 4

210║746

       16 8

        584

        560

        246

         210

Bring down the last digit (6), and append it to the remainder (36), making 366. Double the previous root digit (84) to get 168, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 168x), is less than or equal to 366.

         4842  

2104║6

          168  

         426

         420  

           6

The final remainder is 6, which means that the square root of 21046 is approximately 144.9 (to one decimal place).

Therefore, the square root of 21046 by division method is approximately 144.9.

Find out more on long division here: https://brainly.com/question/30059812

#SPJ1

The perimeter of the scalene triangle is 54. 6 cm. A scalene triangle where all sides are different lengths. The base of the triangle, labeled 3 a, is three times that of the shortest side, a. The other side is labeled b. Which equation can be used to find the value of b if side a measures 8. 7 cm?.

Answers

The side b has a length of 19.8 cm.

To find the value of side b in the scalene triangle, we can follow these steps:

Step 1: Understand the information given.

The perimeter of the triangle is 54.6 cm.

The base of the triangle, labeled 3a, is three times the length of the shortest side, a.

Side a measures 8.7 cm.

Step 2: Set up the equation.

The equation to find the value of b is: b = 54.6 - (3a + a).

Step 3: Substitute the given values.

Substitute a = 8.7 cm into the equation: b = 54.6 - (3 * 8.7 + 8.7).

Step 4: Simplify and calculate.

Calculate 3 * 8.7 = 26.1.

Calculate (3 * 8.7 + 8.7) = 34.8.

Substitute this value into the equation: b = 54.6 - 34.8.

Calculate b: b = 19.8 cm.

By substituting a = 8.7 cm into the equation, we determined that side b has a length of 19.8 cm.

To know more about length, visit:

https://brainly.com/question/13118780

#SPJ11

Answer the question True or False. Stepwise regression is used to determine which variables, from a large group of variables, are useful in predicting the value of a dependent variable. True False

Answers

True. Stepwise regression is a statistical technique that aims to determine the subset of variables that are most relevant and useful in predicting the value of a dependent variable.

What is Stepwise regression?

Stepwise regression typically involves a series of steps where variables are added or removed from the regression model based on their statistical significance and their impact on the overall model fit.

The technique considers various criteria, such as p-values, F-statistics, or information criteria like Akaike's information criterion (AIC) or Bayesian information criterion (BIC), to decide whether to include or exclude a variable at each step.

By iteratively adding or removing variables, stepwise regression helps refine the model by selecting the most relevant variables while reducing the risk of overfitting.

Learn more about Stepwise regression at https://brainly.com/question/29462816

#SPJ1

Chocolate bars are on sale for the prices shown in this stem-and-leaf plot.

Cost of a Chocolate Bar (in cents) at Several Different Stores

Stem Leaf

7 7

8 5 5 7 8 9

9 3 3 3

10 0 5

Answers

The second stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents. Similarly, the third stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents. The fourth stem-and-leaf combination of 8-7 indicates that the cost of chocolate bars is 87 cents. The last stem-and-leaf combination of 8-9 indicates that the cost of chocolate bars is 89 cents.

Chocolate bars are on sale for the prices shown in the given stem-and-leaf plot. Cost of a Chocolate Bar (in cents) at Several Different Stores.

Stem Leaf

7 7

8 5 5 7 8 9

9 3 3 3

10 0 5

There are four stores at which the cost of chocolate bars is displayed. Their costs are indicated in cents, and they are categorized in the given stem-and-leaf plot. In a stem-and-leaf plot, the digits in the stem section correspond to the tens place of the data.

The digits in the leaf section correspond to the units place of the data.

To interpret the data, look for patterns in the leaves associated with each stem.

For example, the first stem-and-leaf combination of 7-7 indicates that the cost of chocolate bars is 77 cents.

The second stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents.

Similarly, the third stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents.

The fourth stem-and-leaf combination of 8-7 indicates that the cost of chocolate bars is 87 cents.

The last stem-and-leaf combination of 8-9 indicates that the cost of chocolate bars is 89 cents.

To know more about combination visit:

https://brainly.com/question/31586670

#SPJ11

find a function g(x) so that y = g(x) is uniformly distributed on 0 1

Answers

To find a function g(x) that results in a uniformly distributed y = g(x) on the interval [0,1], we can use the inverse transformation method. This involves using the inverse of the cumulative distribution function (CDF) of the uniform distribution.

The CDF of the uniform distribution on [0,1] is simply F(y) = y for 0 ≤ y ≤ 1. Therefore, the inverse CDF is F^(-1)(u) = u for 0 ≤ u ≤ 1.

Now, let's define our function g(x) as g(x) = F^(-1)(x) = x. This means that y = g(x) = x, and since x is uniformly distributed on [0,1], then y is also uniformly distributed on [0,1].

In summary, the function g(x) = x results in a uniformly distributed y = g(x) on the interval [0,1].
Hello! I understand that you want a function g(x) that results in a uniformly distributed variable y between 0 and 1. A simple function that satisfies this condition is g(x) = x, where x is a uniformly distributed variable on the interval [0, 1]. When g(x) = x, the variable y also becomes uniformly distributed over the same interval [0, 1].

To clarify, a uniformly distributed variable means that the probability of any value within the specified interval is equal. In this case, for the interval [0, 1], any value of y will have the same likelihood of occurring. By using the function g(x) = x,

To know more about Functions visit :

https://brainly.com/question/12431044

#SPJ11

Write a recursive formula that can be used to describe the sequence 64, 112, 196, 343

Answers

The given sequence is 64, 112, 196, 343. We will look for a pattern in the given sequence.

Step 1: The first term is 64.

Step 2: The second term is 112, which is the first term multiplied by 1.75 (112 = 64 x 1.75).

Step 3: The third term is 196, which is the second term multiplied by 1.75 (196 = 112 x 1.75).

Step 4: The fourth term is 343, which is the third term multiplied by 1.75 (343 = 196 x 1.75).

Step 5: Hence, we can see that each term in the sequence is the previous term multiplied by 1.75.So, the recursive formula that can be used to describe the given sequence is: a₁ = 64; aₙ = aₙ₋₁ x 1.75, n ≥ 2.

Know more about given sequence is 64, 112, 196, 343 here:

https://brainly.com/question/16894350

#SPJ11

find the average value of the following function on the given curve. f(x,y)=x 4y on the line segment from (1,1) to (2,3)The average value of f(x, y) on the given curve is .

Answers

Therefore, the average value of f(x, y) over the curve is:

(1/L) ∫[C] f(x, y) ds

= (1/√20) (276/5)

= 55.2/√5

To find the average value of a function f(x, y) over a curve C, we need to integrate the function over the curve and then divide by the length of the curve.

In this case, the curve is the line segment from (1,1) to (2,3), which can be parameterized as:

x = t + 1

y = 2t + 1

where 0 ≤ t ≤ 1.

The length of this curve is:

L = ∫[0,1] √(dx/dt)^2 + (dy/dt)^2 dt

= ∫[0,1] √2^2 + 4^2 dt

= √20

To find the integral of f(x, y) over the curve, we need to substitute the parameterization into the function and then integrate:

∫[C] f(x, y) ds

= ∫[0,1] f(t+1, 4t+1) √(dx/dt)^2 + (dy/dt)^2 dt

= ∫[0,1] (t+1)^4 (4t+1) √20 dt

= 276/5

To learn more about curve visit:

brainly.com/question/28793630

#SPJ11

if i give a 60 minute lecture and two weeks later give a 2 hour exam on the subject, what is the retrieval interval?

Answers

The 2 hour exam is the retrieval interval

What is the retrieval interval?

In the scenario you described, the retrieval interval is two weeks, as there is a two-week gap between the lecture and the exam. During this time, the students have had a chance to study and review the material on their own before being tested on it.

Retrieval intervals can have a significant impact on memory retention and retrieval. Research has shown that longer retrieval intervals can lead to better long-term retention of information, as they allow for more opportunities for retrieval practice and consolidation of memory traces.

Read more on retrieval interval here:https://brainly.com/question/479532

#SPJ1

If you made 35. 6g H2O from using unlimited O2 and 4. 3g of H2, what’s your percent yield?



and



If you made 23. 64g H2O from using 24. 0g O2 and 6. 14g of H2, what’s your percent yield?

Answers

The percent yield of H2O is 31.01%.

Given: Amount of H2O obtained = 35.6 g

Amount of H2 given = 4.3 g

Amount of O2 given = unlimited

We need to find the percent yield.

Now, let's calculate the theoretical yield of H2O:

From the balanced chemical equation:

2H2 + O2 → 2H2O

We can see that 2 moles of H2 are required to react with 1 mole of O2 to form 2 moles of H2O.

Molar mass of H2 = 2 g/mol

Molar mass of O2 = 32 g/mol

Molar mass of H2O = 18 g/mol

Therefore, 2 moles of H2O will be formed by using:

2 x (2 g + 32 g) = 68 g of the reactants

So, the theoretical yield of H2O is 68 g.

From the question, we have obtained 35.6 g of H2O.

Therefore, the percent yield of H2O is:

Percent yield = (Actual yield/Theoretical yield) x 100

= (35.6/68) x 100= 52.35%

Therefore, the percent yield of H2O is 52.35%.

Given: Amount of H2O obtained = 23.64 g

Amount of H2 given = 6.14 g

Amount of O2 given = 24.0 g

We need to find the percent yield.

Now, let's calculate the theoretical yield of H2O:From the balanced chemical equation:

2H2 + O2 → 2H2O

We can see that 2 moles of H2 are required to react with 1 mole of O2 to form 2 moles of H2O.

Molar mass of H2 = 2 g/mol

Molar mass of O2 = 32 g/mol

Molar mass of H2O = 18 g/mol

Therefore, 2 moles of H2O will be formed by using:

2 x (6.14 g + 32 g) = 76.28 g of the reactants

So, the theoretical yield of H2O is 76.28 g.

From the question, we have obtained 23.64 g of H2O.

Therefore, the percent yield of H2O is:

Percent yield = (Actual yield/Theoretical yield) x 100

= (23.64/76.28) x 100= 31.01%

Therefore, the percent yield of H2O is 31.01%.

To know more about percent yield visit:

https://brainly.com/question/17042787

#SPJ11

C) Over the summer, after several transactions in Jerry's bank account,


he now has a balance of $2,424. However, this week they had an expense of


putting in a new fence around their backyard. The new balance in their


account at the end of the week is now $1. 200.


Write and solve an equation to determine the cost of the fence, c.

Answers

To determine the cost of the fence, based on the given information. Jerry spent $1,224 on putting a new fence around their backyard.

Let's assume the cost of the fence is 'c' dollars. The equation can be formed by subtracting the cost of the fence from the initial balance and comparing it to the final balance. So we have:

Initial balance - Cost of the fence = Final balance

$2,424 - c = $1,200

To find the cost of the fence, we solve the equation for 'c'. First, let's isolate 'c' by subtracting $1,200 from both sides:

$2,424 - $1,200 = c

$1,224 = c

Therefore, the cost of the fence, denoted as 'c', is $1,224. This means that Jerry spent $1,224 on putting a new fence around their backyard.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Suppose medical records indicate that the length of newborn babies (in inches) is normally distributed with a mean of 20 and a standard deviation of 2. 6 find the probability that a given infant is longer than 20 inches

Answers

With a mean of 20 inches and a standard deviation of 2.6 inches, the probability can be calculated as P(z > 0), which is approximately 0.5.

To find the probability that a given infant is longer than 20 inches, we need to use the normal distribution. The given information provides the mean (20 inches) and the standard deviation (2.6 inches) of the length of newborn babies.

In order to calculate the probability, we need to convert the value of 20 inches into a standardized z-score. The z-score formula is given by (x - μ) / σ, where x is the observed value, μ is the mean, and σ is the standard deviation.

Substituting the given values, we get (20 - 20) / 2.6 = 0.

Next, we find the area under the normal curve to the right of the z-score of 0. This represents the probability that a given infant is longer than 20 inches.

Using a standard normal distribution table or a calculator, we find that the area to the right of 0 is approximately 0.5.

Therefore, the probability that a given infant is longer than 20 inches is approximately 0.5, or 50%.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Other Questions
Express the proposition as an English sentence and determine whether it is true or false, where p and q are the propositions p: 9.9=81" 4. "8.10< 7.11 The contrapositive of p9 O A. If 8.10 is not less than 7. 11, then 9.9 is not equal to 81, false OB. If 8.10 is less than 7. 11, then 9.9 is not equal to 81, false OC. If 8.10 is not less than 7. 11, then 9.9 is equal to 81, false OD. 18 8.10 is less than 7. 11, then 9.9 is equal to 81, false title = q5a4 for the phosphite ion, po33- the electron domain geometry is _______(i)________ and the molecular geometry is ______(ii)________? True/False: a firm with market power will find that the quantity of output that maximizes revenue is lower than the quantity at which profits are maximized. Determine whether the given set is disjoint or not disjoint. Consider the set N of positive integers to be the universal set, and let A = {n EN n>50) B = {n e Ni n if 7.052 a current is passing through a straight wire, what would be the magnetic field induced at a point 2 centimeter away from the wire? the answer is Is it possible for a single molecule to test true positive in all the qualitative assays described in this module? Why or why not? 1. Solubility in water test2. 2,4 DNP test 3. Chromic acid test 4. Tollens test 5. Iodoform test ) for a soil sample subjected to a cell pressure of 100 kn/m2 , c=80 kn/m2, and =20^o , the maximum deviator stress in kn/m2 , will be; A species found only in one small area has a very narrow range of:_______ Show all steps needed for Booth algorithm to perform (a)x(b) where b is the multiplier: I. a=(-21) and b= (+30) II. a=(+30) and b=(-21) III. a=(+13) and b= (-32) find the area of the triangle determined by the points p(1, 1, 1), q(-4, -3, -6), and r(6, 10, -9) After a housing bust that reduces exogenous investment,Keynesian countercyclical policy is A. Raise government spending B.Raise taxes C.Reduce government spending D.Both B and C E.None of the above At 25C, the following heats of reactions are known: 2 ClF (g) + O2 (g) ---> Cl2O (g) + F2O Hrxn = 167.4 kJ/ mol ; 2 ClF3 (g) + 2O2 (g) ---> Cl2O (g) + 3F2O (g) Hrxn = 341.4 kJ/ mol ; 2F2 (g) + O2 (g) ---> 2F2O (g) Hrxn = -43.4 kJ/mol. At the same temperature, use Hess's law to calculate Hrxn for the reaction: ClF (g) + F2 (g) ---> ClF3 (g). Strong earthquakes occur according to a Poisson process in a metropolitan area with a mean rate of once in 50 years. There are three bridges in the metropolitan area. When a strong earthquake occurs, there is a probability of 0. 3 that a given bridge will collapse. Assume the events of collapse between bridges during a strong earthquake are statistically independent; also, the events of bridge collapse between earthquakes are also statistically independent. Required:What is the probability of "no bridge collapse from strong earthquakes" during the next 20 years? If a French citizen buys 100 shares of IBM stock on the New York Stock Exchange, the transaction will be recorded as (a) a surplus item in the capital account (b) a deficit item in the capital account (c) a surplus item in the current account (a) a deficit item in the current account (e) a decrease in France's GDP Which point would be a solution to the system of linear inequalities shown below? taking into account also your answer from part (a), find the maximum and minimum values of f subject to the constraint x2 2y2 < 4 Assume that arrival times at a drive-through window follow a Poisson process with mean rite lambda = 0.2 arrivals per minute. Let T be the waiting time until the third arrival. Find the mean and variance of T. Find P(T lessthanorequalto 25) to four decimal places. The mean of T is minutes, the variance of T is minutes, the variance of P(T < 25) = the legislative first forestry chloride is -91 degrees Celsius well. Of magnesium chloride is 715 degrees Celsius in terms of bonding explain the difference in the melting pointthe melting point of phosphorus trichloride is -91 degree celsius while that of magnesium chloride is 715 degrees Celsius in terms of bonding explain the difference in their melting point Saving Answer Which of the following is correct according to the Central limit theorem? As the sample size increases, the sample distribution of the mean is closer to the normal distribution but only when the distribution of the population is normal As the sample size increases, the sample distribution of the mean is closer to the normal distribution zegardless of whether or not the distribution of the population is normal As the sample size increases, the sample distribution of the mean is closer to the population distribution regardless of whether or not the population distribution is normal O As the sample size increases, the sample distribution of the mean is closer to the population distribution For which of these ARMs will the interest rate stay fixed for 4 years and then be adjusted every year after that? A. 4/4 ARM B. 1/4 ARM O C. 4/1 ARM O D. 1/1 ARM