Three cylindrical wires, 1, 2, and 3 are made of the same materialand have resistances R1, R2, and R3, respectively. Wires 1 and 2 have the same lengthbut diameter of wire 2 is twice that of wire 1. Wires 2 and 3 have the same diameterbut length of wire 3is twice that of wire 2.
1. Rank the wires according to their resistances, greatest first.
A. R1> R2> R3R1
B. R1> R3> R2R2
C. R2> R1> R3R3
D. R2> R3> R1
E. R3> R1> R2
F. R3> R2> R1Q2.
2. If same voltage is applied across each of the wires, which one will dissipate heat at the highest rate

Answers

Answer 1

Answer:

1)     R₁ > R₃ > R₂ correct B , 2) the wire that dissipates the most is wire 2

Explanation:

1) The resistance of a wire is given by the expression

          R = [tex]\rho \ \frac{l}{A}[/tex]

where ρ is the resistivity of the material, l the length of the wire and A the area of ​​the wire

The area is given by

          A = π r² = π d² / 4

we substitute

         R = (ρ 4 /π)  [tex]\frac{l}{d^2}[/tex]

the amount in parentheses is constant for this case

let's analyze the situation presented, to find the resistance of each wire

* indicate l₁ = l₂ and d₂ = 2 d₁

the resistance of wire 1 is

          R₁ = (ρ 4 /π)  [tex]\frac{l_1}{d_1^2}[/tex]  

the resistance of wire 2 is

          R₂ = (ρ 4 /π) \frac{l_2}{d_2^2}

          R₂ = (ρ 4 /π)   [tex]\frac{l_1}{ (2 d_1)^2}[/tex]

          R₂ = (ρ 4 /π ) [tex]\frac{l_1}{d_1^2}[/tex]   ¼

          R₂ = ¼ R₁

 

* indicate that d₂ = d₃    and  l₃ = 2 l₂

           R2 = (ρ 4 /π)  [tex]\frac{l_2}{d_2^2}[/tex]

the resistance of wire 3 is substituting the indicated condition

           R3 = (ρ 4 /π 2)  \frac{l_3}{d_3^2}

            R3 = (ρ 4 /π)   [tex]\frac{2 \ l_2}{d_2}[/tex]

            R3 = 2 R₂

let's write the relations obtained

          R₁ = (ρ 4 /π)  [tex]\frac{I_1}{ d_1^2}[/tex]

          R₂ = ¼ R₁

          R₃ = 2 R₂

let's write everything as a function of R1

           R₁ =(ρ 4 /π)   [tex]\frac{l_1}{d_1^2}[/tex]

           R₂ = ¼ R₁

           R₃ = ½ R₁

the resistance of the wire in decreasing order is

           R₁ > R₃ > R₂

2) The power dissipated by a wire is

           P = V I

the voltage is

           V = I R

            I = V / R

substituting

          P = V² / R

therefore the power dissipated by each wire is

wire 1

           P₁ = V² / R₁

wire 2

           P₂ = V² / R₂

           P₂ = [tex]\frac{V^2}{ \frac{1}{4} R_1}[/tex]

           P₂ = 4 P₁

wire 3

           P₃ = V² / R₃

           P₃ = [tex]\frac{V^2}{ \frac{1}{2} R_1}[/tex]

           P₃ = 2 P₁

Therefore, the wire that dissipates the most is wire 2


Related Questions

The force of friction depends upon​

Answers

Answer:

ask internet?

Explanation:

easy .....

..

Friction depends partly on the smoothness of the contacting surfaces, a greater force being needed to move two surfaces past one another if they are rough than if they are smooth.
Therefore, friction depends on the smoothness or roughness of the two surfaces which are in contact.

You hold your physics textbook in your hand. (Assume that no other objects are in contact with the book.)

a. Identify the forces acting on the book.

1. book on hand
2. hand on book
3. floor on book
4. earth on book

b. For each force you identified in part (a), indicate the direction. (If a force is not applicable, choose NA.)

1, book on hand __________
2. hand on book __________
3. floor on book __________
4. earth on book _________

Answers

Answer:

a) Please see below as the answer is self-explanatory.

b) 1. vertically downward

   2. vertically upward

   3  N/A

   4  vertically downward.

Explanation:

a)

If the book is hold by the hand, this means (according to Newton's third law) that both exert a force on each other, equal and opposite.In this case this pair is formed by normal forces, the normal force (upward) that the hand does on the book (avoiding it to be accelerated downward) and the normal force that the book does on the hand (downward) avoiding it to be accelerated in the upward direction.The other force that acts on the book is the one due to gravity, and is always downward, which is numerically equal to the normal force that the hand does on the book, due to the book is at rest. There is no interaction between the book and the floor, so there is no force between them, neglecting the gravitational attraction between their masses.

Which phrase best completes the diagram?

Goals of Social Policy:
Providing citizens with an education ➡️Ensuring the safety of citizens➡️?


A. Helping people who live in poverty.
B. Increasing aid to foreign countries.

The correct answer is:
A. Helping people Who live in poverty​

Answers

Answer:

Did you ask the question and answer it for yourself?

Answer:

Your amazing thank you, A was right.

Which of these is NOT a form of energy?
A. mechanical
B. chemical
C. theoretical
D. thermal

Answers

c. theoretical. the rest are energy forms

Answer:

I think it's theoretical.

g Drop the object again and carefully observe its motion after it hits the ground (it should bounce). (Consider only the first bounce and do NOT assume the total energy is the same as the total energy of the object before it hits the ground.) a. List the quantities that you need to know to determine the total energy of the object after it hits the ground. b. Record your measurements and describe how you measured them. c. Calculate the total energy of the object after it hit the ground. Your final answer: ______________ d. Determine whether or not the object’s energy was conserved when it hit the ground. If it was not conserved, explain where the energy went.

Answers

Answer:

a) quantity to be measured is the height to which the body rises

b) weighing the body , rule or fixed tape measure

c)   Em₁ = m g h

d) deformation of the body or it is transformed into heat during the crash

Explanation:

In this exercise of falling and rebounding a body, we must know the speed of the body when it reaches the ground, which can be calculated using the conservation of energy, since the height where it was released is known.

a) What quantities must you know to calculate the energy after the bounce?

The quantity to be measured is the height to which the body rises, we assume negligible air resistance.

So let's use the conservation of energy

starting point. Soil

          Em₀ = K = ½ m v²

final point. Higher

          Em_f = U = mg h

         Em₀ = Em_f

         Em₀ = m g h₀

b) to have the measurements, we begin by weighing the body and calculating its mass, the height was measured with a rule or fixed tape measure and seeing how far the body rises.

c) We use conservation of energy

starting point. Soil

          Em₁ = K = ½ m v²

final point. Higher

          Em_f = U = mg h

         Em₁ = Em_f

         Em₁ = m g h

d) to determine if the energy is conserved, the arrival energy and the output energy must be compared.

There are two possibilities.

* that have been equal therefore energy is conserved

* that have been different (most likely) therefore the energy of the rebound is less than the initial energy, it cannot be stored in the possible deformation of the body or it is transformed into heat during the crash

A diagram of a plant cell is shown below.
Which organelle is found in both plant and animal cells?
Cell membrane
Chloroplast
Ο Ο Ο
Large Vacuole
Cell Wall

Answers

Answer:

The Cell Membrane is found in both plant and animal cells.

Explanation:

Chloroplast, Large Vacuole and Cell Wall are all found in plant cells.

Arrange the following substances from the lightest to the heaviest:
Cl2, CH4; H20; NH3, N2

A. H2O<NH,< N2 CH4Cl2
B. CH< NH< H-0< < Cl2
C. Ny< Cl< H2O< CH«<NH3
D. NH;< CH«< Cl< H2O< N2​

Answers

molecular weights are written in the picture.

CH4<NH3<H2O<Cl2

When will heat STOP flowing
between two objects?
A. When one object is significantly
warmer than the other
B. When one object is significantly cooler
than the other
C. Never
D. When both objects reach the same
temperature

Answers

Answer: D. When both objects reach the same temperature.

Explanation: When will heat flow between the objects stop? Heat will always flow from the warmer object to the colder object. The heat transfer will stop when the two objects are at the same temperature and reach thermal equilibrium.

Answer: Heat will always flow from the warmer object to the colder object. The heat transfer will stop when the two objects are at the same temperature and reach thermal equilibrium.

so the answer to your question is c

Explanation:

In fatal crashes, more than __________% of passenger car occupants who were totally ejected from the vehicle were killed.

Answers

Answer:

it would be 83% in a fatal crash.

what the importance of paying orbit to the earth.​

Answers

Answer:

The what?

Explanation:

Alternate current

Hello!
I need solve 2 questions, I tried but im so bad at physics :(

1. If the frequency in the network is 50Hz, what is the period of this voltage?
2. The effective voltage value in the network is 230V. What is its maximum value?

I would like an explanation with a calculation for my understanding!!

Thanks in advance you all!

Answers

sorry bro but i don't know his i am also bad

Explanation:

but maybe you can you the formula of volatage as well as

Marcy pulls a backpack on a wheels down the 100m hall. The 60N force is applied at an angle of 30° above the horizontal. How much work is done by Marcy?

Answers

Answer:

Work= Fcos∆×S

W=60N×cos 30⁰×100

W=60×0.866×100=5196.1J

PLEASE GIVE BRAINLIEST

Outline 3 disadvantages and advantage of water and alcohol as a template liquid​

Answers

Answer:

Advantages of mercury as a thermometric liquid.

-It is a good conductor of heat and therefore the whole liquid reaches the temperature of the surroundings quickly.

-It does not wet (cling to the sides of) the tube.

-It has a high boiling point

-It expands uniformly (linear expansion) and responds quickly to temperature changes, hence is sensitive.

-It has a visible meniscus.

Disadvantages

-Mercury is very poisonous.

-its expansively is fairly low

-it is expensive

-It has a high freezing point therefore it cannot be used in places where the temperature gets very low.

Alcohol has a thermometric fluid

-Alcohol expands uniformly.

-It has a low freezing point (-115 degreecentigrade) therefore it is very suitable for place where the temperature gets very low.

-It has a large expansively

-It is an easily available cheap liquid, which is safe to use

Disadvantages of alcohol

-it wets the tube

-it has a low boiling point (cannot be used in places with high temperatures)

-it does not react quickly to changes in temperature

-It needs to be dyed, since it's colourless.

Disadvantages of water

-Water has high specific heat capacity. So it cannot be used for measuring small temperature differences.

- Water will wet the surface of the glass tube. It is a sticky substance.

- Water is transparent

Explanation:

A sound having a frequency of 299 Hz travels through air at 332 m/s.
What is the wavelength of the sound? Answer in units of m.

Answers

Answer:

1.11 m.

Explanation:

Why?

The speed for a wave is done by the equation:   v = f * w. Because the frecuency tells us about how many cycles the wave makes each time, but for each cycle the wave runs certain distance, given for the wavelenght. If you isolate the letter w you get the value just doing a ratio.

v = speed

f = frecuency

w = wavelenght

w = v / f

Match the following items.
1. Extremely small building blocks of matter.
2. Forming new matter from old matter.
3. Small bits of matter.

atom
molecule
chemical change

Answers

1. atom
2. chemical change
3. molecule
hope this helps please mark branliest tyyyy!! <3

[1 mark]
29. A ball rolls at a constant speed of 3.0 m/s for 8.0 seconds. How far does it roll in this time!
A. 2.7 m
B. 3.0 m
C. 8.0 m
D. 24.0 m

Please help me

Answers

Answer:

D. 24.0m

Explanation:

formula

S=d/t

s=speed

d=distance

t=time

s=3.0m/s

d=x

t=8.0s

s=d/t

d=s*t

d=3.0*8.0

d=24.0m

s=? u=3 a=0 t=8

S=ut+1/2a(t^2)
s=3(8) + 0
s=24m

Answer is D)24m

What is the magnitude of the resultant vector? Round
your answer to the nearest tenth.
m
R
5 m
13 m
Intro
Done

Answers

Answer: 13.9 m

Explanation:

Answer:

13.9m

Explanation:

Answer on Edge


Which letter on the map represents the
Southern Ocean

Answers

Answer:

B cus is in the south but that pfp tho

Help please thank you

Answers

I believe the answer would be C because potential energy is affected by height and mass. The truck in photo C is the highest and has a lot of mass.

. Four railroad cars, each of mass 2.50 104 kg, are coupled together and coasting along horizontal tracks at a speed of vi toward the south. A very strong but foolish movie actor, riding on the second car, uncouples the front car and gives it a big push, increasing its speed to 4.00 m/s southward. The remaining three cars continue moving toward the south, now at 2.00 m/s. (a) Find the initial speed of the cars. (b) How much work did the actor do

Answers

Answer:

a)     v₀ = 2.5 m / s,   heading south.

b)  W = 1,219 10⁵ J

Explanation:

a) For this exercise we can use the conservation of the moment, we create a system formed by all the 4 cars, in this case when the last one separates the forces are intense and the moment is conserved

initial instant. Before separation

        p₀ = M v₀

final instant. When uncoupling the last car

        p_f = 3m v₁ + m v₂

where they indicate that the speed of the wagons is v₁ = 2.00 m / s and the speed of the last wagon is v₂ = 4.00 m / s

the total mass is M = 4m

how the moment is preserved

           p₀ = p_f

         4m v₀ = 3m v₁ + mv₂

         v₀ = ¾ v₁ + v₂ / 4

let's calculate

           v₀ = ¾ 2 + ¼ 4

           v₀ = 2.5 m / s

heading south.

b) work is equal to the change in kinetic energy

              W = ΔK = K_f -K_o

              W = ½ m v_f² - ½ m v₀²

               W = ½ m (v_f² -v₀²)

               W = ½ 2.50 10⁴ (4² - 2.5²2)

               W = 1,219 10⁵ J

Your heart pumps blood into your aorta (diameter 2.5 cm) with a maximum flow rate of about 500 cm^3/s. Assume that blood flow in the aorta is laminar (which is not a very accurate assumption) and that blood is a Newtonian fluid with a viscosity similar to that of water.

a. Find the pressure drop per unit length along the aorta. Compare the pressure drop along a 10 cm length of aorta to atmospheric pressure (105 Pa).
b. Estimate the power required for the heart to push blood along a 10 cm length of aorta, and compare to the basal metabolic rate of 100 W.
c. Determine and sketch the velocity profile across the aorta (assuming laminar flow). What is the velocity at the center

Answers

Answer:

a. i) The pressure drop per unit length is 52,151.89 Pa

ii) The atmospheric pressure ≈ 19.175 × The pressure drop along 10 cm length of aorta

b i) The power required for the heart to push blood along a 10 cm length of aorta, is 2.6075945 Watts

ii) The basal metabolic rate ≈ 38.35 × The power to push the blood along a 10 cm length of aorta

c. i) Please find attached the drawing for the velocity profile created with Microsoft Excel

ii) The velocity at the center is approximately 2.04 m/s

Explanation:

The given diameter of the aorta, D = 2.5 cm = 0.025 m

The maximum flow rate, Q = 500 cm³/s = 0.0005 m³/s

Assumptions;

The blood flow is laminar

The blood is a Newtonian fluid

The viscosity of water ≈ 0.01 poise = 1 cp

a. i) The pressure drop per unit length of pipe ΔP/L is given by the Hagen Poiseuille equation as follows;

[tex]Q = \dfrac{\pi \cdot R^4}{8 \cdot \mu} \cdot \left(\dfrac{\Delta p}{L} \right)[/tex]

Where;

Q = The flow rate = A·v

A = The cross sectional area

R = The radius = D/2

Δp/L = The pressure drop per unit length of the pipe

Therefore, we have;

[tex]\dfrac{\Delta p}{L} = \dfrac{Q\cdot 8 \cdot \mu }{\pi \cdot R^4} = \dfrac{0.0005 \times 8 \times 1}{\pi \times 0.0125^4 } = 52151.89[/tex]

The pressure drop per unit length ΔP/L = 52,151.89 Pa

ii) The pressure, ΔP, drop along 10 cm (0.1 m) length of aorta = ΔP/L × x;

∴ ΔP = 52,151.89 Pa × 0.1 m = 5,215.189 Pa

Given that the atmospheric pressure, [tex]P_{atm}[/tex] = 10⁵ Pa, we have;

[tex]P_{atm}[/tex]/ΔP = 10⁵/5,215.189 ≈ 19.175

Therefore, the atmospheric pressure is approximately 19.175 times the pressure drop along 10 cm length of aorta

b. i) The power, P = Q × ΔP

Therefore, the power required for the heart to push blood along a 10 cm length of aorta, is P₁₀ = 0.0005 m³/s × 5,215.189 Pa = 2.6075945 Watts

ii) Therefore compared to the basal metabolic rate of, 'P', 100 W, we have;

P/P₁₀ = 100 W/2.6075945 Watts = 38.349521 ≈ 38.35

The basal metabolic rate is approximately 38.35 times more powerful than the power to push the blood along a 10 cm length

c. i) The velocity profile across the aorta is given as follows;

[tex]v_m = \dfrac{1}{4 \cdot \mu} \cdot \dfrac{\Delta P}{L} \cdot R^2[/tex]

Where;

[tex]v_m[/tex] = The velocity at the center

We get;

[tex]v_m = \dfrac{1}{4 \times 1} \times 52,151.89 \times 0.0125^2 \approx 2 .04[/tex]

The velocity at the center, [tex]v_m[/tex] ≈ 2.04 m/s

ii) The velocity profile, v(r), is given by the following formula;

[tex]v(r) = v_m \cdot \left[1 - \dfrac{r^2}{R^2} \right][/tex]

Therefore, we have;

[tex]v(r) = 2.04 - \dfrac{2.04 \cdot r^2}{0.0125^2} \right] = 2.04 - 163\cdot r^2[/tex]

The velocity profile of the pipe is created with Microsoft Excel

ANSWER DIS ASAP FOR LUCK TMRW :}
List down ten situations that show how friction affects the movement of objects. I NEED THE ANSWER IN ONE MINUTE​

Answers

Answer:

Walking –We can walk only if we apply frictional force. Friction is what holds your shoe to the ground. The friction present on the ice is very little, this is the reason why it is hard to walk on the slippery surface of the ice.

Writing – A frictional force is created when the tip of the pen comes in contact with the surface of the paper. Rolling friction is what comes into play while writing with a ballpoint pen while sliding friction arises when one writes with a pencil.

Skating – A thin film of water under the blade is necessary to make the skate slide. The heat generated by the skate blade rubbing against the surface of ice causes some of the ice to melt right below the blade where the skater glides over the ice. This water acts as a lubricant reducing friction.

Lighting a matchstick – When the head of the matchstick is rubbed against a rough surface, heat is generated and this heat converts red phosphorous to white phosphorous. White phosphorous is highly inflammable and the match stick ignites. Sometimes, matchsticks fail to ignite due to the presence of water. Water lowers friction.

Driving of the vehicle on a surface- While driving a vehicle, the engine generates a force on the driving wheels. This force initiates the vehicle to move forwards. Friction is the force that opposes the tyre rubber from sliding on the road surface. This friction avoids skidding of vehicles.

Applications of breaks in the vehicle to stop it- Friction braking is the most widely used braking method in vehicles. This process involves the conversion of kinetic energy to thermal energy by applying friction to the moving parts of a vehicle. The friction force resists the motion and in turn, generates heat. This conversion of energy eventually bringing the velocity to zero.

Flight of aeroplanes- Drag is the force that opposes the forward motion of the aeroplane. The friction which resists the motion of an object moving through a fluid or immobile in a moving fluid, as occurs when we fly a kite. The friction of the air is created as it meets and passes over an aeroplane and its components. Drag is generated by air impact force, skin friction and displacement of the air.

Drilling a nail into the wall- Friction is responsible for fixing of nails in a wall. As the nail is driven into the wall, the nearby material to the nail of the wall gets compressed. This exerts a force on the nail. This force is the friction that converts the normal force exerted by the compressed layers of the wall into the resisting shear force. In this manner the friction cause nails and screws to hold on to walls.

The dusting of the carpet by beating it with a stick- When the carpet is beaten with the stick, the dust comes out. The dust is carried off by the wind or falls on the floor. The carpet exhibits a little static friction that holds the dust to the carpet.  When the carpet is beaten, it will overcome the friction and the carpet will move away from the dust making the carpet free from dust.

Sliding on a garden slide- We know that friction is a force that is present whenever two objects rub against each other. In case of a slide in the garden such as a slide and a person’s backside rub each other’s surface. Without friction, a slide would accelerate the rider too quickly, resulting in possible injury due to the fall. The friction reduces the velocity of the sliding person and makes him stop.

Hope that helps! :D Sorry if it's too lengthy...

Explanation:

Rank the following circuits in order from highest to lowest values of the current in the circuit.

i. a 1.4-Ω resistor connected to a 1.5-V battery that has an internal resistance of 0.10 Ω;
ii. a 1.8-Ω resistor connected to a 4.0-V battery that has a terminal voltage of 3.6 V but an unknown internal resistance;
iii. an unknown resistor connected to a 12.0-V battery that has an internal resistance of 0.20 Ω and a terminal voltage of 11.0 V.

a. (i), (iii), (ii)
b. (iii), (i), (ii)
c. (ii), (iii), (i)
d. (i), (ii), (iii)
e. (iii), (ii), (i)
f. (ii), (i), (iii)

Answers

Answer:

e)

Explanation:

Let's get first the values of the currents for the three cases.

i)

The battery forms a series circuit with its internal resistance and the 1.4 Ω resistor. Since the current is the same at any point of the circuit, and the sum of all voltages along a closed circuit must be zero, we can apply Ohm's Law in each resistor, as follows:

        [tex]V = I*r_{i} + I*R_{1} (1)[/tex]

Replacing V, ri and R₁ by their values, we can solve for the current I as follows:

      [tex]I_{i} = \frac{V}{r_{int} + R_{i}} = \frac{1.5V}{0.1 \Omega + 1.4 \Omega} = 1.0 A (2)[/tex]

ii)

Since the voltage of the battery is 4.0 V (open circuit voltage), and it falls to 3.6 V when is connected to a 1.8Ω resistor, this means that the voltage through the resistor must be 3.6 V, due to the sum of all voltages along a closed circuit must be zero.So, we can find the current through the circuit, applying Ohm's Law to the 1.8Ω resistor, as follows:

       [tex]I_{ii} =\frac{V_{term} }{R_{ii} } =\frac{3.6V}{1.8 \Omega} = 2.0 A (3)[/tex]

iii)

Since the 12.0 V battery has a terminal voltage of 11.0 , this means that the voltage through the internal resistance of 0.2 Ω, must be 1.0 V.So we can find the current Iiii, applying Ohm's Law to the internal resistance value, as follows:

      [tex]I_{iii} =\frac{V-V_{term}}{r_{int} } =\frac{12.0 V- 11.0 V}{0.2 \Omega} =\frac{1.0V}{0.2\Omega} = 5.0 A (4)[/tex]

So, the highest current is the Iiii, followed by Iii and Ii, which is stated by e).

27. The electric field around a positive charge is shown in the diagram. Describe the nature of these lines. Please use 2 content related sentences

Answers

Answer:

Once we place a positive test at a point close to the sphere, we find that an electrostatic force is applied to the outside of the sphere. Therefore, at any point around the sphere, the electric field vector is radially outward.

An aspirin tablet that contains 75mg of
aspirin and 325mg of inert materials is an
example of
A. qualitative data.
B. quantitative data.
C. neither qualitative or quantitative data.

Answers

Answer:

it is for sure B. Quantitative data !

Explanation:

As I learned from quizlet!. there your welcome

Answer:

B. Quantity

Explanation:

This is easy

finger bones do not have joints true or false

Answers

Explanation:

Finger bones have joints.

Answer: true , finger bones have joints

Explanation:

A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.10 s for the boat to travel from its highest point to its lowest, a total distance of 0.700 m. The fisherman sees that the wave crests are spaced a horizontal distance of 6.10 m apart. A. How fast are the waves traveling?B. What is the amplitude of each wave? C. If the total vertical distance traveled by the boat were 0.500 , but the other data remained the same, how fast are the waves traveling? D. If the total vertical distance traveled by the boat were 0.500 , but the other data remained the same, what is the amplitude of each wave?

Answers

Answer:

a)  v = 2.9 m / s, b) A = 0.350 m, c)    v = 2.9 m / s, d)   A = 1.00 m

Explanation:

The oscillatory motion is described by the expression

          x = A cos (wt + Ф)

the wavelength which is the distance for the wave to repeat and the frequency which is the number of times a wave oscillates per unit of time

a) In this part they ask us for the speed of the wave.

Let's use the relationship between speed, wavelength and frequency

          v = λ f

For the wavelength they indicate that the distance between two crest is 6.1 m

        λ / 2 = 6.10

        λ = 12.20 m

They give us the period of the wave is the time it takes to return to the same point, in this case they give half a period

       A / 2 = 2.10

       A = 4.20 me

        f = 1 / t

        f = ¼, 2

        f = 0.238 Hz

let's calculate

         v = 12.20 0.238

         v = 2.9 m / s

b) the amplitude of the wave, is the distance from zero to some maximum

                 2A = 0.700

                   A = 0.350 m

c) the speed of the wave is not function of the amplitude, so the speed is the same

           v = 2.9 m / s

d) the amplitude is

           2A = 0.50

             A = 1.00 m

The provided text reads: "a typical lightning bolt may transfer 10^20 electrons in a fraction of a second, developing a peak current of up to 10 kiloamperes." Using the value of the elementary charge of 1.6x10^-19 C We can estimate the total charge of the lightning bolt to be about *
1.6E1 C
1.6E4 C
1.6E10 C
1.6E20 C

Answers

Answer:

1.6e20

Explanation:

An important news announcement is transmitted by radio waves to people who are 46 km away, sitting next to their radios, and by sound waves to people sitting across the newsroom, 2.1 m from the newscaster. Take the speed of sound in air to be 348 m/s. What is the difference in time that the message is received

Answers

Answer:

[tex]0.005847\ \text{s}[/tex]

Explanation:

Radio waves travel at the speed of light

[tex]c[/tex] = Speed of light = [tex]3\times 10^8\ \text{m/s}[/tex]

[tex]d_r[/tex] = Distance between two radios = 46 km

[tex]v[/tex] = Speed of sound in air = 348 m/s

[tex]d_s[/tex] = Distance sound travels across the newsroom = 2.1 m

Time taken by the radio signal to reach the required location is

[tex]t_r=\dfrac{d_r}{c}\\\Rightarrow t_r=\dfrac{46\times 10^3}{3\times 10^8}\\\Rightarrow t_r=0.000153\ \text{s}[/tex]

Time taken by sound to reach the required location is

[tex]t_s=\dfrac{d_s}{v}\\\Rightarrow t_s=\dfrac{2.1}{348}\\\Rightarrow t_s=0.006\ \text{s}[/tex]

The time difference is

[tex]t_s-t_r=0.006-0.000153=0.005847\ \text{s}[/tex]

The difference in time that the message is received is [tex]0.005847\ \text{s}[/tex].

on which principle thermometer is based?​

Answers

Answer:

Thermal Expansion

Explanation:

These liquid thermometers are based on the principal of thermal expansion. When a substance gets hotter, it expands to a greater volume. Nearly all substances exhibit this behavior of thermal expansion. It is the basis of the design and operation of thermometers.

Other Questions
In May 2010, a man was searching the English countryside. He was using a metal detector. The man came across a bronze helmet. Someone in the Roman cavalry once wore the helmet. It was not used for battle. A horseman would have worn it during sporting events or parades. It was more than 2,000 years old. The helmet recently sold for more than three million dollars.Do It!The helmet was _________.Press enter to interact with the item, and press tab button or down arrow until reaching the Submit button once the item is selectedA shinyB woodenC ancientD comfortable hi i would rly appreciate ur help on this. I need to write these expressions as products:1. ((a+1)^3)+(x^3)2. ((y-2)^3)-273.((a-b)^3)+b^34. (8x^3)+((x-y)^3)5. (27a^3)-((a-b)^3)Thank you so much i rly appreciate it what is the formula of the compounds in Bpls help In 2002, about 1,817 million metric tons of grain were grown throughout the world. India produced about 170.2 million metric tons of grain. What percentage of the world's grain did India produce in 2002? (Process Hints) Formation of a Fertilized Egg Gametes are formed by meiosis Egg (n) Ovary Sperm (n) - Testis gametes join together in the _Zygote______forming a Restores the Chromosome Number (2n) Which of the following approaches measures team performance by how efficiently the team reaches decisions together?A. the results approachB. the decisions approachC. the behaviors/process approachD. the efficiency approach Which word does not belong? publicity, advertising, magazine, propaganda What is the main effect of the author's use of personification?AIt suggests competition between the child workers and the machines.BIt emphasizes a contrast between the child workers and the machines,It demonstrates the advantages that the child workers had over the machines.DIt shows that child workers were important to the proper functioning of themachines What is the image point of (2, 4) after a translation left 4 units anddown 1 unit? Show that the two triangles given beside are similar and calculate the lengths of sides PQ and PR. Which is the equation of a line with a slope of -1 and a y-intercept of -6?A y = -6x - 1B y = -x - 6C y = x - 5D y = x + 6 Write the equation in slope-intercept form: 2x + y =3y= 2x + 3y= -2x -2y= -2x + 3y= 2x-3 Mary received a flu vaccine. Why didn't the vaccine make her sick? Out of a group of 30 volunteers, 17 people are chosen to participate in a survey about the number of phone calls they make each week. What is the sample in this situation? Write an equation of the line that passes through the given point and has the given slope.(4, 3); slope 1/2 PLEASE HELP ASAPfind JL What is the term used to refer to the segment of available frequencies assigned to handle a cell phone call? Please answer this!!!!!!!!!! Which health concern is most associated with areas containing a high density of factories and vehicles with gas-burning enginesA.increased sensitivityB. Infection in the digestiveC. As well in other breathing related issuesD. Weekend resistance to infections and viruses Why do some states have more Representatives than other states.a. Because the state's Representatives have seniority in the House of Representatives.b. Because of the state's population.c. Because of the geographical size of the state.d. Because of the state's location.