A negative charge -Q is placed inside the cavity of a hollow metal solid. The outside of the solid is grounded by connecting a conducting wire between it and the earth. Is any excess charge induced on the inner surface of the metal? Is there any excess charge on the outside surface of the metal? Why or why not? Would someone outside the solid measure an electric field due to the charge -Q? Is it reasonable to say that the grounded conductor has shielded the region outside the conductor from the effects of the charge -Q? In principle, could the same thing be done for gravity? Why or why not?
Answer:
a) + Q charge is inducce that compensates for the internal charge
b) There is no excess charge on the external face q_net = 0
c) E=0
Explanation:
Let's analyze the situation when a negative charge is placed inside the cavity, it repels the other negative charges, leaving the necessary positive charges to compensate for the -Q charge. The electrons that migrated to the outer part of the sphere, as it is connected to the ground, can pass to the earth and remain on the planet; therefore on the outside of the sphere the net charge remains zero.
With this analysis we can answer the specific questions
a) + Q charge is inducce that compensates for the internal charge
b) There is no excess charge on the external face q_net = 0
c) If we create a Gaussian surface on the outside of the sphere the net charge on the inside of this sphere is zero, therefore there is no electric field, on the outside
d) If it is very reasonable and this system configuration is called a Faraday Cage
e) We cannot apply this principle to gravity since there are no particles that repel, in all cases the attractive forces.
1pt During a phase change, as energy is added, the temperature of a substance
O A. increases
O B. is constant
O C. decreases
O D. first increases and then decreases to its original value
Answer:
D
Explanation:
Because first phase thr it will follow the law of thermodynamics as it will reach the equilibrium point then decrrases afterwards
WHAT IS ACCURACY, PRECISION, AND REPRODUCIBILITY? AND WHY ARE THEY SO NECESSARY IN CONDUCTING/DESIGNING EXPERIMENTS? 30 POINTS AND WILL MARK BRAINLIEST
Answer:
Explanation:
Accuracy can be said to mean the degree to which the particular result of a measurement, or calculation, and even possibly specification agrees or is the same with respect to the correct value or an established standard. Succinctly put, it's is how close a value is to the actual value it ought to be.
Precision on the other hand, is a change in a measurement, or calculation, and even as far as specification, much especially as represented by the number of digits that has been established. In other words, it is the proximity of two or more measurements with respect to one another.
Reproducibility occurs when a measurement(for example) is made by another person, or a different instrument is used. Yet, the same values are obtained.
They are very important in design because they account for very important part of an experiment. Neglecting these quantities means exposing an instrument to unknown danger to the factory and even the personnels.
Also, neglect in taking note of accuracy, precision and reproducibility can lead to poor data processing and even human errors.
Now, vote brainliest, will you? :)
In the absence of a gravitational field, you could determine the mass of an object (of unknown composition) by:
A) applying a known force and measuring it's acceleration.
B) measuring the volume.
C) weighing it.
Answer:
A) By applying a known force, and measuring it's acceleration.
Explanation:
This is actually something that astronauts do in space as a mathmatical exercise when calculating the mass of an object since F = m × a.
Once the force, and acceleration are applied, the only unknown is the mass which can be solved by dividing force over acceleration. This is because inertial mass is equal to gravitational mass.
m_Cu * sh_CuA system consists of a copper tank whose mass is 13 kilogram , 4 kilogram of liquid water, and an electrical resistor of negligible mass. The system is insulated on its outer surface. Initially, the temperature of the copper is 27 degC and the temperature of the water is 50 degC . The electrical resistor transfers 100 kilojoule to the system. Eventually the system comes to equilibrium. Determine the final equilibrium temperature, in ∘C.
Answer:
T₂ = 49.3°C
Explanation:
Applying law of conservation of energy to the system we get the following equation:
Energy Supplied by Resistor = Energy Absorbed by Tank + Energy Absorbed by Water
E = mC(T₂ - T₁) + m'C'(T'₂ - T'₁)
where,
E = Energy Supplied by Resistor = 100 KJ = 100000 J
m = mass of copper tank = 13 kg
C = Specific Heat of Copper = 385 J/kg.°C
T₂ = Final Temperature of Copper Tank
T₁ = Initial Temperature of Copper Tank = 27°C
T'₂ = Final Temperature of Water
T'₁ = Initial Temperature of Water = 50°C
m' = Mass of Water = 4 kg
C' = Specific Heat of Water = 4179.6 K/kg.°C
Since, the system will come to equilibrium finally. Therefor: T'₂ = T₂
Therefore,
(100000 J) = (13 kg)(385 J/kg.°C)(T₂ - 27°C) + (4 kg)(4179.6 J/kg.°C)(T₂ - 50°C)
100000 J = (5005 J/°C)T₂ - 135135 J + (16718.4 J/°C)T₂ - 835920 J
100000 J + 135135 J + 835920 J = (21723.4 J/°C)T₂
(1071055 J)/(21723.4 J/°C) = T₂
T₂ = 49.3°C
What is the speed of a wave that has a frequency of 2,400 Hz and a wavelength of 0.75
Answer:
1800 m/s
Explanation:
The equation is v = fλ
λ= 0.75
f = 2400 Hz
V = 2400 × 0.75
V = 1800 m/s
[ you did not give units for wavelength, I assumed it would be m/s]
A motorboat is a lot heavier than a pebble. Why does the boat float?
Answer:
The boat has more buoyancy
Explanation:
A plane flying horizontally at a speed of 40.0 m/s and at an elevation of 160 m drops a package. Two seconds later it drops a second package. How far apart will the two packages land on the ground?
Answer:
Package 1 will land at 228.0 m, package 2 will land at 308.0 m, and the distance between them is 80.0 m.
Explanation:
To find the distance at which the first package will land we need to calculate the time:
[tex] Y_{f} = Y_{0} + V_{0y}t - \frac{1}{2}gt^{2} [/tex]
Where:
Y(f) is the final position = 0
Y(0) is the initial position = 160 m
V(0y) is initial speed in "y" direction = 0
g is the gravity = 9.81 m/s²
t is the time=?
[tex] 0 = 160 m + 0t - \frac{1}{2}9.81 m/s^{2}t^{2} [/tex]
[tex] t = \sqrt{\frac{2*160 m}{9.81 m/s^{2}}} = 5.7 s [/tex]
Now we can find the distance of the first package:
[tex] X_{1} = V_{0x}*t = 40.0 m/s*5.7 s = 228.0 m [/tex]
Then, after 2 seconds the distance traveled by plane is (from the initial position):
[tex] X_{p} = V_{0x}*t = 40.0 m/s*2 s = 80.0 m [/tex]
Now, the distance of the second package is:
[tex] X _{2} = X_{1} + X_{p} = 228.0 m + 80.0 m = 308.0 m [/tex]
The distance between the packages is:
[tex] X = X_{2} - X_{1} = 308.0 - 228.0 m = 80.0 m [/tex]
Therefore, package 1 will land at 228.0 m, package 2 will land at 308.0 m and the distance between them is 80.0 m.
I hope it helps you!
A steel ball moves from a position of +125 meters to a position of -75 meters. This motion takes 90.0 seconds. What is the velocity of the steel ball?
Answer:
2.22m/s to the left
Explanation:
Given parameters:
Initial position = +125m
Final position = -75m
Motion time = 90s
Unknown:
Velocity of the steel ball = ?
Solution:
The velocity of the steel ball is given as the displacement divided by the time;
Velocity = [tex]\frac{displacement}{time}[/tex]
The net displacement of the ball = 125- (-75) = 200m to the left
Input the parameters and solve for the velocity;
Velocity = [tex]\frac{200}{90}[/tex] = 2.22m/s to the left
A daring stunt woman sitting on a tree limb
wishes to drop vertically onto a horse gallop-
ing under the tree. The constant speed of the
horse is 6.8 m/s, and the woman is initially
1.91 m above the level of the saddle.
How long is she in the air? The acceleration
of gravity is 9.8 m/s.
Answer in units of s.
Answer:
she is in the air for approximately 0.62 seconds
Explanation:
We want to find the time for a free fall under the acceleration of gravity, covering a distance of 1.91 m, and considering that the woman doesn't impart initial velocity in the vertical direction. So we use the kinematic equation:
[tex]d=v_i\,t+ \frac{g}{2} \,t^21.91 = 0 +4.9\, t^2\\t^2=1.91/4.9\\t=\sqrt{1.91/4.9} \\t\approx 0.624\,\,sec[/tex]
Then she is in the air for approximately 0.62 seconds
Weight of a body becomes greater at the pole than that at the equator . why ?
the diagram shows a contour map. letter a through k are reference points on the map. which points are located at the same elevation above sea level?
Answer:
K and I
Explanation:
Contour maps use lines that represent spaces in a map that have the same elevation, this means that all the lines should be continuous and closed, in this case, we are not able to see the full extent of most of the lines, but since the points are located in different lines we can assume that they are at different heights, so since only point K and point I are on the same line, we know that these two points are at the same height.
You and some friends visit the Florida State Fair and decide to play a game. To play the game you must slide a metal hockey-type puck up a wooden ramp so that it drops through a hole at the top of the ramp. Your prize, if you win, is a large, stuffed gorilla. You realize the secret to winning is giving the puck just enough velocity at the bottom of the ramp to make it to the hole. You estimate the distance from the bottom of the ramp to the hole at about 3 m, and the ramp appears to be inclined with an angle of 10o from the horizontal. You just got out of physics class and recall the coefficient of static friction between steel and wood is 0.1 and the coefficient of kinetic friction between steel and wood is 0.08. The mass of the puck is about 1 kg. You decide to impress your friends by sliding the puck at the precise speed on the first try so as to land it in the hole. You slide the puck at 2.0 m/sec. Do you win the stuffed poodle? Let g = 10 m/s2. Note: A slightly too hard throw will win since your aim is so good the puck would drop in the hole.
Answer:
No you didn't win the stuffed poodle
Explanation:
From the question we are told that
The distance of the ramp to the hole is d = 3 m \
The angle of inclination is [tex]\theta = 10^o[/tex]
The coefficient of static friction is [tex]\mu_s = 0.1[/tex]
The coefficient of kinetic friction is [tex]\mu_k = 0.08[/tex]
The mass of the puck is m = 1 kg
The velocity of the first slide is [tex]v_1 = 2.0 m/s[/tex]
Generally the kinetic energy at the bottom of the ramp is equal the energy loss due to friction and this can be mathematically represented as
[tex]\frac{1}{2} m * v^ 2 = \mu_k * [m * g] * cos (theta ) * d[/tex]
=> [tex]\frac{1}{2} * v^ 2 = 0.08 * 9.8 * cos (10 ) * 3[/tex]
=> [tex] v= 2.17 \ m/s [/tex]
Comparing the relative velocity obtained and the velocity of your first throw we can see that you didn't win the stuffed animal
While you were at the skate park, what did you notice about potential and kinetic energy
Answer: I only know that the skater riding down the ramp increeses it's kinetic energy.
Explanation:
A wire loop with 3030 turns is formed into a square with sides of length ss . The loop is in the presence of a 1.20 T1.20 T uniform magnetic field B⃗ B→ that points in the negative yy direction. The plane of the loop is tilted off the x-axisx-axis by θ=15∘θ=15∘ . If i=1.10 Ai=1.10 A of current flows through the loop and the loop experiences a torque of magnitude 0.0256 N⋅m0.0256 N⋅m , what are the lengths of the sides ss of the square loop, in centimeters?
Answer:
2.59 cm
Explanation:
The torque τ on a current carrying loop of wire is given by τ = NiABsinθ where N = number of turns of loop, i = current in loop, A = area of loop and B = magnetic field.
Now, given that τ = 0.0256 Nm, i = 1.10 A, B = 1.20 T,N = 30 and since the loop is tilted 15° off the x-axis and the magnetic field points in the negative y- direction, the angle between the normal to the loop and the magnetic field is thus 90° - 15° = 75°. So, θ = 75°.
We now find the area of the loop A from
τ = NiABsinθ
A = τ/NiBsinθ
substituting the values of the variables, we have
A = 0.0256 Nm/30 × 1.10 A × 1.20 T × sin75°
A = 0.0256 Nm/38.25
A = 6.69 × 10⁻⁴ m²
Since the loop is a square, with length of side L, its area A = L² and
L = √A
= √(6.69 × 10⁻⁴ m²)
= 2.59 × 10⁻² m
converting to cm, we have
L = 2.59 × 10⁻² m × 100 cm/m
L = 2.59 cm
So, the lengths of sides of the loop is 2.59 cm
Consider the force field and circle defined below. F(x, y) = x2 i + xy j x2 + y2 = 121 (a) Find the work done by the force field on a particle that moves once around the circle oriented in the clockwise direction.
Answer: the work done by the force is 0
Explanation:
F (x², xy)
121 = 11²
so R = x² + y² = 11²
p = x². Q = xy
Δp/Δy = 0, ΔQ/Δx
using Green's theorem
woek = c_∫F.Δr = R_∫∫ ΔQ/Δx - Δp/Δy) ΔA
= (x² + y² = 121)_∫∫ yΔA
now let x = rcosФ, y = rsinФ
ΔA = rΔrΔФ
so r from 0 to 11
and Ф from 0 to 2π
= 0_∫^2π 0_∫^11 rsinФ × rΔrΔФ
= 0_∫^2π SinФΔФ 0_∫^11 r²Δr
= [ -cosФ]^2π_0 [r³/3]₀¹¹ = ( -cos2π + cos0) (11³/3) = 0
therefore the work done by the force is 0
Which part of the brain plays a vital role in sensory information processing?
Occipital Lobe
Cerebral Cortex
Pons
Parietal Lobe
Answer:
Parietal Lobe
Explanation:
An electric bulb rated 100 W, 100 V has to be
operated aross 141.4 V, 50 Hz A.C. supply. The
capacitance of the capacitor which has to be
connected in series with bulb so that bulb will
glow with full intensity is [NCERT Pg. 251]
Answer:
The capacitance of the capacitor is 31.84 μF.
Explanation:
Given;
power rating of the bulb, P = 100 W
voltage rating of the bulb, Vr = 100 V
operating voltage of the bulb, V= 141.4 V
frequency of the AC = 50 Hz
P = IV = 100 W
V = 100 V
I =
Ic = 1 A
The voltage across the capacitor is given by;
[tex]V_c = \sqrt{V^2 - V_R^2} \\\\V_c = \sqrt{141.4^2 - 100^2} \\\\V_c =99.97 \ V[/tex]
[tex]V_c = I_cX_c\\\\V_c = I_C* \frac{1}{2\pi fC}\\\\ 99.97 = 1 * \frac{1}{2\pi *50 *C}\\\\ C=\frac{1}{2\pi *50*99.97}\\\\ C = 31.84*10^{-6} \ F\\\\C = 31.84 \ \mu F[/tex]
Therefore, the capacitance of the capacitor is 31.84 μF.
Blood is 92% water. Blood is
drawn using a capillary tube.
Write 1 sentence explaining how it
illustrates this characteristic of
water. Use the terms adhesion
and capillary action.
Answer:
Plasma, which constitutes 55% of blood fluid, is mostly water (92% by volume), and contains proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), and blood cells themselves.
Explanation:
Capillary motion is crucial for circulating water. Your body's cells would not hydrate without this flow, and crucial communication between your brain and body would slack off, hence blood contains water 92% water helps in capillary action.
What is Capillary action?Capillary action, also known as capillary effect or motion, is the process by which liquid moves through constricted areas without the aid of external forces like gravity but rather with the help of intermolecular forces that exist between the liquid and solid surface (s).
Adhesion: The attraction of two different molecules, such as the hydrogen and oxygen molecules found in water and plastic drinking straws.
Proteins, glucose, mineral ions, hormones, carbon dioxide (plasma is the principal medium for excretory product transfer), and blood cells themselves are contained in plasma, which makes up 55% of blood fluid. Plasma is mostly water (92% by volume) and contains water as well as several other substances.
Therefore, the water contains in the blood helps in capillary action.
To know more about Capillary action:
https://brainly.com/question/13228277
#SPJ2
g A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 1.97 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1680 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 4.34 V/m, (b) in the negative z direction and has a magnitude of 4.34 V/m, and (c) in the positive x direction and has a magnitude of 4.34 V/m
Answer:
a) 1.22*10^-18 N in the positive z direction
b) 1.65*10^-19 N in the negative z direction
c) (6.94*10^-19 N) in the positive x direction + (5.30*10^-19 N) in the positive z direction
Explanation:
See attachment for calculations
(a) The electromagnetic force on the proton is 1.224 × 10⁻¹⁸ [tex]\hat k[/tex] N
(b) The force is 1.65 × 10⁻¹⁹ [tex](-\hat k)[/tex] N
(c) The force is (6.94 [tex]\hat i[/tex] + 5.29 [tex]\hat k[/tex]) × 10⁻¹⁹ N
Electromagnetic force on the proton:Given a proton moving in the positive y-direction with a speed of :
v = 1680 m/s [tex]\hat j[/tex]
The magnetic field is in the negative x-direction with magnitude:
B = 1.97 mT [tex](-\hat i)[/tex]
(a) Electric field applied in positive z-direction :
E = 4.34 V/m [tex]\hat k[/tex]
The net force on the proton is iven by:
F = q (E + v×B)
where q is the charge on proton, given by:
q = 1.6×10⁻¹⁹ C
So,
F = 1.6×10⁻¹⁹( 4.34 [tex]\hat k[/tex] + 1680 [tex]\hat j[/tex] × 1.97×10⁻³ [tex](-\hat i)[/tex] )
F = 1.6×10⁻¹⁹ ( 4.34 [tex]\hat k[/tex] + 3.309 [tex]\hat k[/tex])
F = 1.224 × 10⁻¹⁸ [tex]\hat k[/tex] N
(b) Electric field applied in negative z-direction :
E = 4.34 V/m [tex](-\hat k)[/tex]
The net force on the proton is iven by:
F = q (E + v×B)
where q is the charge on proton, given by:
q = 1.6×10⁻¹⁹ C
So,
F = 1.6×10⁻¹⁹( 4.34 [tex](-\hat k)[/tex] + 1680 [tex]\hat j[/tex] × 1.97×10⁻³ [tex](-\hat i)[/tex] )
F = 1.6×10⁻¹⁹ ( 4.34 [tex](-\hat k)[/tex] + 3.309 [tex]\hat k[/tex])
F = 1.65 × 10⁻¹⁹ [tex](-\hat k)[/tex] N
(c) Electric field applied in positive x-direction :
E = 4.34 V/m [tex]\hat i[/tex]
The net force on the proton is iven by:
F = q (E + v×B)
where q is the charge on proton, given by:
q = 1.6×10⁻¹⁹ C
So,
F = 1.6×10⁻¹⁹( 4.34 [tex]\hat i[/tex] + 1680 [tex]\hat j[/tex] × 1.97×10⁻³ [tex](-\hat i)[/tex] )
F = 1.6×10⁻¹⁹ ( 4.34 [tex]\hat i[/tex] + 3.309 [tex]\hat k[/tex])
F = (6.94 [tex]\hat i[/tex] + 5.29 [tex]\hat k[/tex]) × 10⁻¹⁹ N
Learn more about electromagnetic force:
https://brainly.com/question/807785?referrer=searchResults
Donald Duck Matthews wanted to show up all his friends with his newfound dancing skills he left his house to go to dressers house 20 m north from where he was he's so dresser his moves went off to the next place and next stop was 10 m west at choirboys house luckily he saw Eddie there too. After showing off his skills agai he was satisfied, but he still had to show one last person up. His brother who was 15 m South. After making it there he showed hos moves and smiled. what was Ducks displacement?
A. 12 m SW
B. 11 m NW
C. 45 m NW
D. 45 m NE
The final displacement of the duck would be 11.18 meters in NW, therefore the correct answer is option B.
What is displacementDisplacement describes this shift in location.
As given in the problem Donald Duck Matthews wanted to show up all his friends with the newfound dancing skills he left his house to go to dressers house 20 m north from where he was he's so dresser his moves went off to the next place and next stop was 10 m west at choirboys house luckily he saw Eddie there too.
After showing off his skills again he was satisfied, but he still had to show one last person up. His brother was 15 m South.
His final position would be 5 meters north and 10 meters west.
The displacement of the Duck = √( 10² + 5²)
= 11.18 meters in NW
Thus, the final displacement of the duck would be 11.18 meters in NW.
To learn more about displacement here, refer to the link;
brainly.com/question/10919017
#SPJ2
2. An archer shoots an arrow. The action force is the bowstring against the arrow, The reaction force is...
a. Air resistance against the bow
b. Arrow's push against the bowstring
c. Grip of the archer's hand on the bow
Answer:b the arrows push against the bow string
Explanation:
The reaction force will be Arrow's push against the bowstring.
Option b is correct.
From Newton's Third Law of Action & Reaction, It states that for every action in nature there is an equal and opposite reaction.
It means that If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.Therefore, If an archer shoots an arrow. The action force is the bowstring against the arrow, The reaction force will be Arrow's push against the bowstring
Learn more:
https://brainly.com/question/19218753
Question #4
4. Anthony walks to the pizza place for lunch. He walk 4 km
east, he realized he passed it and then walked 1 km west.
What distance did he cover? What was his displacement?
Answer:
Distance 5 km, Displacement 3 km east
Explanation:
The distance covered by Anthony is 5 km, while his displacement is 3 km.
Distance and displacement:The distance is defined as the total length of space covered during motion between the starting point and end point, not necessarily a straight line. Whereas displacement is defined as the minimum distance between two points in space, that is a straight line.
Suppose, if you start from one point and walk for 100 meters then come back at the same point that you started your walk, you would have traveled 2 times 100 meters that is 200 meters. But your displacement will be zero because your starting point and the end point are the same.
The given question clarifies the difference between distance and displacement:
Since Anthony walks 4 km east and then walks 1 km west, the distance covered by him is:
distance = 4 + 1 = 5 km
but as he walks west, he comes closer to the starting point, and his displacement is the distance between the starting point and the end point.
displacement = 4 - 1 = 3 km
Referto the figure below for more information.
Learn more about distance and displacement:
https://brainly.com/question/24522401?referrer=searchResults
Two vectors have magnitudes 20 m and 44 m. Which of the following cannot possibly be the magnitude of the resultant of the two vectors ?
Answer:
44M 64M
Explanation:
A particle moves along a path described by y=Ax^3 and x = Bt, where tt is time. What are the units of A and B?
Answer:
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
Explanation:
From Dimensional Analysis we understand that [tex]x[/tex] and [tex]y[/tex] have length units ([tex][l][/tex]) and [tex]t[/tex] have time units ([tex][t][/tex]). Then, we get that:
[tex][l] = A\cdot [l]^{3}[/tex] (Eq. 1)
[tex][l] = B\cdot [t][/tex] (Eq. 2)
Now we finally clear each constant:
[tex]A = \frac{[l]}{[l]^{3}}[/tex]
[tex]A = \frac{1}{[l]^{2}}[/tex]
[tex]B = \frac{[l]}{[t]}[/tex]
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
ionic bonds form when electrons?
Answer:
when the electron transferred permanently to another atom
Please help which one is correct
Answer:
option (i) is correct
Explanation:
as there is no air resistance, no force is acting on the object horizontally, but gravitational acceleration will obviously act, regardless of the air resistance... option (i) is correct
Which formula describes Boyle's law?
ОА.
OB.
D = m/v
V1T2 = V2T
P1V1 = P2V2
P1T2 = P2T1
Ос.
OD
Answer: P1V1 = P2V2
Explanation:
A battery is used to charge a parallel-plate capacitor, after which it is disconnected. Then the plates are pulled apart to twice their original separation. This process will double the: __________A. capacitance
B. surface charge density on each plate
C. stored energy
D. electricfield between the two places
E. charge on each plate"
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
If the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
The given problem is based on the concept of parallel plat capacitor. For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
here.
e is the permittivity of free space.
Since, the distance is inversely proportional then if we double the distance, the capacitance halves. Now, the stored energy can be given as,
E = (1/2)*Q^2/C
here,
Q is the charge stored in the capacitor.
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
So, the energy is proportional to the distance between the plates.
Thus, we can conclude that if the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
Learn more about the energy stored in a capacitor here:
https://brainly.com/question/3611251
The public is not yet able to purchase cars powered by hydrogen fuel cells because engineers have to determin
how the cars perform based on which scenario?
on racetracks
Answer:
The options are
A.on racetracks
B.in real-world conditions
C.in flooded environments
D.on closed courses
The answer is B. In real world conditions
The public is not yet able to purchase cars powered by hydrogen fuel cells because engineers have to determin
how the cars perform based on real world conditions.
This will ensure they encounter the real and first hand experiences about the challenges and also the advantages associated with using this type of fuel.