true/false. a crate is on a horizontal frictionless surface. a force of manitude f is xerted as the crate slides

Answers

Answer 1

The statement "a crate is on a horizontal frictionless surface. a force of magnitude f is exerted as the crate slides" is true.

When the angle theta is doubled, the force F acting on the crate can be resolved into two components: one parallel to the surface and one perpendicular to it.

The perpendicular component does not do any work on the crate because the crate moves in a horizontal direction. Therefore, the work done by the force F on the crate remains the same as before because only the horizontal component of F contributes to the work done.

Since the work done by the force F remains constant, the new gain in kinetic energy delta K is the same as before and is not affected by the change in angle theta. Therefore, the new gain in kinetic energy is equal to delta K.

To know more about the angle theta refer here :

https://brainly.com/question/30932427#

#SPJ11

Complete question :

A crate is on a horizontal frictionless surface. A force of magnitude F is exerted on the crate at an angle theta to the horizontal. The force is pointing to right and is above horizontal. The crate slides to the right. The surface exerts a normal force of magnitude Fn on the crate. As the crate slides a distance d it gains an amount of kinetic energy = delta K While F is kept constant, the angle theta is now doubled but is still less than 90 degrees. Assume the crate remains in contact with the surface

As the crate slides a distance d how does the new gain in KE compare to delta K Explain.


Related Questions

There is a solenoid with an inductance 0.285mH, a length of 36cm, and a cross-sectional area 6×10^−4m^2. Suppose at a specific time the emf is -12.5mV, find the rate of change of the current at that time.

Answers

The rate of change of current is given by the formula:

[tex]$$\frac{dI}{dt} = \frac{E}{L}$$[/tex]

where $E$ is the emf and $L$ is the inductance of the solenoid. Plugging in the given values, we get:

[tex]$$\frac{dI}{dt} = \frac{-12.5 \text{mV}}{0.285 \text{mH}} \approx -43.86 \text{A/s}$$[/tex]

Therefore, the rate of change of current at that specific time is approximately -43.86 A/s.

The rate of change of current in a solenoid is determined by the emf induced in the solenoid and the inductance of the solenoid. The emf induced in a solenoid is given by Faraday's Law, which states that the emf is proportional to the rate of change of the magnetic flux through the solenoid. The inductance of the solenoid depends on the geometry of the solenoid, which is given by its length and cross-sectional area. The formula for the rate of change of current is derived from the equation that relates the emf, the inductance, and the rate of change of current in an ideal solenoid. Plugging in the given values into this formula gives us the rate of change of current at that specific time.

Learn more about Faraday's Law here:

https://brainly.com/question/1640558

#SPJ11

The magnitude slope is 0 dB/decade in what frequency range? < Homework #9 Bode plot sketch for H[s] = (110s)/((s+10)(s+100)). (d) Part A The magnitude plot has what slope at high frequencies? +20 dB/decade. 0 dB/decade. -20 dB/decade. -40 dB/decade. Submit Request Answer Provide Feedhack

Answers

The magnitude slope of 0 dB/decade corresponds to a frequency range where there is no change in magnitude with respect to frequency. In other words, the magnitude remains constant within that frequency range.

In the Bode plot sketch for the transfer function H(s) = (110s)/((s+10)(s+100)), the magnitude plot has a slope of +20 dB/decade at high frequencies. Therefore, the answer to Part A is +20 dB/decade.

Learn more about Bode plots and frequency response in control systems here:

https://brainly.com/question/31415584?referrer=searchResults

#SPJ11

a lamina occupies the part of the rectangle 0≤x≤2, 0≤y≤4 and the density at each point is given by the function rho(x,y)=2x 5y 6A. What is the total mass?B. Where is the center of mass?

Answers

To find the total mass of the lamina, the total mass of the lamina is 56 units.The center of mass is at the point (My, Mx) = (64/7, 96/7).

A. To find the total mass of the lamina, you need to integrate the density function, rho(x, y) = 2x + 5y, over the given rectangle. The total mass, M, can be calculated as follows:
M = ∫∫(2x + 5y) dA
Integrate over the given rectangle (0≤x≤2, 0≤y≤4).
M = ∫(0 to 4) [∫(0 to 2) (2x + 5y) dx] dy
Perform the integration, and you'll get:
M = 56
So, the total mass of the lamina is 56 units.
B. To find the center of mass, you need to calculate the moments, Mx and My, and divide them by the total mass, M.
Mx = (1/M) * ∫∫(y * rho(x, y)) dA
My = (1/M) * ∫∫(x * rho(x, y)) dA
Mx = (1/56) * ∫(0 to 4) [∫(0 to 2) (y * (2x + 5y)) dx] dy
My = (1/56) * ∫(0 to 4) [∫(0 to 2) (x * (2x + 5y)) dx] dy
Perform the integrations, and you'll get:
Mx = 96/7
My = 64/7
So, the center of mass is at the point (My, Mx) = (64/7, 96/7).

To know more about mass visit :

https://brainly.com/question/28221042

#SPJ11

you measure a 25.0 v potential difference across a 5.00 ω resistor. what is the current flowing through it?

Answers

The current flowing through the 5.00 ω resistor can be calculated using Ohm's Law, which states that the current through a conductor between two points is directly proportional to the voltage across the two points. In this case, the voltage measured is 25.0 V.

To calculate the current flowing through the resistor, we can use the formula I = V/R, where I is the current, V is the voltage, and R is the resistance. Plugging in the values we have, we get I = 25.0 V / 5.00 ω = 5.00 A.

As a result, 5.00 A of current is flowing through the resistor. This indicates that the resistor is transferring 5.00 coulombs of electrical charge each second. The polarity of the voltage source and the placement of the resistor in the circuit decide which way the current will flow.

It's vital to remember that conductors with a linear relationship between current and voltage, like resistors, are the only ones to which Ohm's Law applies. Ohm's Law alone cannot explain the more intricate current-voltage relationships found in nonlinear conductors like diodes and transistors.

To know more about the Ohm's Law, click here;

https://brainly.com/question/1247379

#SPJ11

A 1. 5 kg bowling pin is hit with an 8 kg bowling ball going 6. 8 m/s. The pin bounces off the ball at 3. 0 m/s. What is the speed of the bowling ball after the collision?

Answers

After the collision between the 1.5 kg bowling pin and the 8 kg bowling ball, the bowling ball's speed can be calculated using the law of conservation of momentum. The speed of the bowling ball after the collision is approximately 6.8 m/s.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Mathematically, this can be represented as:

[tex]\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)[/tex]

Where:

[tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the bowling pin and the bowling ball, respectively.

[tex]\(v_1\)[/tex] and [tex]\(v_2\)[/tex] are the initial velocities of the bowling pin and the bowling ball, respectively.

[tex]\(v_1'\)[/tex] and [tex]\(v_2'\)[/tex] are the final velocities of the bowling pin and the bowling ball, respectively.

Plugging in the given values, we have:

[tex]\(1.5 \, \text{kg} \cdot 6.8 \, \text{m/s} + 8 \, \text{kg} \cdot 0 \, \text{m/s} = 1.5 \, \text{kg} \cdot 3.0 \, \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Simplifying the equation, we find:

[tex]\(10.2 \, \text{kg} \cdot \text{m/s} = 4.5 \, \text{kg} \cdot \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Rearranging the equation to solve for [tex]\(v_2'\)[/tex], we get:

[tex]\(8 \, \text{kg} \cdot v_2' = 10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}\) \\\(v_2' = \frac{{10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}}}{{8 \, \text{kg}}}\)\\\(v_2' \approx 0.81 \, \text{m/s}\)[/tex]

Therefore, the speed of the bowling ball after the collision is approximately 0.81 m/s.

To learn more about momentum refer:

https://brainly.com/question/1042017

#SPJ11

the sun-galactic center distance is approximately?
a. 2.5 x 10^8 pc
b. 10 Mpc
c. 206,265 pc
d. 10 pc
e. 10 Kpc

Answers

Kpc stands for kiloparsec, which is a unit of length used in astronomy. It is equal to 1000 parsecs, where one parsec is approximately 3.26 light-years. The correct answer is e. 10 Kpc.

The distance from the Sun to the Galactic Center, which is the center of the Milky Way galaxy, is estimated to be around 8.1 kiloparsecs, or 26,500 light-years.

This distance has been determined by measuring the positions and velocities of objects in the galaxy, such as stars and gas clouds, and using various methods of astronomical observation.

Therefore, option e is the most accurate answer to the question.

To know more about astronomy, refer here:

https://brainly.com/question/14375304#

#SPJ11

Show that if two resistors R1 and R2 are combined and one is much greater than the other ( R1>>R2 ): (a) Their series resistance is very nearly equal to the greater resistance R1. (b) Their parallel resistance is very nearly equal to smaller resistance R2

Answers

Sure, I can help you with that! When two resistors R1 and R2 are combined, their total resistance can be calculated using the formulas for series and parallel resistance.

For series resistance, the total resistance is simply the sum of the individual resistances:

R_series = R1 + R2

If R1 is much greater than R2 (i.e., R1 >> R2), then the value of R2 is negligible compared to R1. In this case, the series resistance can be approximated as:

R_series ≈ R1

This means that the total resistance is very nearly equal to the greater resistance R1.

For parallel resistance, the total resistance is calculated using the formula:

1/R_parallel = 1/R1 + 1/R2

If R1 is much greater than R2, then 1/R1 is much smaller than 1/R2. This means that the second term dominates the sum, and the reciprocal of the parallel resistance can be approximated as:

1/R_parallel ≈ 1/R2

Taking the reciprocal of both sides gives:

R_parallel ≈ R2

This means that the total resistance in parallel is very nearly equal to the smaller resistance R2.

I hope that helps! Let me know if you have any further questions.

learn more about parallel resistance

https://brainly.in/question/28251816?referrer=searchResults

#SPJ11

Find the component form for the vector v with the given magnitude and direction angle θ. = 184.1, θ = 306.7°

Answers

To apply this formula to the given values, we first need to convert the direction angle from degrees to radians, which is done by multiplying it by π/180. So, 306.7° * π/180 = 5.357 radians.

we used the formula for the component form of a vector to find the answer to the given question. This formula involves multiplying the magnitude of the vector by the cosine and sine of its direction angle converted to radians, respectively. After plugging in the given values and simplifying, we arrived at the component form (-175.5, 182.9) for the vector v.

To find the component form of a vector given its magnitude and direction angle, we use the following formulas ,v_x = |v| * cosθ ,v_y = |v| * sin(θ) where |v| is the magnitude, θ is the direction angle, and v_x and v_y are the x and y components of the vector.  Convert the direction angle to radians. θ = 306.7° * (π/180) ≈ 5.35 radians Calculate the x-component (v_x). v_x = |v| * cos(θ) ≈ 184.1 * cos(5.35) ≈ -97.1  Calculate the y-component (v_y).
v_y = |v| * sin(θ) ≈ 184.1 * sin(5.35) ≈ 162.5.

To know more about direction visit :

https://brainly.com/question/13899230

#SPJ11

Pendulum A with mass m and length l has a period of T. If pendulum B has a mass of 2m and a length of 2l, how does the period of pendulum B compare to the period of pendulum A?a. The period of pendulum B is 2 times that of pendulum A b. The period of pendulum B is half of that of pendulum A c. The period of pendulum B is 1.4 times that of pendulum A d. The period of pendulum B is the same as that of pendulum A

Answers

The period of a pendulum is given by the formula T = 2π√(l/g), where l is the length of the pendulum and g is the acceleration due to gravity. The period of pendulum B is 2 times that of pendulum A.

The period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum. Therefore, we can use the equation T=2π√(l/g) to compare the periods of pendulums A and B.
For pendulum A, T=2π√(l/g).
For pendulum B, T=2π√(2l/g) = 2π√(l/g)√2.
Since √2 is approximately 1.4, we can see that the period of pendulum B is 1.4 times the period of pendulum A.

Since pendulum B has a length of 2l, we can substitute this into the formula: T_b = 2π√((2l)/g). By simplifying the expression, we get T_b = √2 * 2π√(l/g). Since the period of pendulum A is T_a = 2π√(l/g), we can see that T_b = √2 * T_a. However, it is given in the question that T_b = k * T_a, where k is a constant. Comparing the two expressions, we find that k = √2 ≈ 1.4. Therefore, the period of pendulum B is 1.4 times that of pendulum A (option c).

To know more about gravity visit:

https://brainly.com/question/31321801

#SPJ11

a two-phase liquid–vapor mixture with equal volumes of saturated liquid and saturated vapor has a quality of 0.5True or False

Answers

True.

In a two-phase liquid-vapor mixture, the quality is defined as the fraction of the total mass that is in the vapor phase.

At the saturated state, the quality of a two-phase mixture with equal volumes of liquid and vapor will be 0.5, as half of the mass will be in the liquid phase and half in the vapor phase.

To know more about mixture refer here

https://brainly.com/question/24898889#

#SPJ11

a point charge of +22µC (22 x 10^-6C) is located at (2, 7, 5) m.a. at observation location (-3, 5, -2), what is the (vector) electric field contributed by this charge?b. Next, a singly charged chlorine ion Cl- is placed at the location (-3, 5, -2) m. What is the (vector) force on the chlorine?

Answers

The electric field due to the point charge at the observation location is (-2.24 x 10⁵, -4.49 x 10⁵, -6.73 x 10⁵) N/C and force on the chlorine ion due to the electric field is (3.59 x 10⁻¹⁴, 7.18 x 10⁻¹⁴, 1.08 x 10⁻¹³) N.

In this problem, we are given a point charge and an observation location and asked to find the electric field and force due to the point charge at the observation location.

a. To find the electric field at the observation location due to the point charge, we can use Coulomb's law, which states that the electric field at a point in space due to a point charge is given by:

E = k*q/r² * r_hat

where k is the Coulomb constant (8.99 x 10⁹ N m²/C²), q is the charge, r is the distance from the point charge to the observation location, and r_hat is a unit vector in the direction from the point charge to the observation location.

Using the given values, we can calculate the electric field at the observation location as follows:

r = √((2-(-3))² + (7-5)² + (5-(-2))²) = √(98) m

r_hat = ((-3-2)/√(98), (5-7)/√(98), (-2-5)/√(98)) = (-1/7, -2/7, -3/7)

E = k*q/r² * r_hat = (8.99 x 10⁹N m^2/C²) * (22 x 10⁻⁶ C) / (98 m²) * (-1/7, -2/7, -3/7) = (-2.24 x 10⁵, -4.49 x 10⁵, -6.73 x 10⁵) N/C

Therefore, the electric field due to the point charge at the observation location is (-2.24 x 10⁵, -4.49 x 10⁵, -6.73 x 10⁵) N/C.

b. To find the force on the chlorine ion due to the electric field, we can use the equation:

F = q*E

where F is the force on the ion, q is the charge on the ion, and E is the electric field at the location of the ion.

Using the given values and the electric field found in part a, we can calculate the force on the ion as follows:

q = -1.6 x 10⁻¹⁹ C (charge on a singly charged chlorine ion)

E = (-2.24 x 10⁵, -4.49 x 10⁵, -6.73 x 10⁵) N/C

F = q*E = (-1.6 x 10⁻¹⁹ C) * (-2.24 x 10⁵, -4.49 x 10⁵, -6.73 x 10⁵) N/C = (3.59 x 10⁻¹⁴, 7.18 x 10⁻¹⁴, 1.08 x 10⁻¹³) N.

Learn more about force at: https://brainly.com/question/12785175

#SPJ11

Particle A is placed at position (3, 3) m, particle B is placed at (-3, 3) m, particle C is placed at (-3, -3) m, and particle D is placed at (3, -3) m. Particles A and B have a charge of -q(-5µC) and particles C and D have a charge of +2q (+10µC).a) Draw a properly labeled coordinate plane with correctly placed and labeled charges (3 points).b) Draw and label a vector diagram showing the electric field vectors at position (0, 0) m (3 points).c) Solve for the magnitude and direction of the net electric field strength at position (0, 0) m (7 points).

Answers

The properly labeled coordinate plane are attached below. The proper vector diagram that shows the electric field are attached below. The magnitude of the net electric field is -18.58 × 10⁵

To solve for the magnitude and direction of the net electric field strength at position (0, 0) m, we need to calculate the electric field vectors produced by each charge at that position and add them up vectorially.

The electric field vector produced by a point charge is given by

E = kq / r²

where k is Coulomb's constant (9 x 10⁹ N.m²/C²), q is the charge of the particle, and r is the distance from the particle to the point where we want to calculate the electric field.

Let's start with particle A. The distance from A to (0, 0) is

r = √[(3-0)² + (3-0)²] = √(18) m

The electric field vector produced by A is directed toward the negative charge, so it points in the direction (-i + j). Its magnitude is

E1 = kq / r²

= (9 x 10⁹ N.m²/C²) x (-5 x 10⁻⁶ C) / 18 m² = -1.875 x 10⁶ N/C

The electric field vector produced by particle B is also directed toward the negative charge, so it points in the direction (-i - j). Its magnitude is the same as E1, since B has the same charge and distance as A

E2 = E1 = -1.875 x 10⁶ N/C

The electric field vector produced by particle C is directed away from the positive charge, so it points in the direction (i + j). Its distance from (0, 0) is

r = √[(-3-0)² + (-3-0)²]

= √18 m

Its magnitude is

E3 = k(2q) / r² = (9 x 10⁹ N.m²/C²) x (2 x 10⁻⁵ C) / 18 m² = 2.5 x 10⁶ N/C

The electric field vector produced by particle D is also directed away from the positive charge, so it points in the direction (i - j). Its magnitude is the same as E3, since D has the same charge and distance as C

E4 = E3 = 2.5 x 10⁶ N/C

Now we can add up these four vectors to get the net electric field vector at (0, 0). We can do this by breaking each vector into its x and y components and adding up the x components and the y components separately.

The x component of the net electric field is

Ex = E1x + E2x + E3x + E4x

= -1.875 x 10⁶ N/C - 1.875 x 10⁶ N/C + 2.5 x 10⁶ N/C + 2.5 x 10⁶ N/C

= 2.5 x 10⁵ N/C

The y component of the net electric field is

Ey = E1y + E2y + E3y + E4y

= -1.875 x 10⁶ N/C - 1.875 x 10⁶ N/C + 2.5 x 10⁶ N/C - 2.5 x 10⁶ N/C

= -1.875 x 10⁶ N/C

Therefore, the magnitude of the net electric field is

|E| = √(Ex² + Ey²)

= √[(2.5 x 10⁵)² + (-1.875 x 10⁶)²]

= - 18.58 × 10⁵

To know more about net electric field here

https://brainly.com/question/30577405

#SPJ4

A structure consists of four masses, three with mass 2m and one with mass m, held together by very light (massless) rods, and arranged in a square of edge length L, as shown. The axis of rotation is perpendicular to the plane of the square and through one of the masses of size 2m, as shown. Assume that the masses are small enough to be considered point masses. What is the moment of inertia of this structure about the axis of rotation? a. 7 m2 b. 6 m2 c. (4/3) mL2 d. (3/4) m2 e. 5 m2 f. 4 mL

Answers

The moment of inertia of the structure about the axis of rotation is (4/3) [tex]mL^2[/tex]. The answer is option c.

Moment of inertia of 4 masses in square, L edge, 2m axis?

The moment of inertia of the structure about the given axis of rotation can be found by using the parallel axis theorem, which states that the moment of inertia of a system of particles about any axis is equal to the moment of inertia about a parallel axis through the center of mass plus the product of the total mass and the square of the distance between the two axes.

First, we need to find the center of mass of the system. Since the masses are arranged symmetrically, the center of mass is located at the center of the square. The distance from the center of the square to any of the masses is L/2.

Using the parallel axis theorem, we can write:

I = Icm + [tex]Md^2[/tex]

where I is the moment of inertia about the given axis, Icm is the moment of inertia about the center of mass (which is a diagonal axis of the square), M is the total mass of the system, and d is the distance between the two axes.

The moment of inertia of a point mass m located at a distance r from an axis of rotation is given by:

Icm = [tex]mr^2[/tex]

For the masses with mass 2m, the distance from their center to the center of mass is sqrt(2)(L/2) = L/(2[tex]^(3/2)[/tex]). Therefore, the moment of inertia of the three masses with mass 2m about the center of mass is:

Icm(2m) = [tex]3(2m)(L/(2^(3/2)))^2 = 3/2 mL^2[/tex]

For the mass with mass m, the distance from its center to the center of mass is L/2. Therefore, the moment of inertia of the mass with mass m about the center of mass is:

Icm(m) = [tex]m(L/2)^2 = 1/4 mL^2[/tex]

The total mass of the system is 2m + 2m + 2m + m = 7m.

The distance between the center of mass and the given axis of rotation is [tex]L/(2^(3/2)).[/tex]

Using the parallel axis theorem, we can now write:

I = Icm +[tex]Md^2[/tex]

= [tex](3/2) mL^2 + (7m)(L/(2^(3/2)))^2[/tex]

= [tex](4/3) mL^2[/tex]

Learn more about  inertia

brainly.com/question/3268780

#SPJ11

The lowest frequency in the fm radio band is 88.4 mhz. What inductance (in µh) is needed to produce this resonant frequency if it is connected to a 2.40 pf capacitor?

Answers

The resonant frequency of an LC circuit is given by:

f = 1 / (2π√(LC))

where f is the resonant frequency, L is the inductance in Henry (H), and C is the capacitance in Farad (F).

To find the inductance needed to produce a resonant frequency of 88.4 MHz with a 2.40 pF capacitor, we can rearrange the above equation as:

L = (1 / (4π²f²C))

Plugging in the values, we get:

L = (1 / (4π² × 88.4 × 10^6 Hz² × 2.40 × 10^-12 F))

L = 59.7 µH

Therefore, an inductance of 59.7 µH is needed to produce a resonant frequency of 88.4 MHz with a 2.40 pF capacitor in an LC circuit.

To know more about refer resonant frequency here

brainly.com/question/31823553#

#SPJ11

The astrometric (or proper motion) method of finding a. planets works by precisely measuring the movement of the star with respect to the background stars as the Earth moves around the Sun. b. works by monitoring the brightness of the star and waiting for a planet to cross in front of it, blocking some light and temporarily dimming the star.c. works by observing the precise movement of a star caused by the gravitational forces of a planet. works by observing the movement of the planet caused by the gravitational forces of a star. d. measures the periodic Doppler shift of the host star as it is pulled by its planets.

Answers

The astrometric method of finding planets works by observing the precise movement of a star caused by the gravitational forces of a planet.

This method involves measuring the position of a star over time and detecting any small shifts or wobbles in its movement. These shifts are caused by the gravitational pull of an orbiting planet, which causes the star to move slightly back and forth in space. By carefully measuring the position of the star relative to the background stars over a period of time, astronomers can detect these subtle movements and infer the presence of an orbiting planet. This method is particularly effective for detecting massive planets that orbit far from their host stars.

Learn more about gravitational here :

https://brainly.com/question/3009841

#SPJ11

Can an object with less mass have more rotational inertia than an object with more mass?
a. Yes, if the object with less mass has its mass distributed further from the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.
b. Yes, if the object with less mass has its mass distributed closer to the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.
c. Yes, but only if the mass elements of the object with less mass are more dense than the mass elements of the object with more mass, then the rotational inertia will increase.
d. No, mass of an object impacts only linear motion and has nothing to do with rotational motion.
e. No, less mass always means less rotational inertia.

Answers

a. Yes, if the object with less mass has its mass distributed further from the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.

This is because the rotational inertia depends not only on the mass of an object but also on how that mass is distributed around the axis of rotation. Objects with their mass concentrated farther away from the axis of rotation have more rotational inertia, even if their total mass is less than an object with the mass distributed closer to the axis of rotation. For example, a thin and long rod with less mass distributed at the ends will have more rotational inertia than a solid sphere with more mass concentrated at the center. Thus, the answer is option a.

to know more about rotational inertia visit

brainly.com/question/27178400

#SPJ11

in what respect is a simple ammeter designed to measure electric current like an electric motor? explain.

Answers

The main answer to this question is that a simple ammeter is designed to measure electric current in a similar way to how an electric motor operates.

An electric motor uses a magnetic field to generate a force that drives the rotation of the motor, while an ammeter uses a magnetic field to measure the flow of electric current in a circuit.

The explanation for this is that both devices rely on the principles of electromagnetism. An electric motor has a rotating shaft that is surrounded by a magnetic field generated by a set of stationary magnets. When an electric current is passed through a coil of wire wrapped around the shaft, it creates a magnetic field that interacts with the stationary magnets, causing the shaft to turn.

Similarly, an ammeter uses a coil of wire wrapped around a magnetic core to measure the flow of electric current in a circuit. When a current flows through the wire, it creates a magnetic field that interacts with the magnetic core, causing a deflection of a needle or other indicator on the ammeter.

Therefore, while an electric motor is designed to generate motion through the interaction of magnetic fields, an ammeter is designed to measure the flow of electric current through the interaction of magnetic fields. Both devices rely on the same fundamental principles of electromagnetism to operate.

For more information on electric current visit:

https://brainly.com/question/2264542

#SPJ11

An LC circuit oscillates at a frequency of 10.4kHz. (a) If the capacitance is 340μF, what is the inductance? (b) If the maximum current is 7.20mA, what is the total energy in the circuit? (c) What is the maximum charge on the capacitor?

Answers

(a) The resonant frequency of an LC circuit is given by the equation:

f = 1 / (2π√(LC))

Where f is the frequency, L is the inductance, and C is the capacitance.

We can rearrange this equation to solve for L:

L = 1 / (4π²f²C)

Plugging in the given values, we get:

L = 1 / (4π² * (10.4kHz)² * 340μF) = 0.115H

Therefore, the inductance of the circuit is 0.115H.

(b) The total energy in an LC circuit is given by the equation:

E = 1/2 * L *[tex]I_{max}[/tex]²

Where E is the total energy, L is the inductance, and [tex]I_{max}[/tex] is the maximum current.

Plugging in the given values, we get:

E = 1/2 * 0.115H * (7.20mA)² = 0.032J

Therefore, the total energy in the circuit is 0.032J.

(c) The maximum charge on the capacitor is given by the equation:

[tex]Q_{max}[/tex]= C *[tex]V_{max}[/tex]

Where [tex]Q_{max}[/tex] is the maximum charge, C is the capacitance, and [tex]V_{max}[/tex] is the maximum voltage.

At resonance, the maximum voltage across the capacitor and inductor are equal and given by:

[tex]V_{max}[/tex] = [tex]I_{max}[/tex] / (2πfC)

Plugging in the given values, we get:

[tex]V_{max}[/tex] = 7.20mA / (2π * 10.4kHz * 340μF) = 0.060V

Therefore, the maximum charge on the capacitor is:

[tex]Q_{max}[/tex] = 340μF * 0.060V = 20.4μC

To know more about refer inductance here

brainly.com/question/10254645#

#SPJ11

a piece of steel piano wire is 1.3 m long and has a diameter of 0.50 cm. if the ultimate strength of steel is 5.0×108 n/m2, what is the magnitude of tension required to break the wire?

Answers

Tension required to break the wire is 12,909 N. This is calculated using the formula T = π/4 * d^2 * σ, where d is the diameter, σ is the ultimate strength of the material, and T is the tension.

To calculate the tension required to break the wire, we need to use the formula T = π/4 * d^2 * σ, where d is the diameter of the wire, σ is the ultimate strength of the material (in this case, steel), and T is the tension required to break the wire.

First, we need to convert the diameter from centimeters to meters: 0.50 cm = 0.005 m. Then, we can plug in the values we have:

T = π/4 * (0.005 m)^2 * (5.0×10^8 N/m^2)

T = 12,909 N

Therefore, the tension required to break the wire is 12,909 N.

learn more about diameter here:

https://brainly.com/question/30905315

#SPJ11

Assume all angles to be exact.
The angle of incidence and angle of refraction along a particular interface between two media are 33 ∘ and 46 ∘, respectively.
Part A
What is the critical angle for the same interface? (In degrees)

Answers

The critical angle for the interface is 58.7 degrees.

The critical angle is the angle of incidence that results in an angle of refraction of 90 degrees. To find the critical angle, we can use Snell's Law, which relates the angles of incidence and refraction to the indices of refraction of the media:

n1 sin θ1 = n2 sin θ2

where n1 and n2 are the indices of refraction of the first and second media, respectively, and θ1 and θ2 are the angles of incidence and refraction, respectively. At the critical angle, the angle of refraction is 90 degrees, which means sin θ2 = 1. Thus, we have:

n1 sin θc = n2 sin 90°

n1 sin θc = n2

sin θc = n2 / n1

We can use the given angles of incidence and refraction to find the indices of refraction:

sin θ1 / sin θ2 = n2 / n1

sin 33° / sin 46° = n2 / n1

n2 / n1 = 0.574

Thus, we have:

sin θc = 0.574

θc = sin⁻¹(0.574) = 58.7°

Therefore, the critical angle for the interface is 58.7 degrees.

To know more about Snell's Law refer here:

https://brainly.com/question/28747393#

#SPJ11

How does the width of the central maximum of a circular diffraction pattern produced by a circular aperture change with apertur size for a given distance between the viewing screen? the width of the central maximum increases as the aperture size increases the width of the central maximum does not depend on the aperture size the width of the central maximum decreases as the aperture size decreases the width of the central maximum decreases as the aperture size increases

Answers

The width of the central maximum of a circular diffraction pattern produced by a circular aperture change with aperture size for a given distance between the viewing screen is the width of the central maximum increases as the aperture size increases.

The formula for the width of the centre maximum of a circular diffraction pattern formed by a circular aperture is:

w = 2λf/D

where is the light's wavelength, f is the distance between the aperture and the viewing screen, and D is the aperture's diameter. This formula applies to a Fraunhofer diffraction pattern in which the aperture is far from the viewing screen and the light rays can be viewed as parallel.

We can see from this calculation that the breadth of the central maxima is proportional to the aperture size D. This means that as the aperture size grows, so does the width of the central maxima.

For such more question on aperture:

https://brainly.com/question/2279091

#SPJ11

The width of the central maximum of a circular diffraction pattern produced by a circular aperture is inversely proportional to the aperture size for a given distance between the viewing screen. This means that as the aperture size increases, the width of the central maximum decreases, and as the aperture size decreases, the width of the central maximum increases.

This relationship can be explained by considering the constructive and destructive interference of light waves passing through the aperture. As the aperture size increases, the path difference between waves passing through different parts of the aperture becomes smaller. This results in a narrower region of constructive interference, leading to a smaller central maximum width.

On the other hand, when the aperture size decreases, the path difference between waves passing through different parts of the aperture becomes larger. This results in a broader region of constructive interference, leading to a larger central maximum width.

In summary, the width of the central maximum in a circular diffraction pattern is dependent on the aperture size, and it decreases as the aperture size increases, and vice versa. This is an essential concept in understanding the behavior of light when it interacts with apertures and how diffraction patterns are formed.

learn more about circular diffraction here: brainly.com/question/31595795

#SPJ11

Problem 6: An emf is induced by rotating a 1000 turn, 18 cm diameter coil in the Earth’s 5.00 × 10-5 T magnetic field.
Randomized Variables
d = 18 cm
What average emf is induced, given the plane of the coil is originally perpendicular to the Earth’s field and is rotated to be parallel to the field in 5 ms?
εave =_________

Answers

The average emf induced in the coil is 0.0199 V when the 1000-turn, 18 cm diameter coil, originally perpendicular to the Earth's 5.00 × 10⁻⁵ T magnetic field, is rotated to be parallel to the field in 5 ms.

To calculate the average emf induced in the coil, we use the formula εave = ΔΦ/Δt, where ΔΦ is the change in magnetic flux and Δt is the time interval during which the change occurs.

When the plane of the coil is perpendicular to the Earth's magnetic field, the magnetic flux through the coil is given by Φ₁ = NBA, where N is the number of turns in the coil, B is the strength of the magnetic field, and A is the area of the coil. When the plane of the coil is rotated to be parallel to the magnetic field in 5 ms, the magnetic flux through the coil changes to Φ₂ = 0, since the magnetic field is now perpendicular to the plane of the coil.

Therefore, the change in magnetic flux is given by ΔΦ = Φ₂ - Φ₁ = -NBA. Substituting the values of N, B, and A, we get ΔΦ = -0.0146 Wb. The time interval during which the change in magnetic flux occurs is Δt = 5 × 10⁻³ s.

Hence, the average emf induced in the coil is εave = ΔΦ/Δt = (-0.0146 Wb)/(5 × 10⁻³ s) = 0.0199 V.

Therefore, when the 1000-turn, 18 cm diameter coil, originally perpendicular to the Earth's 5.00 × 10⁻⁵ T magnetic field, is rotated to be parallel to the field in 5 ms, the average emf induced in the coil is 0.0199 V.

learn more about magnetic flux here:

https://brainly.com/question/1596988

#SPJ11

PLEASE HELP ME WITH THIS ONE QUESTION


You have 1 kg of water and you want to use that to melt 0. 1 kg of ice. What is the minimum temperature necessary in the water, to just barely melt all of the ice? (Lf = 3. 33 x 105 J/kg, cwater 4186 J/kg°C)

Answers

To determine the minimum temperature required to melt 0.1 kg of ice using 1 kg of water, we can utilize the concept of heat transfer and the specific heat capacity of water. The approximate value is 7.96[tex]^0C[/tex]

The process of melting ice requires the transfer of heat from the water to the ice. The heat needed to melt the ice can be calculated using the latent heat of fusion (Lf), which is the amount of heat required to convert a substance from a solid to a liquid state without changing its temperature. In this case, the Lf value for ice is[tex]3.33 * 10^5[/tex] J/kg.

To find the minimum temperature necessary in the water, we need to consider the heat required to melt 0.1 kg of ice. The heat required can be calculated by multiplying the mass of ice (0.1 kg) by the latent heat of fusion ([tex]3.33 * 10^5[/tex] J/kg). Therefore, the heat required is [tex]3.33 * 10^4[/tex] J.

Next, we need to determine the amount of heat that can be transferred from the water to the ice. This is calculated using the specific heat capacity of water (cwater), which is 4186 J/kg[tex]^0C[/tex]. By multiplying the mass of water (1 kg) by the change in temperature, we can find the heat transferred. Rearranging the equation, we find that the change in temperature (ΔT) is equal to the heat required divided by the product of the mass of water and the specific heat capacity of water.

In this case, ΔT = [tex](3.33 * 10^4 J) / (1 kg * 4186 J/kg^0C) = 7.96^0C[/tex]. Therefore, the minimum temperature necessary in the water to just barely melt all of the ice is approximately 7.96[tex]^0C[/tex].

Learn more about specific heat capacity here:

https://brainly.com/question/29766819

#SPJ11

how much energy is stored in a 2.60-cm-diameter, 14.0-cm-long solenoid that has 150 turns of wire and carries a current of 0.780 a

Answers

The energy stored in a solenoid with 2.60-cm-diameter is 0.000878 J.

U = (1/2) * L * I²

U = energy stored

L = inductance

I = current

inductance of a solenoid= L = (mu * N² * A) / l

L = inductance

mu = permeability of the core material or vacuum

N = number of turns

A = cross-sectional area

l = length of the solenoid

cross-sectional area of the solenoid = A = π r²

r = 2.60 cm / 2 = 1.30 cm = 0.013 m

l = 14.0 cm = 0.14 m

N = 150

I = 0.780 A

mu = 4π10⁻⁷

A = πr² = pi * (0.013 m)² = 0.000530 m²

L = (mu × N² × A) / l = (4π10⁻⁷ × 150² × 0.000530) / 0.14

L = 0.00273 H

U = (1/2) × L × I² = (1/2) × 0.00273 × (0.780)²

U = 0.000878 J

The energy stored in the solenoid is 0.000878 J.

Learn more about solenoid at:

brainly.com/question/3821492

#SPJ4

Given an example of a predicate P(n) about positive integers n, such that P(n) is
true for every positive integer from 1 to one billion, but which is never-the-less not
true for all positive integers. (Hints: (1) There is a really simple choice possible for
the predicate P(n), (2) Make sure you write down a predicate with variable n!)

Answers

One possible example of a predicate P(n) about positive integers n that is true for every positive integer from 1 to one billion.

One possible example of a predicate P(n) about positive integers n that is true for every positive integer from 1 to one billion but not true for all positive integers is

P(n): "n is less than or equal to one billion"

This predicate is true for every positive integer from 1 to one billion, as all of these integers are indeed less than or equal to one billion. However, it is not true for all positive integers, as there are infinitely many positive integers greater than one billion.

To know more about predicate here

https://brainly.com/question/31137874

#SPJ4

a resistor dissipates 2.00 ww when the rms voltage of the emf is 10.0 vv .

Answers

A resistor dissipates 2.00 W of power when the RMS voltage across it is 10.0 V. To determine the resistance, we can use the power formula P = V²/R, where P is the power, V is the RMS voltage, and R is the resistance.

Rearranging the formula for R, we get R = V²/P.

Plugging in the given values, R = (10.0 V)² / (2.00 W) = 100 V² / 2 W = 50 Ω.

Thus, the resistance of the resistor is 50 Ω

The power dissipated by a resistor is calculated by the formula P = V^2/R, where P is power in watts, V is voltage in volts, and R is resistance in ohms. In this case, we are given that the rms voltage of the emf is 10.0 V and the power dissipated by the resistor is 2.00 W.

Thus, we can rearrange the formula to solve for resistance: R = V^2/P. Plugging in the values, we get R = (10.0 V)^2 / 2.00 W = 50.0 ohms.

Therefore, the resistance of the resistor is 50.0 ohms and it dissipates 2.00 W of power when the rms voltage of the emf is 10.0 V.

To know about power visit:

https://brainly.com/question/29575208

#SPJ11

The electric potential at a certain point in space is 12 V. What is the electric potential energy of a -3.0 micro coulomb charge placed at that point?

Answers

Answer to the question is that the electric potential energy of a -3.0 micro coulomb charge placed at a point in space with an electric potential of 12 V is -36 x 10^-6 J.


It's important to understand that electric potential is the electric potential energy per unit charge, so it's the amount of electric potential energy that a unit of charge would have at that point in space. In this case, the electric potential at the point in space is 12 V, which means that one coulomb of charge would have an electric potential energy of 12 J at that point.

To calculate the electric potential energy of a -3.0 micro coulomb charge at that point, we need to use the formula for electric potential energy, which is:

Electric Potential Energy = Charge x Electric Potential

We know that the charge is -3.0 micro coulombs, which is equivalent to -3.0 x 10^-6 C. And we know that the electric potential at the point is 12 V. So we can substitute these values into the formula:

Electric Potential Energy = (-3.0 x 10^-6 C) x (12 V)
Electric Potential Energy = -36 x 10^-6 J

Therefore, the electric potential energy of the charge at that point is -36 x 10^-6 J.

To learn more about electric potential energy visit:

brainly.com/question/12645463

#SPJ11

two current-carrying wires cross at right angles. a. draw magnetic force vectors on the wires at the points indicated with dots b. if the wires aren't restrained, how will they behave?

Answers

The magnetic force vectors on the wires can be determined using the right-hand rule. If the wires aren't restrained, they will be pushed apart by the magnetic forces.

The magnetic force vectors on the wires can be determined using the right-hand rule. If you point your right thumb in the direction of the current in one wire, and your fingers in the direction of the current in the other wire, your palm will face the direction of the magnetic force on the wire.

At the points indicated with dots, the magnetic force vectors would be perpendicular to both wires, pointing into the page for the wire with current going into the page, and out of the page for the wire with current coming out of the page.

The diagram to illustrate the magnetic force vectors on the wires is attached.

If the wires aren't restrained, they will be pushed apart by the magnetic forces. The wires will move in opposite directions, perpendicular to the plane of the wires. This is because the magnetic force is perpendicular to both the current and the magnetic field, which in this case is created by the other wire. As a result, the wires will move away from each other in a direction perpendicular to both wires.

To know more about magnetic force here

https://brainly.com/question/30532541

#SPJ4

Excited sodium atoms emit light in the infrared at 589 nm. What is the energy of a single photon with this wavelength?a. 5.09×10^14Jb. 1.12×10^−27Jc. 3.37×10^−19Jd. 3.37×10^−28Je. 1.30×10^−19J

Answers

The energy of a single photon with a wavelength of 589 nm is 3.37 x 10⁻¹⁹ J.

Here correct option is E.

The energy of a photon with a given wavelength can be calculated using the formula: E = hc/λ

where E is the energy of the photon, h is Planck's constant (6.626 x 10⁻³⁴ J·s), c is the speed of light (2.998 x 10⁸ m/s), and λ is the wavelength of the light.

Substituting the given values into the formula, we get:

E = (6.626 x 10⁻³⁴ J·s)(2.998 x 10⁸ m/s)/(589 x 10⁻⁹ m)

E = 3.37 x 10⁻¹⁹ J

Therefore, the energy of a single photon with a wavelength of 589 nm is 3.37 x 10⁻¹⁹ J.

Know more about Planck's constant here

https://brainly.com/question/27389304#

#SPJ11

question 29 the greenhouse effect is a natural process, making temperatures on earth much more moderate in temperature than they would be otherwise. True of False

Answers

The assertion that "The greenhouse effect is a natural process, making temperatures on earth much more moderate in temperature than they would be otherwise" is accurate.

When some gases, such carbon dioxide and water vapour, trap heat in the Earth's atmosphere, it results in the greenhouse effect. The Earth would be significantly colder and less conducive to life as we know it without the greenhouse effect. However, human activities like the burning of fossil fuels have increased the concentration of greenhouse gases, which has intensified the greenhouse effect and caused the Earth's temperature to rise at an alarming rate. Climate change and global warming are being brought on by this strengthened greenhouse effect.

To know more about Greenhouse :

https://brainly.com/question/13390232

#SPJ1.

Other Questions
construct a polynomial function with the following properties: fifth degree, 33 is a zero of multiplicity 44, 22 is the only other zero, leading coefficient is 22. What product(s) are expected in the ethoxidepromoted elimination reaction of 2bromo2,3dimethylbutane given vectors u = i 4j and v = 5i yj. find y so that the angle between the vectors is 30 degrees Emma Company sells services for $888 cash and $1,384 on account this month. Emma Company also pays $783 in salaries and wages, which includes $169 that was payable at the end of the previous month the rest was for salaries and wages of this month. What is the amount that would be included in net income? Given that PO2 in air is 0. 21 atm, in which direction will the reaction proceed to reach equilibrium? Find the equation of thw straight line through the point (4. -5)and is (a) parallel as well as (b) perpendicular to the line 3x+4y=0 evaluate the following integral or state that it diverges. 6[infinity] 4cos x x2dx the other is white. That one is called There are several types of rocks that form in geothermal areas. One is yellow in color and is called Exact names only and check your spelling The work shows finding the sum of the algebraic expressions 3a 2b and 5a (7b). 3a 2b 5a (7b) Step 1: 3a 5a 2b (7b) Step 2: (3 5)a [2 (7)]b Step 3: 2a (5b) Which is used in each step to simplify the sum? Step 1: Step 2: Step 3:. let a= ([7 4][3 1 ]) . an eigenvalue of a 5.find a basis for the corresponding eigenspace od A = ([10 -9][4 -2]) corresponding to the eigenvalue lambda = 4. Eigenspace: ___ planning budgets are sometimes called blank______ budgets. draw the lewis structure. depict the vsepr theory geometry, and indicate the polority of the following molecules clf3, clf4-, clf2 , xef5- if4 net neutrality is bad for small businesses. true false For a chemical reaction to be considered for use in a fuel cell, it is absolutely essential for the a. 32. free-energy change to be negative. reactants to be solids. reactants to be liquids. reactants to be gases. free-energy change to be positive. A parking garage has 230 cars in it when it opens at 8 ( = 0). On the interval 0 10, cars enter the parking garage at the rate () = 58 cos(0.1635 0.642) cars per hour and cars leave the parking garage at the rate () = 65 sin(0.281) + 7.1 cars per hour (a) How many cars enter the parking garage over the interval = 0 to = 10 hours? (b) Find (5). Using correct units, explaining the meaning of this value in context of the problem. (c) Find the number of cars in the parking garage at time = 10. Show the work that leads to your answer. select a solid, rectangular, eastern hemlock beam for a 5m simple span carrying a superimposed uniform load of 4332 n/m Evaluate the following quantities. (a) P(9,5) (b) P(9,9) (c) P(9, 4) (d) P(9, 1) exercise 8 write a function sort3 of type real * real * real -> real list that returns a list of three real numbers, in sorted order with the smallest firs The U.S. savings rate has been around 20-22 percent for many years. Should the govemment try to increase the savings rate?OA. No because higher savings and investment may lead to Diminishing Marginal Product of capital.OB. No because higher savings means lower consumption.O C. Uncertain because there is a tradeoff between a smaller fraction of GDP consumed today and higher capital, GDP, and thus consumption tomorrow.O D. Yes because higher savings increases investment, which increases capital, which increases GDP and at most 30,000 discs can be produced ion a month, what production level will give the lowest average cost per disc