Answer:
The height of the box with the smaller base is 4 times that of the box with the larger base
Step-by-step explanation:
The volume of a box is the product of the base area and the height of the box, it is given as:
Volume = base area × height
For the smaller base box, it has a base of 5 cm by 5 cm, therefore the base area of the smaller base box = 5 cm × 5 cm = 25 cm². Let the height of the smaller base box be [tex]h_1[/tex]The volume of the small box = [tex]25*h_1[/tex]
For the larger base box, it has a base of 10 cm by 10 cm, therefore the base area of the larger base box = 10 cm × 10 cm = 100 cm². Let the height of the large base box be [tex]h_2[/tex]The volume of the larger base box = [tex]100*h_2[/tex]
Since both boxes have the same volume, therefore:
[tex]100*h_2[/tex] = [tex]25*h_1[/tex]
[tex]\frac{h_1}{h_2} =\frac{100}{25} \\\\\frac{h_1}{h_2}=4\\\\h_1=4h_2[/tex]
The height of the box with the smaller base is 4 times that of the box with the larger base
We can use the formula V=lwh to compare the volume in the two boxes.
First let's compare the volume of both boxes to see if they have the same height. To make it simple, let's use a height of 1 centimeter.
First the box with the smaller base.
V=lwh
V=5⋅5⋅1
V=25
Now the box with the larger base
V=lwh
V=10x10x1
V=100
We can set up an equation to find out how many times as tall the smaller box needs to be to have the same volume as the box with the larger base.
25·h=100
h=4
The boz with the smaller base is 4 times tall
hope it helped :)
Write an equation of the line that passes through the point (5, -8) with slope 5
Answer:
y=5x-33
Step-by-step explanation:
We are given a point and a slope. Use the slope-intercept formula.
[tex]y-y_{1} =m(x-x_{1} )[/tex]
where (x1, y1) is a point on the line and m is the slope.
The slope is 5 and the point is (5,-8).
x1=5
y1= -8
m=5
[tex]y--8 =5(x-5 )[/tex]
We want to find the equation of the line, which is y=mx+b (m is the slope and b is the y-intercept). Therefore, we must get y by itself on one side of the equation.
[tex]y+8=5(x-5)[/tex]
First, distribute the 5 on the right side of the equation. Multiply each term inside the parentheses by 5.
[tex]y+8=(5*x)+(5*-5)[/tex]
[tex]y+8=5x-25[/tex]
Next, subtract 8 from both sides since it is being added on to y.
[tex]y+8-8=5x-25-8[/tex]
[tex]y=5x-25-8[/tex]
[tex]y=5x-33[/tex]
The equation of the line is: y=5x-33
Suppose a city official conducts a hypothesis test to test the claim that the majority of voters oppose a proposed school tax. Assume that all of the conditions fro proceeding with a one-sample test on proportions have been met. The calculated test statistic is approximately 1.23 with an associated p-value of approximately 0.1093. Choose the conclusion that provides the best interpretation for the p-value at a significance level of alpha = 0.05.
A. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is surprising (or considered unusual) and could not easily happen by chance.
B. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance
C. The p-value should be considered extreme: therefore, the hypothesis test proves that the null hypothesis is true
D. none of the above
Answer:
The correct option is (B).
Step-by-step explanation:
The p-value is well-defined as per the probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic.
In this case, we need to test the claim that the majority of voters oppose a proposed school tax.
The hypothesis can be defined as follows:
H₀: The proportion of voters opposing a proposed school tax is not a majority, i.e. p ≤ 0.50.
Hₐ: The proportion of voters opposing a proposed school tax is a majority, i.e. p > 0.50.
It is provided that the test statistic value and p-value are:
z = 1.23
p-value = 0.1093
The probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic is 0.1093.
The significance level of the test is:
α = 0.05
The p-value of the test is larger than the significance level of the test.
p-value = 0.1093 > α = 0.05
The null hypothesis will not be rejected.
Concluding that there is not enough evidence to support the claim.
Thus, the correct option is:
"If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance"
2.4.6.8. 10.... geometrical,arithmetic or neither?
Answer:
This is an arithmetic sequence.
Step-by-step explanation:
The difference between the consecutive terms is constant => sequence is arithmetic.
4-2 = 2
6-4= 2
8-6 = 2
10-8 = 2
Step-by-step explanation:
It's an arithmetic sequences.
Formed by the n th term 2n.
As the difference is 2 between them.
let's find it, by formulae.
n th term = 2n
t1= 2×1=2t2 = 2×2=4t3=2×3=6t4=2×4=8and so on.....
Therefore, it's an arithmetic sequence.
Hope it helps..
1. Manuel quiere fabricar banderitas chilenas para venderlas en los partidos de la selección nacional. Si se demora 1 hora en hacer 45 banderitas y trabaja 5 horas diarias. ¿Cuántos días se demorará en fabricar 1800 banderitas?
Answer:
[tex]\large \boxed{\text{Eight days}}[/tex]
Step-by-step explanation:
1. Calculate the hours
[tex]\text{Hours} = \text{1800 flags} \times \dfrac{\text{1 h}}{\text{45 flags}} = \textbf{40 h}[/tex]
2. Calculate the days
[tex]\text{Days} = \text{40 h} \times \dfrac{\text{1 da}}{\text{5 h}} = \text{8 da}\\\\\text{It will take $\large \boxed{\textbf{eight days}}$ to make 4500 flags.}[/tex]
A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five. The study involved a large random sample of mothers and children and was conducted over several years. What is the population of interest in this survey
Answer: Parents and children ( till the age of 5) of Norway
Step-by-step explanation:
The population in a survey is the group of people sharing common features or characteristics as per the researcher point of view.Here, A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five.
Since the study involved a large random sample of mothers and children and was conducted over several years.
So, the population of interest in this survey is "Parents and children ( till the age of 5) of Norway".
Which pair of non-congruent figures must be similar? two squares two parallelograms (not rectangles) two right triangles two isosceles triangles (not equilateral)
Answer:
The answer is A (Two squares)
Step-by-step explanation:
Any give square will have proportionate side lengths,as they are the same, meaning that if you dilute one square it will always be proportinate
Answer:
it is a
Step-by-step explanation:
the other person is correct. and I did the test
Does this graph show a function? Explain how you know.
O A. No; there are yvalues that have more than one x-value.
ОО
B. Yes; there are no y-values that have more than one x-value.
C. No; the graph fails the vertical line test.
ОО
D. Yes; the graph passes the vertical line test.
It is possible to draw a single straight line to pass through more than one point on the red curve. Therefore, the graph fails the vertical line test. We have cases where one input leads to more than one output.
The average flight time from Seattle (SEA) to New York (JFK) is 4.3 hours. The distance between them is 2421 miles. The average flight time going the other way, JFK to SEA is 5.5 hours. The difference is due to the jet stream. Translate this situation to a system of equations and find the average speed of the jet and the average speed of the jet stream.
Answer:
Speed of the jet is 563.02 miles/hr
Speed of the jet stream is 122.83 miles/hr
Step-by-step explanation:
The average time for going from Seattle to New York is 4.3 hours
The distance between these places is 2421 miles
The average time for going back (impaired by jet stream) is 5.5 hours
If we designate the speed of the jet = v
and the speed of the jet stream = u
then on the return trip, the relative speed of the jet = v - u
Also, recall that distance = speed x time
For the going trip, the distance covered by the jet = 4.3 x v = 2421 miles
For the return trip, the distance covered by the jet = 5.5 x (v - u) = 2421 miles
= 5.5(v - u)
these translate into the following equation written below
4.3v = 2421 ....equation 1
5.5(v - u) = 2421 ....equation 2
solving, equation 1, we'll have
4.3v = 2421
v = 2421/4.3 = 563.02 miles/hr this is the speed of the jet
substituting the value of v into equation 2, we'll have
5.5(v - u) = 2421
5.5(563.02 - u) = 2421
3096.61 - 5.5u = 2421
3096.61 - 2421 = 5.5u
675.61 = 5.5u
u = 675.61/5.5
u = 122.83 miles/hr this is the speed of the jet stream
A small fruit basket with 6 apples and 6 oranges costs $7.50. A different fruit basket with 10 apples and 5 oranges costs $8.75. If x is the cost of one apple and y is the cost of one orange, the system of equations below can be used to determine the cost of one apple and one orange. 6x+6y=7.50 10x+5y=8.75 What is the cost of one apple?
Answer:
$0.50
Step-by-step explanation:
Let's remove common factors from the equations.
x + y = 1.25 . . . . divide the first equation by 62x +y = 1.75 . . . divide the second equation by 5Subtracting the first equation from the second, we find the cost of an apple:
(2x +y) -(x +y) = 1.75 -1.25
x = 0.50
The cost of one apple is $0.50.
When dividing 336 by the natural number n> 10, the remainder is 2. Then the remainder obtained by dividing 2007 by n is
Answer:
3
Step-by-step explanation:
336 / n = k + 2/n, where k is an integer
336 = kn + 2
334 = kn
2007 / n
(2004 + 3) / n
(334×6 + 3) / n
334×6/n + 3/n
6k + 3/n
The remainder is 3.
Solve for x. Answer as an integer or simplified fraction. Please include steps. Thanks!
Answer:
x=40 degreesStep-by-step explanation:
According to the angle sum theorem, the interior angles of a triangle add up to 180 degrees:
So, we can use the following equation to find x:
x+(x+10)+(210-3x)=180
now add like terms:
x+x+(-3x)+10+210=180
-x+220=180
now isolate the variable:
-x=180-220
-x=-40
x=-40/-1
x=40/1
x=40
The answer is that: the measure of x is 40 degrees
A quality control inspector has determined that 0.25% of all parts manufactured by a particular machine are defective. If 50 parts are randomly selected, find the probability that there will be at most one defective part.
Answer:
9.941*10^-6
Step-by-step explanation:
Probability of at most 1 means not more than 1 defective= probability of 1 or probability of 0
Probability of 1 = 50C1(0.25)(0.75)^49
Probability= 50(0.25)*7.55*10^-7
Probability= 9.375*10^-6
Probability of 0
= 50C0(0.25)^0(0.75)^50
= 1(1)(0.566*10^-6)
= 0.566*10^-6
Total probability
= 9.375*10^-6+ 0.566*10^-6
= 9.941*10^-6
Find the standard divisor to two decimal places (hundredth) for the given population and number of representative seats.
Population : 140,000
# seats : 9
A) 15,555.56
B) 17,055.56
C) 13,056
D) 14,055.56
E) 16,055
Answer:
A
Step-by-step explanation:
A divisor refers to a number by which another number is to be divided.
So what this question is practically asking us is that which of the values in the options to 2 decimal places is the result dividing the population by the number of seats
Thus we have;
140,000/9 = 15,555.55555 which to 2 decimal places is 15,555.56
In a class full of men and women, 5 9 of the class are women. What is the ratio of men to women in its simplest form?
rectangular field has a total perimeter of 128 feet. The width is
A
24 feet less than the length. What are the dimensions of the field?
Answer:
l = 44 ft
w = 20 ft
Step-by-step explanation:
Perimeter is
P = 2 ( l+w)
The width is
w = l -24
We know the perimeter is 128 and substituting into the equation for perimeter
128 = 2 ( l + l-24)
128 = 2 ( 2l -24)
Divide by 2
128/2 = 2/2 ( 2l-24)
64 = 2l - 24
Add 24 t o each sdie
64+24 = 2l
88 = 2l
Divide by 2
44 =l
The length is 44
Now find w
w = l - 24
w = 44-24
w = 20
Answer:
[tex]\boxed{l=44 \: \mathrm{feet}, \: \: w=20 \: \mathrm{feet}}[/tex]
Step-by-step explanation:
The width (w) = l - 24
The length (l) = l
The perimeter (P) = 128
The shape is a rectangle. Use the formula for the perimeter of a rectangle.
P = 2w + 2l
Plug in the values.
128 = 2(l - 24) + 2l
Solve for l.
Expand brackets.
128 = 2l - 48 + 2l
Combine like terms
128 = 4l - 48
Add 48 on both sides.
176 = 4l
Divide both sides by 4.
44 = l
Apply formula again.
P = 2l + 2w
Solve for w.
Subtract 2w and P on both sides.
-2w = 2l - P
Divide both sides by -2.
w = -l + P/2
Plug in the values for l and P, solve for w.
w = -(44) + 128/2
w = -44 + 64
w = 20
The length is 44 feet.
The width is 20 feet.
(SAT Prep) Find the value of x.
Answer:
x = 65°
Step-by-step explanation:
Naming the sides of the parallelogram formed ABCD as shown in the attached image to this solution.
Angle A = 2x (vertically opposite angles are equal)
Angle A = Angle C (opposite angles of a parallelogram are equal)
Angle A = Angle C = 2x
(Angle C) + 50° = 180° (Sum of angles on a straight line is 180°)
2x + 50° = 180°
2x = 180° - 50° = 130°
x = (130°/2) = 65°
Hope this Helps!!!
Answer:
65 degrees
Step-by-step explanation:
how could you correctly rewrite the equation 4(5+3)=2(22-6) using the distributive property?
We can correctly rewrite the equation: 4(5+3) = 2(22-6) by distributing each side.
4(5+3) = 2(22-6)
4(8) = 2(16)
32 = 32
Once you finish distributing each side, you can check to see if it is equal on both sides.
In our case it is since they both equal 32 after distributing the terms.
Solve 2x2 – 6x + 10 = 0 by completing the square.
Answer: x = 6.32 or -0.32
Step-by-step explanation:
2x² - 6x + 10 = 0
No we divide the expression by 2 to make the coefficient of x² equals 1
We now have
x² - 3x + 5 = 0
Now we remove 5 to the other side of the equation
x² - 3x = -5
we add to both side square of half the coefficient of x which is 3
x² - 3x + ( ⁻³/₂)² = -5 + (⁻³/₂)²
(x - ³/₂)² = -5 + ⁹/₄
Resolve into fraction
(x - ³/₂)² = ⁻¹¹/4
Take the roots of the equation
x - ³/₂ = √¹¹/₄
x - ³/₂ = √11/₂
x = ³/₂ ± 3.32/₂
= 3+ 3.32 or 3 - 3.32
= 6.32 or - 0.32
Help thank you!!!!!!!
[tex] v = \sqrt{4900} + \sqrt{8100} = 70 + 90 = 160[/tex]
Answer: D. 160
QUESTION 4 (10 MARKS)
A retired couple requires an annual return of $2,000 from investment of $20,000. There are 3
options available:
(A) Treasury Bills yielding 9%;
(B) Corporate bonds 11%;
(C) Junk Bonds, 13%
How much should be invested in each to achieve their goal? Give 3 sets of options that can
achieve their goal.[10 Marks]
Answer:
A. $22,223
B. $20,000
C. $20,000
Explanation:
The annual return of the retired couple's investment is called the yield in percentage.
A. If they go for Treasury bills which has a yield of 9%, to attain a return of at least $2,000 their investment must exceed $20,000. 9% of 22,223 = $2,000.07
B. . If they go for Corporate bonds option which has a yield of 11%, to attain a return of at least $2,000; 11% of 20,000 = $2,200
C. . If they go for Junk bonds option which has a yield of 13%, to attain annual return of at least $2,000; 13% of $20,000= $2,600
There are three points on a line, A, B, and C, so that AB = 12 cm, BC = 13.5 cm. Find the length of the segment AC . Give all possible answers.
Answer:
AC = 25.5 or 1.5
Step-by-step explanation:
If they are on a line and they are in the order ABC
AB + BC = AC
12+13.5 = AC
25.5 = AC
If they are on a line and they are in the order CAB
CA + AB = BC
AC + 12 =13.5
AC = 13.5 -12
AC = 1.5
If they are on a line and they are in the order ACB
That would mean that AB is greater than BC and that is not the case
How do I find the length of AB
Also can I get explained on how to do it!!
ASAP
Answers
A-211.63
B-9.35
C-207
D-44.98
Answer:
Hello, there!!!
The answer is option D.
but you can also write 45 by rounding off, alright.
Hope it helps...
hello
now we know that this is a vertical triangle.
if C = 90° and B = 12°
90+12 = 102 180-102=78.
so A = 78°
now look at the A. A is looking to the CB.
so we can set up an equal.
A is 44
and
B is ?
if 78 is 44
12 is x 12×44÷78= 6.7692..
right now
AC = 6.7692
BC is = 44
this is a vertical triangle thats why the verticals angle's lookings (AB) square, should be the others lookings squares sum.
6.7692^2 = 45.2875..
44^2 = 1936
1936+45.2875= 1981.2875
now im taking 1981.2875 into the square root to find AB.
✓1981.2875 = 44.5
there were many numbers after the 1981 thats why it will probably 44.9
good luckk
An article reported on the results of an experiment in which half of the individuals in a group of 66 postmenopausal overweight women were randomly assigned to a particular vegan diet, and the other half received a diet based on National Cholesterol Education Program guidelines. The sample mean decrease in body weight for those on the vegan diet was 6 kg, and the sample SD was 3.2, whereas for those on the control diet, the sample mean weight loss and standard deviation were 3.8 and 2.4, respectively. Does it appear the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg? Carry out an appropriate test of hypotheses at significance level .05 based on calculating a P-value.
Answer:
We conclude that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg.
Step-by-step explanation:
We are given that an article reported on the results of an experiment in which half of the individuals in a group of 66 postmenopausal overweight women were randomly assigned to a particular vegan diet, and the other half received a diet based on National Cholesterol Education Program guidelines.
The sample mean decrease in body weight for those on the vegan diet was 6 kg, and the sample SD was 3.2, whereas, for those on the control diet, the sample mean weight loss and standard deviation were 3.8 and 2.4, respectively.
Let = true average weight loss for the vegan diet.
[tex]\mu_2[/tex] = true average weight loss for the control diet.
So, Null Hypothesis, : 1 kg {means that the true average weight loss for the vegan diet exceeds that for the control diet by less than or equal to 1 kg}
Alternate Hypothesis, : > 1 kg {means that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg}
The test statistics that will be used here is Two-sample t-test statistics because we don't know about population standard deviations;
T.S. = [tex]\frac{(\bar X_1-\barX_2)-(\mu_1-\mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, = sample mean weight loss for the vegan diet = 6 kg
= sample mean weight loss for the control diet = 3.8 kg
= sample standard deviation weight loss for the vegan diet = 3.2 kg
= sample standard deviation weight loss for the control diet = 2.4 kg
[tex]n_1[/tex] = sample of vegan diet women = 33
[tex]n_2[/tex] = sample of control diet women = 33
Also, [tex]s_p=\sqrt{\frac{(n_1-1)\times s_1^{2}+(n_2-1)\times s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(33-1)\times 3.2^{2}+(33-1)\times 2.4^{2} }{33+33-2} }[/tex] = 2.83
So, the test statistics = [tex]\frac{(6-3.8)-(1)}{2.83 \times \sqrt{\frac{1}{33}+\frac{1}{33} } }[/tex] ~ [tex]t_6_4[/tex]
= 1.722
The value of t-test statistics is 1.722.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_6_4[/tex] > 1.722) = 0.0461 or 4.61%
Since the P-value of our test statistics is less than the level of significance as 0.0461 < 0.05, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the true average weight loss for the vegan diet exceeds that for the control diet by more than 1 kg.
Penny's parents gave her $50 to spend on new video games. Used games are $7 and new games are $12. 1. What is the system of inequalities that represent this situation? 2. What is the maximum amount of used games that she could buy? 3. What is the minimum amount of new games that she could buy? 4. What are two possible combinations of used and new games she can purchase?
The correct answers are Part 1: 7x + 12y 50, x,y 0; Part 2: 7; Part 3: 0: Part 4: 2 old and 3 new video games.
Step-by-step explanation:
Penny's parents gave her $50 to buy new video games.
Price of used games are $7 and new games are $12.
Let Penny buy x number of old video games and y number of new video games.
Part 1:
Total price she spent on buying the video games are 7x + 12y.
This amount should be less than or equal to the amount of money she possess. therefore 7x + 12y 50, x, y 0.
Part 2:
Maximum number of used game she can buy can be given when she spends all her money just on used games. Therefore y = 0. This implies x .
Thus the maximum number of used game she can buy is 7 where she does not buy any new game and has $1 left with her after the purchase.
Part 3:
Minimum number of new games that Penny can buy is zero. She can not buy any new games and spent all her money purchasing old games.
Part 4:
The possible combination in which she can purchase both the video games is 2 old games and 3 new games.
hope this helps
A man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph . The man can run at a constant rate in either direction to get off the bridge just in time before the train hits him. How fast can the man run?
Answer:
9mph
Step-by-step explanation:
Given the following :
Speed of train = 45miles per hour
Distance of the man = 2/5
To avoid just about being hit by the train:
The main may run to the start point of the bridge towards the train = 2/5 length of the bridge, this is also when the train gets to the bridge
If the man runs forward away from the train, he has to cover a distance of (1 - 2/5) = 3/5 to avoid being hit, this is also when the train gets to the end of the bridge.
From here it could be inferred that :
The distance 3/5 ran by the man away from the bridge is equivalent to (3/5 - 2/5) =1/5, which seems to be moved by th etrain during the same period.
However, the only explanation for the discrepancy in length or distance is that the train moves faster than the man.
If the train's speed = 45mph
Then the train's speed is 5 times the speed of the man;
Man speed is thus;
(1/5) * 45 = 9mph
Solve the quadratic equation 4x2 – x = 8 using the quadratic formula.
Answer:
[tex]1x=\frac{1\sqrt{129} }{8}[/tex]
Step-by-step explanation:
In between the 1 and the [tex]\sqrt{129}[/tex] goes this symbol: ±
hope this helps!
Because of a manufacturing error, 3 cans of regular soda were accidentally filled with diet soda and placed into a 24-pack. Suppose that two cans are randomly selected from the 24-pack. Determine the probability that at least one contain regular soda.
Answer:
161/184 or 0.875
Step-by-step explanation:
Total number of cans = 24 cans
Total number of diet soda = 3 cans
Total number of regular soda = 21 cans
We are asked to find the probability that:that at least one contain regular soda if two cans are selected randomly
We have two ways for this happening
a) two of the cans are regular soda
b) one of the cans is regular , while one is diet
Hence,
Probability (that at least one contain regular soda) = Probability(that two of the cans are regular soda) + Probability ( one of the cans is regular , while one is diet)
Probability(that two of the cans are regular soda) = 21/24 × 20/23
= 35/46
Probability ( one of the cans is regular , while one is diet) = 21/24 × 3/23
= 21/184
Probability (that at least one contain regular soda) = 35/46 + 21/184
We find the Lowest common multiple of the denominators = 184
= 35/46 + 21/184
= (35 × 4) + (21 × 1)/184
= 140 + 21/184
= 161/184
= 0.875
Therefore, the probability that at least one can contains regular soda = 161/184 or 0.875
The Stanford-Binet Intelligence Scale is an intelligence test, which, like many other IQ tests, is standardized in order to have a normal distribution with a mean of 100 and a standard deviation of 15 points.
As an early intervention effort, a school psychologist wants to estimate the average score on the Stanford-Binet Intelligence Scale for all students with a specific type of learning disorder using a simple random sample of 16 students with the disorder. Determine the margin of error, m, of a 99% confidence interval for the mean IQ score of all students with the disorder. Assume that the standard deviation IQ score among the population of all students with the disorder is the same as the standard deviation of IQ score for the general population, sigma = 15 points.
Answer:
The margin of error is [tex]MOE = 9.68[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n= 16[/tex]
The standard deviation is [tex]\sigma = 15[/tex]
The confidence level is [tex]C = 99[/tex]%
Generally the level of significance is mathematically evaluated as
[tex]\alpha = 100 - C[/tex]
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1%[/tex]%
[tex]\alpha = 0.01[/tex]
The critical value of [tex]\frac{\alpha }{2}[/tex] obtained from the normal distribution table is
[tex]Z_{\frac{\alpha }{2} } = 2.58[/tex]
The reason obtaining the critical value of [tex]\frac{\alpha }{2}[/tex] instead of [tex]\alpha[/tex] is because we are considering the two tails of the area normal distribution curve which is not inside the 99% confidence interval
Now the margin of error is evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 2.58 * \frac{15}{\sqrt{16} }[/tex]
[tex]MOE = 9.68[/tex]
Betty has several of the standard six-sided dice that are common in many board games. If Betty rolls one of these dice, what is the probability that: She rolls a three. She rolls an odd number. She rolls a six or odd number.
Answer:
The probability of rolling a 3 is 1/6 because there's only one 3 out of the 6 options that are on a standard die.
The probability of rolling an odd number is 3/6 or 1/2 because 3 out of the 6 numbers on a standard die (1, 3, 5) are odd.
The probability of rolling a six or odd number is 4/6 or 2/3 because out of the 6 numbers on a standard die, there's one 6 and 3 odd numbers and 1 + 3 = 4.
The measure of ∠1 is 150°. What are the measures of ∠4, ∠3 and ∠2?
Answer:
∠1 is 150°
∠2 is 30°
∠3 is 150°
∠4 is 30°
Step-by-step explanation:
∠1 is vertically opposite to ∠3 so they are equal
360° - (150° + 150°) = 360° - 300° = 60°
∠2 and ∠4 must sum to 60°
Step-by-step explanation:
From the question
∠1 is opposite to ∠ 3 and vertically opposite angles are equal
So
∠1 = ∠ 3
That's
∠ 3 = 150°∠ 3 and ∠ 4 are on a straight line and angles on a straight line add up to 180°
So to find ∠4, subtract ∠3 from 180°
That's
∠ 4 = 180 - ∠ 3
∠ 4 = 180 - 150
∠ 4 = 30°Since ∠ 4 and ∠ 2 are opposite they are also equal
That's
∠ 4 = ∠ 2
Therefore
∠ 2 = 30°Hope this helps you