Answer: Choice B
a_n = 10(1/2)^(n-2) is the nth term
average rate of change = -35/3
=======================================================
Explanation:
Each time x increases by 1, y is cut in half. For instance, going from (2,10) to (3,5) shows this.
If we want to go in reverse, decreasing x by 1 will double the y value. So (1,20) is another point and (0,40) is another. We'll be using (0,40) and (3,5) because we want the average rate of change from x = 0 to x = 3. I'm using x in place of n here.
Use the slope formula to find the slope of the line through (0,40) and (3,5)
m = (y2-y1)/(x2-x1)
m = (5-40)/(3-0)
m = -35/3
The negative slope means the line goes downhill as you read it from left to right. The average rate of change from n = 0 to n = 3 is -35/3
The nth term of this geometric sequence is 20(1/2)^(n-1) since 20 is the first term (corresponds to n = 1) and 1/2 is the common ratio. Your teacher has done a bit of algebraic manipulation to change the n-1 into n-2. This means the 20 has to change to 10 to counterbalance.
In other words, 20(1/2)^(n-1) is equivalent to 10(1/2)^(n-2) when n starts at n = 1.
find the value of x 4x+15=7x+2=
Answer:
4x+15=7x+2
15_2=7x_4x
13=3x
13/3=x
4.33=x
Answer:
[tex]\boxed{x=\frac{13}{3} }[/tex]
Step-by-step explanation:
Subtract both sides by 15 and 7x.
Then, divide both sides by -3.
[tex]4x+15=7x+2\\4x-7x=2-15\\-3x=-13\\\displaystyle x=\frac{13}{3}[/tex]
A square and a regular heptagon are coplanar and share a common side $\overline{AD}$, as shown. What is the degree measure of exterior angle $BAC$? Express your answer as a common fraction.
Answer:
[tex]\angle BAC = 141\frac{3}{7} ^{\circ}[/tex]
Step-by-step explanation:
The interior angle of a regular heptagon = = 900/7° = 128.57°
Therefore, angle DAB = 128.57°
The interior angle of the square = 90°
Therefore, angle DAC = 90°
Therefore, we have
angle DAB+ angle DAC + angle BAC = 360° (sum of angles at a point (A))
Angle BAC = 360° - angle DAB - angle DAC = 360° - 900/7° - 90° = 990/7°
Angle BAC = 141.43°
Expressing 141.43° as a common fraction gives;
[tex]141.43 ^{\circ}= \dfrac{990}{7} ^{\circ}=141\frac{3}{7} ^{\circ}[/tex]
[tex]\angle BAC = 141\frac{3}{7} ^{\circ}[/tex]
The degree measure of exterior angle BAC is [tex]141\frac{3}{7}^\circ[/tex]
Given, A square and a regular heptagon are coplanar as shown in below figure attached.
We have find the exterior angle of BAC.
We know that, The formula that gives the interior angle measure for a regular polygon with any number of sides is,
[tex]\frac{180(n-2)}{n}[/tex] where n is the number of sides.
Since the heptagon has 7 no. of sides.
So regular heptagon's interior angle measures,
[tex]\frac{180(7-2)}{7}=128\frac{4}{7}[/tex]
Hence [tex]\angle A[/tex] will be[tex]128\frac{4}{7}[/tex] degrees.
We know that a square's interior angle is 90 degrees and a heptagon's interior angle is 128.57 degrees. We will subtract those from 360 degrees to find angle BAC.
[tex]\angle BAC = 360 - (\angle A + 90)\\[/tex]
[tex]\angle BAC = 360 - (128\frac{4}{7} + 90)\\\angle BAC=141\frac{3}{7} ^\circ[/tex]
Hence the degree measure of exterior angle BAC is [tex]141\frac{3}{7}^\circ[/tex].
For more details on Exterior angle follow the link:
https://brainly.com/question/2125016
Solve and CHECK the following:
8−(5x−2)=6−2(3x+1)
Answer:
X=6/11
Step-by-step explanation:
8-(5x-2)=6-2(3x+1)
8-5x+2=6-6x-2
10-5x=4-6x
6=11x
x=6/11
Answer:
8-5x-2=6-6x+2
8-2-6-2=5x-6x
-10+8=-x
-2 =-x
x=2 ........×-1
x=2
The students at a High School earned money for an international animal rescue foundation. 82 seniors earned an average $26.75 per student, 74 juniors earned an average $12.25 per student, 96 sophomores earned an average $15.50 per student, and 99 freshmen earned an average $10.85 per student. What was the average collection for a student in this school?
A. $16.34
B. $16.13
C. $5.37
D. $16.63
Answer: B. $16.13
Step-by-step explanation:
Formula : Sum of n observations = Mean x n
Given, 82 seniors earned an average $26.75 per student, 74 juniors earned an average $12.25 per student, 96 sophomores earned an average $15.50 per student, and 99 freshmen earned an average $10.85 per student.
Total students = 82+74+96+99 =351
Sum of earnings of 82 seniors = $26.75 x 82= $2193.5
Sum of earnings of 74 juniors = $12.25 x 74 = $906.5
Sum of earnings of 96 sophomores = $15.50 x 96 = $1488
Sum of earnings of 99 freshmen = $10.85 x 99 = $1074.15
Total earnings = $2193.5 + $906.5+ $1488 +$1074.15
= $5662.15
Average collection = (Total earnings) ÷ (Total students )
= $5662.15÷ 351
≈ $16.13
Hence, the average collection for a student in this school = 16.31
So, the correct option is B.
Exercise topic: Permutations and Combinations. A company wants to hire 3 new employees, but there are 8 candidates, 6 of them which are men and 2 are women. If the selection is random: a) In how many different ways can choose new employees? b) In how many different ways can choose a single male candidate? c) In how many different ways can choose at least one male candidate? with procedures. Help me please..
Answer:
(a) 56 ways
(b) 6 ways
(c) 56 ways
Step-by-step explanation:
Given:
candidates: 6 mail, 1 female
number to hire : 3
a) In how many different ways can choose new employees?
use the combination formula to choose r to hire out of n candidates
C(n,r) = C(8,3) = 8! / (3! (8-3)! ) = 40320 / (120*6) = 56 ways
b) In how many different ways can choose a single male candidate?
6 ways to choose a male, one way to choose two female, so 6*1 = 6 ways
c) In how many different ways can choose at least one male candidate?
To choose at least 1 male candidate, we subtract the ways to choose no male candidates out of 56.
Since there are only two females, there is no way to choose 3 female candidates.
In other words, there are 56-0 = 56 ways (as in part (a) ) to hire 3 employees with at least one male candidate.
Hassan built a fence around a square yard. It took 48 m^2 of lumber to build the fence. The fence is 1.5 meters tall.
Answer:
Step-by-step explanation:
Please check ones more because this might be incorrect.
The area is in square meters...Let's change it
Square 48= 48*48 =2304
2304 divided by 4( 4 since the formula for the area of a sqaure is s*s and square has 4 sides)
2304 divided by 4 = 576
The formula for area of a square is S*S(side times side)
Let's apply the formula here.
so, 576 times 576
331776 square meters
Hope this is right and helps! :)
( This just my point of view. Please check this onces again)
Answer:
the answer is 64
Step-by-step explanation:
khan
HELP ME PLEASSSSEE On a winter morning, the temperature before sunrise was -10℉. The temperature then rose by 1℉ each hour for 7 hours before dropping by 2℉ each hour for 3 hours. What was the temperature, in degrees Fahrenheit, after 10 hours?
Answer:
3 degrees F
Step-by-step explanation:
if the temperature rose 1* for 7 hours, times 1 by 7. which is 7 and add to -10. which is -3. then, since the temperature rose by 2* for 3 hours, times 2 by 3 which is 6 and add to -3, which is 3.
i hope this helped?
Which is a correct first step in solving 5 – 2x < 8x – 3? 5 < 6x – 3 3x < 8x – 3 5 < 10x – 3 2 – 2x < 8x
Answer:
5 < 10x – 3
Step-by-step explanation:
The inequality is 5 - 2x < 8x - 3.
5 < 6x – 3 is incorrect because 8x + 2x = 10x, not 6x.
3x < 8x – 3 is incorrect because 5 - 2x is not 3x, you can't subtract those terms as they are not like terms.
5 < 10x – 3 is correct because 8x + 2x = 10x.
2 – 2x < 8x is incorrect because 5 + 3 = 8, not 2.
Answer:
C on edg
Step-by-step explanation:
These tables of values represent continuous functions. For which function will the y-values be the greatest for very large values of x?
Answer:
The table D represents the function that will have the greatest y-values for very large values of x.
Step-by-step explanation:
The table A represents a linear function, for which each one unit increment in the "x" variable produces a three unit increment in the "y" variable. This means that the growth rate of this function is 3.
The table B also represents a linear function, for which each one unit increment in the x variable produces a 100 unit increment in the y variable. This means that the growth rate of this function is 100.
The table C also represents a linear function, for which each one unit increment in the x variable produces a 10 unit increment in the y variable. This means that the growth rate of this function is 10.
The table D on the other hand does not represent a linear function, since the growth rate is variable and increases for greater values of x. This means that as x grows larger, the growth rate of the function also grows larger, resulting in a much greater y value for very large x values if we compare it to a linear function, like the other options.
Answer:
D
Step-by-step explanation:
BIGBRAIN
The graph of g(x) resembles the graph of f(x)=x^2, but it has been changed. Which of these is the equation of g(x)?
Answer:
A.
Step-by-step explanation:
We need to find the equation where, if x is equal to 3, g(x) is equal to 1, because g(x) passes through the point (3,1)
Then, replacing x by 3 on every option we get:
[tex]g(x)=(\frac{1}{3}x)^2= (\frac{1}{3}3)^2=1\\g(x)=(\frac{1}{9}x)^2= (\frac{1}{9}3)^2=\frac{1}{9}\\g(x)= \frac{1}{3}x^2= \frac{1}{3}3^2=3\\g(x)=3x^2=3*3^2=27[/tex]
So, the answer is A. because g(x) is equal to 1
please help!!!!!!!!!!!
Answer:
The x value of the point 1/4 the distance from point C to point D is -0.25
Step-by-step explanation:
The given information are;
The location of point C = (1, 2)
The location of point D = (-4, -2)
The point 1/4 from point C to point D is the point 3/4 from point D to point C
Which gives;
The coordinate at point D + 3/4× The difference between the coordinates of point C and point D
Which is (-4 + 3/4×(1 - (-4), - 2 + 3/4×(2 - (-2))
Which gives;
(-4 + 3.75, -2 + 3) and (-0.25, 1)
The coordinates of the point 1/4 the distance from point C to point D is (-0.25, 1)
Therefore, the x value of the point 1/4 the distance from point C to point D = -0.25.
Jordon will play a triangle at his school’s music program. As its name suggests, the musical instrument is shaped like a triangle. Jordon has customized the dimensions to produce a unique melody, which is played when the shortest side is hanging down, parallel to the ground. Which side of the musical instrument should be parallel to the ground if its dimensions are as shown in the diagram?
Answer:
A. AB
Step-by-step explanation:
Given that the musical instrument has a shape of ∆ABC, we can determine the shortest side that would be parallel to the ground by comparison of the 3 angles of the triangle corresponding to each side that is opposite each of them.
What this means is that, the larger angle would have the largest side opposite it. The medium angle will have medium length side opposite it, while the smallest angle will have the smallest side opposite it.
m < A = 59°
m < C = 57°
m < C = 180 - (59+57) (sum of angles in a triangle)
m < C = 64°
The smallest angle out of the three angles is angle C = 57°.
The side opposite it, is side AB.
Side AB is the shortest side of ∆ABC.
Therefore, AB should be parallel to the ground.
The
side
of the musical instrument that should be parallel to the ground if the
dimensions
are as given is side AB, which is option A.
Given that:
Jordon will play a
triangle
in his school’s music program.
When playing, the shortest side
is hanging down,
parallel
to the ground.
From the figure:
m∠A = 59°
m∠C = 57°
By the
angle sum
property,
m∠A + m∠B + m∠C = 180°
59° + m∠B + 57° = 180°
m∠B + 116° = 180°
m∠B = 180° - 116°
= 64°
The
shortest side
will be the side that is opposite to the smallest angle.
So, the smallest side is the side opposite to C.
So, the side is AB.
Hence, the side is AB, which is option A.
Learn more about
Triangles
here :
https://brainly.com/question/2773823
#SPJ6
The equation of line l is -3y+4x=9 Write the equation of a line that is parallel to line l and passes through the point (-12,6). a) -3y+4x-69=0 b)-3y+4x-69=0 c)-3y+4x-39=0 d) 3x-3y+66=0
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
- 3y + 4x = 9
3y = 4x - 9
Divide both sides by 3
y = 4/3x - 3
Comparing with the above formula
Slope / m = 4/3
Since the lines are parallel their slope are also the same
So slope of the parallel line l is also 4/3
Equation of the line using point (-12 , 6) is
y - 6 = 4/3(x + 12)
Multiply through by 3
That's
3y - 18 = 4(x + 12)
3y - 18 = 4x + 48
We have the final answer as
4x - 3y + 66 = 0Hope this helps you
Use the quadratic formula to find the exact solutions of x2 − 5x − 2 = 0. x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x equals 5 plus or minus the square root of 33, all over 2 x equals negative 5 plus or minus the square root of 33, all over 2 x equals 5 plus or minus the square root of 17, all over 2 x equals negative 5 plus or minus the square root of 17, all over 2
Answer:
x = [ -b +- sqr root (b^2 - 4ac)] / 2a
a = 1
b = -5
c = -2
x = [- - 5 +- sqr root (-5^2 -4 * 1 * -2)] / 2 * 1
x = [5 +- sqr root (25 + 8)] / 2
x1 = 5.3723
x2 =-0.37228
Step-by-step explanation:
Exact solution for the give quadratic equation are
[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]
Quadratic EquationQuadratic equation of the form [tex]ax^2+bx+c=0[/tex]
For any quadratic equation we get two values for x. we can find the values for x by applying quadratic formula .
Quadratic formula
[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]
Given equation is [tex]x^2-5x-2=0[/tex]
The value of a=1, b= -5 and c=-2
Substitute all the values in the formula.
To find out exact solutions , we need to simplify the final answer.
Exact solutions are without any decimals.
[tex]x=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \left(-2\right)}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\pm \sqrt{33}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\p+ \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5+\sqrt{33}}{2}\\\\x=\frac{-\left(-5\right)- \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5-\sqrt{33}}{2}\\[/tex]
Exact solutions are
[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]
Learn more information about 'Quadratic formula ' here
brainly.com/question/8649555
Andrew is putting reflective tape around the edge of a stop sign. The sign is a regular octagon, and each side is 11 inches long. How many inches of tape will Andrew need?
Answer:
88 inches
Step-by-step explanation:
We are finding the perimeter of the stop sign, therefor we have to either multiply or add the value of 11. Since this sign is an octagon we will have to multiply by eight or add 11 eight times. This will give you an answer of 88 inches.
Answer:
88 inches
Step-by-step explanation:
The stop sign is in the shape of an octagon. An octogon has 8 sides. If each side is 11 inches you multiply 11 * 8 which is 88.
Plzzzzz Help I really need help
A Line Segment has the points (1,-2), and (3,-2). What are the new points after its dilated by a scale factor of 3/2 or 1.5
Answer:
(1.5,-3) and (4.5,-3)
Step-by-step explanation:
what is the measure of arc angle EG
Answer:
80 = EG
Step-by-step explanation:
Inscribed Angle = 1/2 Intercepted Arc
40 = 1/2 EG
Multiply each side by 2
80 = EG
Answer:
80 deg
Step-by-step explanation:
Theorem:
The measure of an inscribed angle is half the measure of the intercepted arc.
m<EFG = (1/2)m(arc)EG
40 deg = (1/2)m(arc)EG
m(arc)EG = 2 * 40 deg
m(arc)EG = 80 deg
Which describes how to graph g (x) = RootIndex 3 StartRoot x minus 5 EndRoot + 7 by transforming the parent function?
Answer:
[tex]f(x) =\sqrt[3]{x}[/tex]
Step-by-step explanation:
Hello!
Considering the parent function, as the most simple function that preserves the definition. Let's take the function given:
[tex]g(x) = \sqrt[3]{x-5}+7[/tex]
To have the the parent function, we must find the parent one, let's call it by f(x).
[tex]f(x) =\sqrt[3]{x}[/tex]
This function satisfies the Domain of the given one, because the Domain is still [tex](-\infty, \infty)[/tex] and the range as well.
Check below a graphical approach of those. The upper one is g(x) and the lower f(x), its parent one.
Answer:
5 units to the right and 7 units up (B on edge)
Step-by-step explanation:
if the denominator of a fraction is multiplied by 2,the value of the fraction is
Answer:
Half of its original
Step-by-step explanation:
When multiplying a denominator by a whole number, he value decreases accordingly, in other word, it changes inversely.
Examples:
In 1/2, if 2 is multiplied by 2, the value becomes 1/4, which is half of 1/2
In 1/4, if 4 is multiplied by 2, the value becomes 1/8 which is half of 1/4.
Hope this helps
Good luck
Zhi bought 18 tickets for games at a fair. Each game requires 3 tickets. Zhi wrote the expression 18 – 3g to find the number of tickets she has left after playing g games. Diego correctly wrote another expression, 3(6 – g), that will also find the number of tickets Zhi has left after playing g games. Use the drop-down menus to explain what each part of Zhi's and Diego's expressions mean.
Answer: In zhi's equation, the 18 is the initial amount of tickets, and the 3g means 3 times the amount of games.
Diegos equation is the same, but write in factorised form. The 3 multiplies with the 6 to create 18, and the 3 multiple with the g to create 3g
Please help.. ty if you do
Answer:B
Step-by-step explanation: x is less than 1 so it is a open circle on the graph and x is greater than or equal to -1 so it is a closed circle on -1, B has both of these so B is the answer
(a) Complete the statements below about the graphs of y = -x and y=x.
Compared to the graph of y=x, the graph of y=-x is Choose one
Compared to the graph of y=x, the graph of y = -x intersects the y-axis at Choose one
2
(b) Complete the statements below about the graphs of y=x+
and y=x.
3
2
Compared to the graph of y = x, the graph of y=x+ 5 is Choose one
2
Compared to the graph of y=x, the graph of y=x+
3
intersects the y-axis at Chonse one
a higher point
the same point.
a lower point
Х
?
Answer:
this. question is not clear please send clear question
We can conclude that -
Graphs pass through the origin. (y = x) has a slope of +1 while (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.What is the general equation of a Straight line?The general equation of a straight line is -
[y] = [m]x + [c]
where -
[m] is slope of line which tells the unit rate of change of [y] with respect to [x].
[c] is the y - intercept i.e. the point where the graph cuts the [y] axis.
y = mx also represents direct proportionality. We can write [m] as -
m = y/x
OR
y₁/x₁ = y₂/x₂
We have the following two functions -
y = -x
AND
y = x
Refer to the graphs attached for both the functions -
y = - x and y = x
The graphs as seen pass through the origin. One graph (y = x) has a slope of +1 while the other one (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.
We can conclude that -
Graphs pass through the origin. (y = x) has a slope of +1 while (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.To solve more questions on straight line, visit the link below-
https://brainly.com/question/29030795
#SPJ2
Mrs. Watson wants to buy some dresses for her trip to Houston. There are three boutiques, each offering a different deal.
Table
Lara's Boutique 4 dresses for $64
The Dress Shop 5 dresses for $75
Marge's Dresses 8 dresses for $160
Which boutique has the best deal for dresses?
A. Both Marge's Dresses and Lara Boutique
B. The Dress Shop
C. Lara's Boutique
D. Marge's Dresses
Answer:
B. The Dress Shop.
Step-by-step explanation:
To find the best deal, we want to find the cost for one dress.
Lara's Boutique: $64 for 4 dresses.
x / 1 = 64 / 4
x = 64 / 4
x = $16 per dress.
The Dress Shop: $75 for 5 dresses.
x / 1 = 75 / 5
x = 75 / 5
x = $15 per dress.
Marge's Dresses: $160 for 8 dresses.
x / 1 = 160 / 8
x = 160 / 8
x = $20 per dress.
The boutique with the best deal will have the cheapest dresses. So, the best deal would be at B. The Dress Shop.
Hope this helps!
Evaluate 3(4 - 2)2
A. 108
B. 36
C. 12
D. 100
Answer:
12
Step-by-step explanation:
3(4 - 2)^2
Parentheses first
3 ( 2) ^2
Then exponents
3 *4
Then multiply
12
can someone please help me
Answer:
B
Step-by-step explanation:
Because this equation is just a normal greater than symbol, it has to be a dotted line.
This graph starts at -2 and goes up 1 and right 3(this cancels out C as an option)
Than you shade the region with the larger number vaules, since it is greater than.
WILL MARK BRAINLIEST!!! PLZ HELP!!! Which graph best represents the function f(x) = (x + 1)(x − 1)(x − 4)? I think it's D, but im not sure
Answer:
D
Step-by-step explanation:
Find the x intercepts from the equation and apply them to the graphs. It matches up with D. Your thought is correct
Answer:
[tex]\boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
[tex]y= (x + 1)(x - 1)(x - 4)[/tex]
Let x = 0, find the y-intercept.
[tex]y= (0 + 1)(0 - 1)(0 - 4)[/tex]
[tex]y= ( 1)(- 1)(- 4)[/tex]
[tex]y=4[/tex]
The function crosses the y-axis at 4.
The only graph that shows this is graph D.
Sorry for the bad Angle, anyways if anyone could help me out that be great, I would do the question myself if I'd know how to do it, have a nice day
Answer:
210 students
Step-by-step explanation:
The total number of students surveyed was
19+14+30+23+14 = 100
The fraction that picked Yosemite is 14/100
Multiply that fraction by the total number of students
1500* 14/100 = 210
Answer:
210 students
Step-by-step explanation:
vote me brainliest plz
Given the function [tex]h:x=px-\frac{5}{2}[/tex] and the inverse function [tex]h^{-1} :x=q+2x[/tex], where p and q are constants, find a) the value of p and q c)[tex]h^{-1} h(-3)[/tex]
Answer:
[tex]p = \frac{1}{2}[/tex]
[tex]q = 5[/tex]
[tex]h^{-1}(h(3)) = 3[/tex]
Step-by-step explanation:
Given
[tex]h(x) = px - \frac{5}{2}[/tex]
[tex]h^{-1}(x) = q + 2x[/tex]
Solving for p and q
Replace h(x) with y in [tex]h(x) = px - \frac{5}{2}[/tex]
[tex]y = px - \frac{5}{2}[/tex]
Swap the position of y and d
[tex]x = py - \frac{5}{2}[/tex]
Make y the subject of formula
[tex]py = x + \frac{5}{2}[/tex]
Divide through by p
[tex]y = \frac{x}{p} + \frac{5}{2p}[/tex]
Now, we've solved for the inverse of h(x);
Replace y with [tex]h^{-1}(x)[/tex]
[tex]h^{-1}(x) = \frac{x}{p} + \frac{5}{2p}[/tex]
Compare this with [tex]h^{-1}(x) = q + 2x[/tex]
We have that
[tex]\frac{x}{p} + \frac{5}{2p} = q + 2x[/tex]
By direct comparison
[tex]\frac{x}{p} = 2x[/tex] --- Equation 1
[tex]\frac{5}{2p} = q[/tex] --- Equation 2
Solving equation 1
[tex]\frac{x}{p} = 2x[/tex]
Divide both sides by x
[tex]\frac{1}{p} = 2[/tex]
Take inverse of both sides
[tex]p = \frac{1}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex] in equation 2
[tex]\frac{5}{2 * \frac{1}{2}} = q[/tex]
[tex]\frac{5}{1} = q[/tex]
[tex]5 = q[/tex]
[tex]q = 5[/tex]
Hence, the values of p and q are:[tex]p = \frac{1}{2}[/tex]; [tex]q = 5[/tex]
Solving for [tex]h^{-1}(h(3))[/tex]
First, we'll solve for h(3) using [tex]h(x) = px - \frac{5}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex]; and [tex]x = 3[/tex]
[tex]h(3) = \frac{1}{2} * 3 - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3}{2} - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3 - 5}{2}[/tex]
[tex]h(3) = \frac{-2}{2}[/tex]
[tex]h(3) = -1[/tex]
So; [tex]h^{-1}(h(3))[/tex] becomes
[tex]h^{-1}(-1)[/tex]
Solving for [tex]h^{-1}(-1)[/tex] using [tex]h^{-1}(x) = q + 2x[/tex]
Substitute [tex]q = 5[/tex] and [tex]x = -1[/tex]
[tex]h^{-1}(x) = q + 2x[/tex] becomes
[tex]h^{-1}(-1) = 5 + 2 * -1[/tex]
[tex]h^{-1}(-1) = 5 - 2[/tex]
[tex]h^{-1}(-1) = 3[/tex]
Hence;
[tex]h^{-1}(h(3)) = 3[/tex]
Please help! "Create a real-life scenario involving an angle of elevation or depression. Draw an appropriate diagram and explain how to solve your example."
Answer:
Height of the kite = 86.60 meter (Approx)
Step-by-step explanation:
The angle of elevation to see a kite from a stone lying to the ground is 60 degrees. If a thread is tied with a kite and a stone, then that thread is 100 meters long, find the height of the kite.
Given:
Length of thread = 100 meter
Angle of elevation = 60°
Find:
Height of the kite.
Computation:
Using trigonometry application:
Height of the kite / Length of thread = Sin 60°
Height of the kite / 100 = √3 / 2
Height of the kite = [√3 / 2]100
Height of the kite = 50√3
Height of the kite = 86.60 meter (Approx)
Use multiplication to solve the proportion
w/4 = 42/24
Answer: w=5
Step-by-step explanation: