Answer:
Option c: 0.0022; reject the null hypothesis
Step-by-step explanation:
Using a p value calculator, with a z score of 3.06 at 0.05 level of significance for a two tailed test, the p-value is 0.002213. This value is lower than 0.05 thus the result is significant we will reject the null hypothesis.
To calculate the p value by hand, we do this
The test statistic is 3.06. Since the test possesses a not equal to alternative, we look up the test statistic on the z table find the corresponding probability. Thus we have 3.06 - on the z table - 0.99889
Then we subtract from 1 and double it
1-0.99889 = 0.00111 x 2 = 0.0022.
Which ordered pair is a solution of this equation 6x-y=-4 . -2,0 -1,-2 -2,-1 0, -2
Answer:
(-1,-2)
Step-by-step explanation:
[tex]6x-y=-4\\y=6x+4\\y=6(-2)+4=-8\\y=6(-1)+4=-2\\y=6(0)+4=4[/tex]
so the only one is (-1,-2)
Which system type is a linear system with infinitely many solutions?
Answer:
down b3low
Step-by-step explanation:
The point where the two lines intersect is the only solution. An inconsistent system has no solution. Notice that the two lines are parallel and will never intersect. A dependent system has infinitely many solutions.
a food snack manufacturer samples 9 bags of pretzels off the assembly line and weights their contents. If the sample mean is 14.2 oz. and teh sample devision is 0.70 oz, find the 95% confidense interval of the true mean
Answer:
13.7≤[tex]\mu[/tex]≤14.7Step-by-step explanation:
The formula for calculating the confidence interval is expressed as shown;
CI = xbar ± Z(б/√n)
xbar is the sample mean
Z is the value at 95% confidence interval
б is the standard deviation of the sample
n is the number of samples
Given xbar = 14.2, Z at 95% CI = 1.96, б = 0.70 and n = 9
Substituting this values into the formula;
CI = 14.2 ± 1.96(0.70/√9)
CI = 14.2 ± 1.96(0.70/3)
CI = 14.2 ± 1.96(0.2333)
CI = 14.2 ± 0.4573
CI = (14.2-0.4573, 14.2+0.4573)
CI = (13.7427, 14.6537)
Hence, the 95% confidence interval of the true mean is within the range
13.7≤[tex]\mu[/tex]≤14.7 (to 1 decimal place).
please help me, i will give you brainliest
Answer:
Refeect circle A over the the y line = x
Step-by-step explanation:
Simplify 3 (2x + 1) - 2 (x + 1)
Let's simplify step-by-step.
3(2x+1)−2(x+1)
Distribute:
=(3)(2x)+(3)(1)+(−2)(x)+(−2)(1)
=6x+3+−2x+−2
Combine Like Terms:
=6x+3+−2x+−2
=(6x+−2x)+(3+−2)
=4x+1
4x+1 is the answer to the question
The school district uses the Hamilton method to apportion its 22 board members to the 4 towns. How many board members are assigned to each town, using this method? 2. The following year, 900 people move out of Town D. Two hundred of these people move Town C, and 700 of them move to Town B. Now, how many board members does each town have? (Be careful. Make sure you assign a total of 22 board members). 3. Compare the results from the 2 years. Do you think they make sense? How do you think each town would react? Are they fair? Why or Why not?
Answer:
(A, B, C, D) = (2, 2, 6, 12)(A, B, C, D) = (2, 2, 6, 12)identical results; yes, they make senseyes they are fairStep-by-step explanation:
1. The Hamilton method has you compute the number represented by each board member (total population/# members). Using this factor, the number of board members for each district are computed. This raw value is rounded down.
Because this total does not allocate all board members, the remaining members of the board are allocated to the districts based on the size of the fraction that was truncated when rounding down. Allocations start with the largest fraction and work down until all board members have been allocated.
The attached spreadsheet implements this algorithm using a "threshold" that is adjusted to a value between 0 and 1, signifying the cutoff point between a fraction value that gets an additional member and one that doesn't. (Often, that threshold can be set at 0.5, equivalent to rounding the raw board member value to the nearest integer.)
The resulting allocations are ...
Town A: 2
Town B: 2
Town C: 6
Town D: 12
__
2. The second attachment shows the result after the population move. The allocations of board members are identical.
__
3. The "factor" (persons per board member) is about 4500, so we don't expect a move of 900 people to make any difference in the allocation. These results make complete sense.
__
4. Of course each town will consider its own interest at the expense of everyone else, so they may or may not consider the results fair. The towns have population ratio of about 9 : 9 : 25 : 56, so the ratios 2 : 2 : 6 : 12 are quite in line. Even in the second year, when the ratios are closer to 9 : 10 : 26 : 56, the changes are small enough that the allocation of board members still makes sense. The results are fair.
_____
Comment on "fair"
The reason there are different methods of allocation is that each seeks to rectify some perceived flaw in one or more of the others. The reason there is not a general agreement on the method to be used is that some benefit more from one method than from another. "Fair" is in the eye of the beholder. I believe in this case it would be very difficult to justify any other allocations than the ones computed here.
Here is a sample distribution of hourly earnings in Paul's Cookie Factory:
Hourly Earning $6 up to $9 $9 up to $12 $12 up to $15
Frequency 16 42 10
The limits of the class with the smallest frequency are:_________
A) $6.00 and $9.00.
B) $12.00 and up to $14.00.
C) $11.75 and $14.25.
D) $12.00 and up to $15.00.
Answer:
The correct answer is:
$12.00 and up to $15.00 (D)
Step-by-step explanation:
Let us arrange the data properly in a tabular format.
Hourly Earnings($) 6 - 9 9 - 12 12 - 15
Frequency 16 42 10
The frequency of a distribution is the number of times that distribution occurs in a particular group of data or intervals.
From the frequency table above the following observations can be made:
Highest frequency = 42 (hourly earnings of $9 - $12)
smallest frequency = 10 ( hourly earnings of $12 - $15)
This means that among a total of 68 workers (16 + 42 + 10), the people earning $12 - $15 form the smallest group (only 10 people), while 42 workers earn $9 - $12, forming the largest majority
Which of the following pairs consists of equivalent fractions? 12/18 and 10/15 12/20 and 10/25 8/16 and 3/4 5/3 and 3/5
Answer:
12/18 and 10/15
Step-by-step explanation:
12/18 simplifies into 2/3
10/15 simplifies into 2/3
12/20 simplifies into 3/5
10/25 simplifies into 2/5
8/16 simplifies into 1/2
3/4 simplifies into 3/4
5/3 simplifies into 5/3
3/5 simplifies into 3/5
The pairs consist of equivalent fractions will be 12/20 and 10/25. Then the correct option is A.
What is a fraction number?
A fraction number is a number that represents the part of the whole, where the whole can be any number. It is in the form of a numerator and a denominator.
Let's check all the options, then we have
A) 12/18 and 10/15
12/18 and 10/15
2/3 and 2/3
Yes, they are equivalent fraction numbers.
B) 12/20 and 10/25
12/20 and 10/25
3/5 and 2/5
They are not equivalent fraction numbers.
C) 8/16 and 3/4
8/16 and 3/4
1/2 and 3/4
They are not equivalent fraction numbers.
D) 5/3 and 3/5
5/3 and 3/5
They are not equivalent fraction numbers.
The pairs consist of equivalent fractions will be 12/20 and 10/25. Then the correct option is A.
More about the fraction number link is given below.
https://brainly.com/question/78672
#SPJ2
assume that the salaries of elementary school teachers in the united states are normally distributed with a mean of
the numbers of students in the 10 schools in a district are given below. ( Note that these are already ordered from Least to Greatest) 198, 216, 220, 236, 246, 252, 253, 260, 290, 319. Suppose that the number 319 from this list changes to 369. Answer the following what happens to the median? what happens to the mean?
Answer:median:249
Step-by-step explanation:
median:198] 216} 220] 236] 246 252 [253[ 260 {290[ 369
246 +252=498
498/2=249
as for the mean i will give you that later
Combine like terms: 10 + 6y + 2x - 3
Answer:
6y +2x +7
Step-by-step explanation:
10 + 6y + 2x - 3
The only like terms are the constant
6y+2x +10-3
6y +2x +7
Answer:
2x + 6y + 7.
Step-by-step explanation:
10 + 6y + 2x - 3
= 2x + 6y - 3 + 10
= 2x + 6y + 7.
Hope this helps!
For each of the following, state the equation of a perpendicular line that passes through (0, 0). Then using the slope of the new equation, find x if the point P(x, 4) lies on the new line. y=3x-1 y=1/4 x+2
Answer:
The answer is below
Step-by-step explanation:
a) y=3x-1
The standard equation of a line is given by:
y = mx + c
Where m is the slope of the line and c is the intercept on the y axis.
Given that y=3x-1, comparing with the standard equation of a line, the slope (m) = 3, Two lines with slope a and b are perpendicular if the product of their slope is -1 i.e. ab = -1. Let the line perpendicular to y=3x-1 be d, to get the slope of the perpendicular line, we use:
3 × d = -1
d = -1/3
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=d(x-x_1)\\d\ is\ the \ slope:\\y-0=-\frac{1}{3} (x-0)\\y=-\frac{1}{3}x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-\frac{1}{3}x\\ 4=-\frac{1}{3}x\\-x=12\\x=-12[/tex]
b) y=1/4 x+2
Given that y=1/4 x+2, comparing with the standard equation of a line, the slope (m) = 1/4. Let the line perpendicular to y=1/4 x+2 be f, to get the slope of the perpendicular line, we use:
1/4 × f = -1
f = -4
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=f(x-x_1)\\f\ is\ the \ slope:\\y-0=-4 (x-0)\\y=-4x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-4}x\\ 4=-4x\\x=-1[/tex]
Which expression is equivalent to 0.83¯ ?
Answer:
Hello There!!
Step-by-step explanation:
Your answer will be 83/99. Because, We have to expressed the 0.83¯ as a fraction in simplest form. Let x = 0.83¯ = 0.8383. Then, We have to multiply by 100 to both sides we have: 100x = 83.8383. After, Subtract (One) to (Two) we will have: 99x = 83. Then, We will divide both sides by 99 we have: x = 83/99. Therefore, the 0.83¯ as a fraction in simplest form is, 83/99. Hope This Helps!!~ Sorry, If the example confusing...
The selling price of a car is $15,000. Each year, it loses 12% of its value.
Which function gives the value of the cart years after its purchase?
Select the correct answer below:
f(t) = 15,000(0.12)
f(t) = 15,000(1.12)
f(t) = 15,000(1.88)
f(t) = 15,000(0.88)
f(t) = 15,000 – (0.12)
Answer:
f(t) = 15,000(0.88)Step-by-step explanation:
Applying the formula for the car deprecation we have
[tex]f(t)=P(1-\frac{r}{100} )^n[/tex]
Where,
A is the value of the car after n years,
P is the purchase amount,
R is the percentage rate of depreciation per annum,
n is the number of years after the purchase.
1. The depreciated value of the car after 1 yr is
n=1
[tex]f(t)= 15000(1-\frac{12}{100} )^1\\\f(t)= 15000(1-0.12 )\\\f(t)= 15000(0.88)[/tex]
There are 2 Senators from each of 50 states. We wish to make a 3-Senator committee in which no two members are from the same state. b How many ways can we choose a Senator from a chosen state? c How many ways can the 3-Senator committee be formed such that no two Senators are from the same state?
Answer:
a) rCn = 1176
b) 2352
Step-by-step explanation:
a)Each committee should be formed with 3 members ( no two members could be of the same state) then
Let´s fix a senator for any of the 50 states so in the new condition we need to combined 49 senators in groups of 2 then
rCn = n! / (n - r )! *r!
rCn = 49!/ (49 - 2)!*2!
rCn = 49*48*47! / 47!*2!
rCn = 49*48 /2
rCn = 1176
So we can choose in 1176 different ways a senator for a given state
b) To answer this question we have to note, that, 1176 is the number of ways a committee can be formed with senators of different sate (taking just one senator for state ) if we have 2 senators we need to multiply that figure by 2.
1176*2 = 2352
1. What is an inequality? Give one example of an inequality? How would you graph this? 2. What is a compound inequality? Give an example of "and" and an "or" inequality. 3. Identify the independent and dependent variables in the following situation: The more hours Beth studies, the higher the GPA she has.
Answer: see below
Step-by-step explanation:
1) An inequality is an equation that uses >, ≥, <, or ≤ instead of an equal sign.
Example: 3x + 2 ≥ 10
2) A compound inequality is when 2 inequalities are combined using either "and" or "or".
And → means it must satisfy both inequalitiesOr → means it must satisfy at least one of the inequalitiesExample: x > -2 and x < 4 rewrite as: -2 < x < 4
Graph: -2 o-----------------o 4 one line segment between the #'s
Example: x < -2 or x > 4
Graph: ←-----------o -2 4 o----------→ two lines in opposite directions
3) The GPA is dependent on the number of hours she studies.
Independent: hours Beth studies
Dependent: GPA
You are looking to invest in several different real estate deals. You have received ceconomic reports that explain the probability of good economic conditions will be .6 and .4 for bad economic conditions. Below is the Payoff Table, and after calculating the expected value for each decision, you determine the best "payoff deal is:
Good Economic Bad Economic
Conditions Condition (.60) Conditions (.40)
Apartment Building 50,000 30,000
Office Building $100,000 $-40,000
Warehouse 30,000 $10,000
A. Apartment Building
B. Office Building
C. Warehouse
D. None of the above.
Answer:
Real Estate Deals
The best "payoff deal:"
B. Office Building
Step-by-step explanation:
A) Payoff Table
Good Economic Bad Economic
Conditions Conditions
Probability (.60) (.40)
Apartment Building $50,000 $30,000
Office Building $100,000 $-40,000
Warehouse $30,000 $10,000
B) Calculation of Expected Values:
Good Economic Bad Economic Expected Values
Conditions Conditions
Probability (.60) (.40)
Apartment Building $30,000 $12,000 $42,000
Office Building $60,000 $-16,000 $44,000
Warehouse $18,000 $4,000 $22,000
b) The expected value for these real estate deals can be derived as the sum of the payoffs under the two economic conditions after they have been weighed with their odds of occurrence. The office building, in this example, showed the best payoff deal as the expected payoff from it results to a payoff of $44,000, which is higher than the expected payoff from the Apartment and Warehouse. However, it is also the riskiest, especially when bad economic conditions occur. This also accords with the general economic risk-return pattern that higher risky investments attract higher returns.
The length, width and height are consecutive whole numbers. The volume is 120 cubic inches.
Answer:
4, 5 and 6
Step-by-step explanation:
Consecutive means right next to each other.
4 x 5 x 6 = 120 cubic inches.
4 X 5 = 20
20 X 6 = 120
The values of the consecutive numbers will be 4, 5, and 6.
Let the numbers be represented by a, a+1, and a+2.
Therefore, a(a+1)(a+2) = 120
a³ + 3a² + 2a = 120
a = 4
Therefore, a + 1 = 4+1 = 5
a + 2 = 4 + 2 = 6
Therefore, the values will be 4, 5, and 6.
Read related link on:
https://brainly.com/question/18962438
Select the correct answer from each drop-down menu. The graph represents the piecewise function.
Answer:
1). f(x) = x² if ∞ < x < 2
2). f(x) = 5 if 2 ≤ x < 4
Step-by-step explanation:
The graph attached shows the function in two pieces.
1). Parabola
2). A straight line parallel to the x-axis.
Standard equation of a parabola is,
y = a(x - h)² + k
where (h, k) is the vertex.
Vertex of the given parabola is (0, 0).
Equation of the parabola will be,
y = a(x - 0)² + 0
Therefore, the function will be,
f(x) = ax²
Given parabola is passing through (-1, 1) also,
1 = a(-1)²
a = 1
Therefore, parabolic function will be represented by,
f(x) = x² if ∞ < x < 2
2). Straight line parallel to the x-axis,
y = 5 if 2 ≤ x < 4
Function representing the straight line will be,
f(x) = 5 if 2 ≤ x < 4
Answer:
Please mark me as Brainliest :)
Step-by-step explanation:
Construct a polynomial function with the stated properties. Reduce all fractions to lowest terms. Second-degree, with zeros of −7 and 6, and goes to −∞ as x→−∞.
Answer:
Step-by-step explanation:
Hello, because of the end behaviour it means that the leading coefficient is negative so we can construct such polynomial function as below.
[tex]\large \boxed{\sf \bf \ \ -(x+7)(x-6) \ \ }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The polynomial function will be f ( x ) = - x² - x + 42
What is Quadratic Equation?
A quadratic equation is a second-order polynomial equation in a single variable x , ax²+ bx + c = 0. with a ≠ 0. Because it is a second-order polynomial equation, the fundamental theorem of algebra guarantees that it has at least one solution. The solution may be real or complex.
Given data ,
The polynomial function is of second degree with zeros of -7 and 6
So , x = -7 and x = 6
Let the function be f ( x ) where f ( x ) = ( x + 7 ) ( x - 6 )
Now , as x tends to infinity , the negative makes no such difference on the zeros of the function f ( x ) ,
And , f ( x ) = - ( x + 7 ) ( x - 6 )
Therefore , to find the polynomial function , f ( x ) = - ( x + 7 ) ( x - 6 )
f ( x ) = - [ x² - 6 x + 7 x - 42 ]
= - [ x² + x - 42 ]
= - x ² - x + 42
Hence , the polynomial function f ( x ) = - x ² - x + 42
To learn more about polynomial function click :
https://brainly.com/question/25097844
#SPJ2
Could someone answer the question with the photo linked below? Then explain how to solve it?
Answer:
b = sqrt(57)
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2 where a and b are the legs and c is the hypotenuse
8^2 + b^2 = 11^2
64+ b^2 = 121
Subtract 64
b^2 = 121-64
b^2 =57
Take the square root of each side
b = sqrt(57)
3
Easton mixed
kg of flour with
kg of sugar.
6
Determine a reasonable estimate for the amount of flour and sugar combined.
Choose 1 answer:
1
Less than
2
kg
B
More than
1
kg but less than 1 kg
2
More than 1 kg
Find the value of EB
Answer:
31Step-by-step explanation:
Given,
AD = 38
EB = 7x - 4
FC = 6x - 6
Now, we have to find the value of X
[tex]eb \: = \frac{1}{2} (ad \: + fc \: )[/tex] ( Mid segment Theorem )
Plug the values
[tex]7x - 4 = \frac{1}{2} (38 + 6x - 6)[/tex]
Calculate the difference
[tex]7x - 4 = \frac{1}{2} (32 + 6x)[/tex]
Remove the parentheses
[tex]7x - 4 = \frac{32}{2} + \frac{6x}{2} [/tex]
[tex]7x - 4 = 16 + 3x[/tex]
Move variable to L.H.S and change its sign
Similarly, Move constant to R.H.S and change its sign
[tex]7x - 3x = 16 + 4[/tex]
Collect like terms
[tex]4x = 16 + 4[/tex]
Calculate the sum
[tex]4x = 20[/tex]
Divide both sides of the equation by 4
[tex] \frac{4x}{4} = \frac{20}{4} [/tex]
Calculate
[tex]x = 5[/tex]
The value of X is 5
Now, let's find the value of EB
EB = 7x - 4
Plug the value of X
[tex] = 7 \times 5 - 4[/tex]
Calculate the product
[tex] = 35 - 4[/tex]
Calculate the difference
[tex] = 31[/tex]
The value of EB is 31
Hope this helps..
Best regards!!
2. Write as a complex number.
Answer:
Your answer is correct ✔️
Step-by-step explanation:
Hope this is correct and helpful
HAVE A GOOD DAY!
Answer:
2√3 + 3i is the answer
Step-by-step explanation:
15x - 30 x 0 + 40 = 89
Answer:
x = 49/15
Step-by-step explanation:
15x - 30 x 0 + 40 = 89 PEMDAS
15x + 40 = 89 Isolate the variable
15x = 49
x = 49/15
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 49/15 or 3 4/15 or 3.26
▹ Step-by-Step Explanation
15x - 30 * 0 + 40 = 89
15x - 0 + 40 = 89
15x + 40 = 89
15x = 89 - 40
15x = 49
x = 49/15 or 3 4/15 or 3.26
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
which of the following descriptions represent the transformation shown in the image? Part 1d
Answer:
(C) Translation of 2 units right, 1 up, and a reflection over the y-axis.
Step-by-step explanation:
Ideally, we are looking for a reflection of the red image over the y-axis, and to do that, we can see how we need to move the black image.
In order for points Q and Q' to be a reflection of each other, they need to have the same y value, and be the exact same distance from the y axis, so the point that Q has to be at is (-1,-3).
Q is right now at (-3,-4) so we can translate this.
To get from -3 to -1 in the x-axis, we go right by 2 units.
To get from -4 to -3 in the y-axis, we go up one unit.
Now, if we reflect it, the triangles will be the same.
Hope this helped!
Answer:
C.
Step-by-step explanation:
When you study the images, it is clear that the black triangle has to be reflected over the y-axis to face the same direction as the red triangle. So, choice A is eliminated.
Once you reflect the black triangle across the y-axis, you have points at (-1, -1), (3, -4), and (3, -2). Meanwhile, the red triangle's coordinates are at (-3, 0), (1, -3), and (1, -1). From these points, you can tell that the x-values differ by 2 units and the y-values differ by 1 unit.
All of these conditions match the ones put forth in option C, so that is your answer.
Hope this helps!
Find the GCF of 207c^3 and 108c^2
Answer: 9c²
Step-by-step explanation:
To find the Greatest Common Factor of 207c³ and 108c², first factor them down to their primes and see what they have in common.
207c³ 108c²
∧ ∧ ∧ ∧
9·23 c·c·c 9·12 c·c
∧ ∧ ∧
3·3 3·3 3·4
∧
2·2
207c³: 3·3·23 c·c·c
108c²: 2·2·3·3·3·4 c·c
GCF = 3·3 c·c
= 9c²
The GCF of 207c^3 and 108c² is 9c²
Given the expressions [tex]207c^3 \ and \ 108c^2[/tex]
We are to find the GCF of both terms
First, we need to get the factors as shown::
207c³ = 9 * 23 * c² * c
108c² = 9 * 12 * c²
From the factors, we can see that 9 and c² are common to both terms:
The GCF of 207c^3 and 108c² is 9c²
Learn more here: https://brainly.com/question/21612147
Simplify the rate:
46 cans of Soda / 8 people
Only enter the numeric amount:
Answer: 23 cans of soda/4 people.
or (23/4) cans of soda per person.
Step-by-step explanation:
So we have the rate:
46 cans of soda/ 8 people
First, 46 and 8 are multiples of 2, so we can divide both numerator and denominator by 2:
46/2 = 23
8/2 = 4
Then the rate can be:
23 cans of soda/4 people.
Now 23 is a prime number, so we can not simplify it furthermore
Someone help me please
Answer:
31Option D is the correct option.
Step-by-step explanation:
Given: 3 boxes with volumes 1331 , 1331 , 729
To find : Height of stacked boxes
[tex]h {1}^{3} = 1331 = h1 = \sqrt[3]{1331} = 11[/tex]
[tex]h {2}^{3} = 1331 = h2 = \sqrt[3]{1331} = 11[/tex]
[tex]h {3}^{3} = 729 = h3 = \sqrt[3]{729} = 9[/tex]
Now,
[tex]h = h1 + h2 + h3[/tex]
[tex] = 11 + 11 + 9[/tex]
[tex] = 31[/tex]
Hope this helps...
Good luck on your assignment...
A certain forest covers an area of 2100 km². Suppose that each year this area decreases by 3.5%. What will the area be after 5 years
Use the calculator provided and round your answer to the nearest square kilometer.
Answer:
[tex]\large\boxed{\sf \ \ \ 1757 \ km^2 \ \ \ }[/tex]
Step-by-step explanation:
Hello,
I would recommend that you checked the answers I have already provided as this is the same method for all these questions, and maybe try to solve this one before you check the solution.
At the beginning the area is 2100
After one year the area will be
2100*(1-3.5%)=2100*0.965
After n years the area will be
[tex]2100\cdot0.965^n[/tex]
So after 5 years the area will be
[tex]2100\cdot0.965^5=1757.34027...[/tex]
So rounded to the nearest square kilometer is 1757
Hope this helps
Answer: 1757 km²
Step-by-step explanation:
Because 3.5% = 0.035, first do 1-.035 to get .965. Then do 2100*.965*.965*.965*.965*.965 to get 1757.34027.