Answer:
A:-4
Step-by-step explanation:
If you simplify 9(2x+1)<9x-18 you will get 9x<-27. That will mean x<-3 and the only answer for something less than -3 is -4.
If the answer was right, please put 5 stars.
Answer:
The answer would be-4
Step-by-step explanation:
Here,
9(2x+1) < 9x-18
or, 18x+9 < 9x-18
or, 18x-9x<-18-9
or, 9x<-27
or, x= -27/9
Therefore, the value of x is -4.
Hope it helps...
A customer enrolled in a 1-year product purchase plan that costs $60 per month. After 6 months, the customer received a monthly discount of 20%. What is the total amount the customer will pay for the 1-year plan?
Answer:
$432
Step-by-step explanation:
60*6=360
They paid $360 for the first 6 months.
20%*60=.2*60
0.2*60=12
12*6=72
They paid $72 for the last 6 months.
360+72=432
They paid $432
$648 is the total amount the customer will pay for the 1-year plan
What is Percentage?percentage, a relative value indicating hundredth parts of any quantity.
Given that a customer enrolled in a 1-year product purchase plan that costs $60 per month.
After 6 months, the customer received a monthly discount of 20%.
We need to find the total amount the customer will pay for the 1-year plan.
Product Plan = $60 per month
Money he pay for 1 month = $ 60
Money He pay for first 6 month = 6 × 60 = $ 360
after 6 month he receives 20% discount monthly,
So, Now he pay for 1 month = 60 - 20% × 60
=60-20/100×60
=60-12=48
Money he pay for last 6 month = 6 × 48 = 288
Total Money he pay in a year = 360 + 288 = $ 648
Hence, $648 is the total amount the customer will pay for the 1-year plan
To learn more on Percentage click:
https://brainly.com/question/28269290
#SPJ2
Sanjay makes souvenir pyramids by pouring liquid into a pyramid-shaped mold. The mold he uses has a square base with a side length of 10\text{ cm}10 cm10, start text, space, c, m, end text, and the height of the mold is 10\text{ cm}10 cm10, start text, space, c, m, end text. Sanjay wants to make a smaller pyramid using the same mold, so he plans to fill the mold 2\text{ cm}2 cm2, start text, space, c, m, end text from the top. What is the approximate volume of this smaller pyramid?
Answer:
170.67
Step-by-step explanation:
Answer:
171
Step-by-step explanation:
Modeling the situation
If we fill the pyramid mold 2\text{ cm}2 cm2, start text, space, c, m, end text from the top, we have a smaller pyramid that's similar to the original pyramid.
Since the pyramids are similar, we can set up a proportional equation to find the side lengths and height of the smaller pyramid, and then find its volume.
Hint #22 / 4
Base and height of smaller pyramid
The height of the smaller pyramid is 10-2=8\text{ cm}10−2=8 cm10, minus, 2, equals, 8, start text, space, c, m, end text.
We can solve for the length \blueE{\ell}ℓstart color #0c7f99, ell, end color #0c7f99 in the smaller pyramid using a proportional equation.
\begin{aligned} \dfrac{\blueE{\ell}}{10} &= \dfrac{8}{10} \\\\ \blueE{\ell} &= \blueE{8} \end{aligned}
10
ℓ
ℓ
=
10
8
=8
Hint #33 / 4
Volume of smaller pyramid
\begin{aligned} \text{volume}_{\text{pyramid}} &= \dfrac13(\text{base area})(\text{height}) \\\\ &= \dfrac13 \cdot (\blueE{\ell})^2\cdot (\text{height}) \\\\ &= \dfrac13 \cdot \blueE{8}^2\cdot(8)\\\\ &= \dfrac{512}{3}=170.\overline{6}\\\\ &\approx \purpleD{170.67} \end{aligned}
volume
pyramid
=
3
1
(base area)(height)
=
3
1
⋅(ℓ)
2
⋅(height)
=
3
1
⋅8
2
⋅(8)
=
3
512
=170.
6
≈170.67
Hint #44 / 4
To the nearest cubic centimeter, the volume of the smaller pyramid is about 171\text{ cm}^3171 cm
3
171, start text, space, c, m, end text, cubed.
11 Is what percent of 20?
Answer:
55%
Step-by-step explanation:
Because 11/20= 0.55
0.55=55%
Fake Question: Should Ujalakhan01 be a moderator? (If you could answer I'd appreciate it haha.)
Real Question: Simplify [tex](a^5*a^4)+(b^2*b^3)-(c^7*c^6)[/tex]
Answer:
[tex]a^9 + b^ 5 + c^{13}[/tex]
Step-by-step explanation:
[tex](a^5 \times a^4)+(b^2 \times b^3) + (c^7 \times c^6)[/tex]
When bases are same and it is multiplication, then add the exponents.
[tex](a^{5+4})+(b^{2+3})+(c^{7+6})[/tex]
[tex](a^9)+(b^ 5) + (c^{13})[/tex]
Apply rule : [tex](a^b)=a^b[/tex]
[tex]a^9 + b^ 5 + c^{13}[/tex]
Answer:
[tex]a^9+b^5-c^{13[/tex]
Step-by-step explanation:
[tex](a^5*a^4) + (b^2*b^3)-(c^7*c^6)[/tex]
When bases are same, powers are to be added.
=> [tex](a^{5+4})+(b^{2+3})-(c^{7+6})[/tex]
=> [tex]a^9+b^5-c^{13[/tex]
The height of a right cylinder is 3 times the radius of the base. The volume of the cylinder is 249 cubic units.
What is the height of the cylinder?
O2 units
4 units
O 6 units
O 8 units
Answer:
h = 6 unitsStep-by-step explanation:
Volume of a cylinder = πr²h
where r is the radius
h is the height
The height of a right cylinder is 3 times the radius of the base is written as
h = 3r
Volume = 249cubic units
So we have
249 = π r²(3r)
249 = π3r³
Divide both sides by 3π
r³ = 249/3π
r = 2
h = 3(2)
h = 6 units
Hope this helps you
Find C and round to the nearest tenth.
Answer:
29.4 degrees
Step-by-step explanation:
i divided sin by 55 degrees
Raquel throws darts at a coordinate grid centered at the origin. Her goal is to create a line of darts. Her darts actually hit the coordinate grid at (–5, 0), (1, –3), (4, 5), (–8, –6), (0, 2), and (9, 6). Which equation best approximates the line of best fit of the darts?
Answer:
The line of best fit
y = 0.633x + 0.561
Step-by-step explanation:
The coordinates that the dart hit include
(–5, 0), (1, –3), (4, 5), (–8, –6), (0, 2), and (9, 6)
The x and y coordinates can be written as
x | y
-5|0
1 | -3
4|5
-8|-6
0|2
9|6
So, running the analysis on a spreadsheet application, like excel, the table of parameters is obtained and presented in the first attached image to this solution.
Σxᵢ = sum of all the x variables.
Σyᵢ = sum of all the y variables.
Σxᵢyᵢ = sum of the product of each x variable and its corresponding y variable.
Σxᵢ² = sum of the square of each x variable
Σyᵢ² = sum of the square of each y variable
n = number of variables = 6
The scatter plot and the line of best fit is presented in the second attached image to this solution
Then the regression analysis is then done
Slope; m = [n×Σxᵢyᵢ - (Σxᵢ)×(Σyᵢ)] / [nΣxᵢ² - (∑xi)²]
Intercept b: = [Σyᵢ - m×(Σxᵢ)] / n
Mean of x = (Σxᵢ)/n
Mean of y = (Σyᵢ) / n
Sample correlation coefficient r:
r = [n*Σxᵢyᵢ - (Σxᵢ)(Σyᵢ)] ÷ {√([n*Σxᵢ² - (Σxᵢ)²][n*Σyᵢ² - (Σyᵢ)²])}
And -1 ≤ r ≤ +1
All of these formulas are properly presented in the third attached image to this answer
The table of results; mean of x, mean of y, intercept, slope, regression equation and sample coefficient is presented in the fourth attached image to this answer.
Hope this Helps!!!
Answer:
a. y = 0.6x + 0.6
Step-by-step explanation:
g The weight of a certain type of apple is normally distributed with a mean of 10.56 ounces and standard deviation of 0.9 ounces. What is the first quartile, Q subscript 1, of the weight of this type of apple?
Answer:
First Quartile Q1 = 9.9525
Step-by-step explanation:
For a standard normal distribution,
First quartile Q1 = μ - 0.675 σ
From the question mean μ = 10.56
Standard deviation σ = 0.9
Plugging these values into the first quartile equation, we have;
Q1 = 10.56 -0.675(0.9)
Q1 = 10.56 - 0.6075
Q1 = 9.9525
The amount of time to complete a physical activity in a PE class is approximately normally normally distributed with a mean of 32.9 seconds and a standard deviation of 6.4 seconds.
A) What is the probability that a randomly chosen student completes the activity in less than 33.2 seconds?
B) What is the probability that a randomly chosen student completes the activity in more than 46.6 seconds?
C) What proportion of students take between 35.5 and 42.8 seconds to complete the activity?
D) 75% of all students finish the activity in less than____seconds.
Answer:
The answer is below
Step-by-step explanation:
Given that mean (μ) of 32.9 seconds and a standard deviation (σ) of 6.4 seconds.
The z score is used to measure by how many standard deviation the raw score is above or below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}\\[/tex]
a) For x < 33.2 seconds
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{33.2-32.9}{6.4} =0.05[/tex]
From the normal distribution table, the probability that a randomly chosen student completes the activity in less than 33.2 seconds = P(x < 33.2) = P(z < 0.05) = 0.5199 = 51.99%
b) For x > 46.6 seconds
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{46.6-32.9}{6.4} =2.14[/tex]
From the normal distribution table, the probability that a randomly chosen student completes the activity in more than 46.6 seconds = P(x > 46.6) = P(z > 2.14) = 1 - P(z < 2.14) = 1 - 0.9927 = 0.0073 = 0.73%
c) For x = 35.5 seconds
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{35.5-32.9}{6.4} =0.41[/tex]
For x = 42.8 seconds
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{42.8-32.9}{6.4} =1.55[/tex]
From the normal distribution table, the proportion of students take between 35.5 and 42.8 seconds to complete the activity = P(35.5 < x < 42.8) = P(0.41< z< 1.55) = P(z < 1.55) - P(z < 0.41) = 0.9332 - 0.6591 = 0.2741 = 27.41%
d) A probability of 75% = 0.75 corresponds to a z score of 0.68
[tex]z=\frac{x-\mu}{\sigma}\\\\0.68=\frac{x-32.9}{6.4} \\\\x-32.9=4.4\\x=4.4+32.9\\x=37.3[/tex]
75% of all students finish the activity in less than 37.3 seconds
Simba Travel Agency arranges trips for climbing Mount Kilimanjaro. For each trip, they charge an initial fee of $100 in addition to a constant fee for each vertical meter climbed. For instance, the total fee for climbing to the Shira Volcanic Cone, which is 3000 meters above the base of the mountain, is $400.Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.Complete the equation for the relationship between the total fee and vertical distance.
Answer:
[tex]y(x)=100+0.1x[/tex]
Step-by-step explanation:
Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.
We know that there is an initial fee of $100, so we know that if we climb x=0 meters, we have a fee of y(0)=100.
[tex]y(0)=100[/tex]
As there is a constant fee (lets called it m) for each vertical meter climbed, we have a linear relationship as:
[tex]y(x)-y(0)=m(x-0)\\\\\\y(x)-100=mx\\\\\\y(x)=100+mx[/tex]
We know that for x=3000, we have a fee of $400, so if we replace this in the linear equation, we have:
[tex]y(3000)=100+m(3000)=400\\\\\\100+3000m=400\\\\3000m=400-100=300\\\\m=300/3000=0.1[/tex]
Then, we have the equation for the total fee in function of the vertical distance:
[tex]y(x)=100+0.1x[/tex]
Factories fully 18x-9
Answer:
Factor 9 out of 18x.
9(2x)−9
Factor 9 out of −9
9(2x)+9(−1)
Factor 9 out of 9(2x)+9(−1)
9(2x−1)
Answer:
9 ( 2x - 1 )
Step-by-step explanation:
→ Look for the HCF of the whole numbers
HCF of 18 and 9 is 9
→ Put 9 outside the brackets
9 ( ? - ? )
→ Perform the calculation 18x ÷ 9 to determine the first question mark
18x ÷ 9 = 2x ⇔ 9 ( 2x - ? )
→ Perform the calculation 9 ÷ 9 to determine the second question mark
9 ÷ 9 = 1 ⇔ 9 ( 2x - 1 )
There are three persons aged 60, 65 and 70 years old. The survival probabilities for these
three persons for another 5 years are 0.7.0.4 and 0.2 respectively. What is the probability
that at least two of them would survive another five years?
Answer:
Probability that at least two of them would survive another five years = 0.388
Step-by-step explanation:
We are given;
Probability of Survival of 60 years old for the next 5 years;
P(60 years old surviving) = 0.7
Thus;
Probability of 60 years old not surviving for the next 5 years;
P(60 years old not surviving) = 1 - 0.7 = 0.3
Also,given;
Probability of Survival of 65 years old for the next 5 years;
P(65 years old surviving) = 0.4
Thus;
Probability of 65 years old not surviving for the next 5 years;
P(65 years not surviving) = 1 - 0.4 = 0.6
Also,given;
Probability of Survival of 70 years old for the next 5 years;
P(70 years old surviving) = 0.2
Thus;
Probability of 70 years old not surviving for the next 5 years;
P(70 years not surviving) = 1 - 0.2 = 0.8
Probability that at least two survived is;
P(at least 2 surviving) = [P(60 surviving) x P(65 surviving) x P(70 not surviving)] + [P(60 surviving) x P(65 not surviving) x P(70 surviving)] + [P(60 not surviving) x P(65 surviving) x P(70 surviving)] + [P(60 surviving) x P(65 surviving) x P(70 surviving)]
P(at least 2 surviving) = [(0.7)(0.4)(0.8)] + [(0.7)(0.6)(0.2)] + (0.3)(0.4)(0.2) + [(0.7)(0.4)(0.2)]
P(at least 2 surviving) = 0.224 + 0.084 + 0.024 + 0.056
P(at least 2 surviving) = 0.388
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 10% of the time if the person does not have the virus. (This 10% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive".
(a) Using Bayes’ Theorem, when a person tests positive, determine the probability that the person is infected.
(b) Using Bayes’ Theorem, when a person tests negative, determine the probability that the person is not infected.
Answer:
A) P(A|B) = 0.01966
B) P(A'|B') = 0.99944
Step-by-step explanation:
A) We are told that A is the event "the person is infected" and B is the event "the person tests positive".
Thus, using bayes theorem, the probability that the person is infected is; P(A|B)
From bayes theorem,
P(A|B) = [P(A) × P(B|A)]/[(P(A) x P(B|A)) + (P(A') x P(B|A'))]
Now, from the question,
P(A) = 1/400
P(A') = 399/400
P(B|A) = 0.8
P(B|A') = 0.1
Thus;
P(A|B) = [(1/400) × 0.8)]/[((1/400) x 0.8) + ((399/400) x (0.1))]
P(A|B) = 0.01966
B) we want to find the probability that when a person tests negative, the person is not infected. This is;
P(A'|B') = P(Not infected|negative) = P(not infected and negative) / P(negative) = [(399/400) × 0.9)]/[((399/400) x 0.9) + ((1/400) x (0.2))] = 0.99944
Alex has built a garden shed in the shape shown.
(A) Alex plans to paint the outside of the shed, including the roof but not the floor. One can of paint can cover 6m^2 . How many cans of paint will Alex need.
(B)If one can of paint costs $25.50, what will the cost be including 13% tax.
Answer:
A) 22 cans required to paint
B) Including 13% tax, cost of painting = $633.93
Step-by-step explanation:
As we check the figure, we have a composite figure.
Cuboid on the base and a pyramid on the top of it.
To find the area to be painted, we have 4 rectangular faces of cuboid with dimensions 6m [tex]\times[/tex] 3m.
And 4 triangular faces of pyramid with Base = 6m and Height 5m.
So, total area to be painted = 4 rectangular faces + 4 triangular faces
Area of rectangle = Length [tex]\times[/tex] Width = 6 [tex]\times[/tex] 3 = 18 [tex]m^2[/tex]
Area of triangle = [tex]\frac{1}{2}\times Base \times Height =\frac{1}{2}\times 6 \times 5 = 15\ m^{2}[/tex]
Total area to be painted = 4 \times 18 + 4 \times 15 = 72 + 60 = 132 [tex]m^2[/tex]
A) Area painted by 1 can = 6 [tex]m^2[/tex]
Cans required to paint 132 [tex]m^2[/tex] = [tex]\frac{132}{6} = 22\ cans[/tex]
B)
Cost of 1 can = $25.50
Cost of 22 can = $25.50 [tex]\times[/tex] 22 = $561
Including tax of 13% = $561 + $561 [tex]\times \frac{13}{100}[/tex] = $561 + $72.93 = $633.93
So, the answers are:
A) 22 cans required to paint
B) Including 13% tax, cost of painting = $633.93
Which statement describes this system of equations? 9x – 6y = 15, 3x – 2y = 5 The equations in the system are equivalent equations. There is no solution to the system of equations. The system of equations has one solution at (3, 2). The system of equations has one solution at (5, 5).
Answer:
There is no solution to the systems of equation.
Step-by-step explanation:
Graph the system by using y=mx+b
Both systems are y=2/5x+5/2.
Answer:
that guy is wrong. its the first option.
Step-by-step explanation:
i just took it
The sum of Jason’s age and his brother’s age is 55. Jason is 7 years younger than his brother. How old is Jason?
Answer:
Jason is 24 years old
Step-by-step explanation:
Lets say that Jason's age is X, and his brother's age is Y.
We know that X + Y = 55.
We also know that (X + 7) = Y.
This means (X + 7) + Y = 62 (We got the 62 by adding 55 and 7)
Anyway if X+7= Y, and X+7 + Y = 62, then X+7 = 62/2, right?
We divide the 62 by 2 and we get 31.
Alright, so X+7 = 31.
substract both sides by 7.
We get X = 24
Sorry if this seemed longer or more complicated than it should've been, I don't know how to explain it better.
What is the rule of 72 used to determine? A. the approximate time it takes an investment to triple in value B. the approximate time it takes an investment to double in value C. the approximate time it takes to earn 10% interest D. the approximate time it takes to earn $72 on any investment amount
Answer:
b. the approx time it takes an investment to double in value
2. Compare the function ƒ(x) = –x^2 + 4x – 5 and the function g(x), whose graph is shown. Which function has a greater absolute maximum (vertex)?
Answer:
g(x)
Step-by-step explanation:
The vertex of g(x) as shwon in the graph is located in the point wich coordinates are (3.5,6.25) approximatively
We need to khow the coordinates of f(x) vertex
Here is a way without derivating:f(x) = -x² + 4x -5
let a be the leading factor, b the factor of x and c the constant:
a= -1b= 4c= -5The coordinates of a vertex are: ([tex]\frac{-b}{2a}[/tex] , f([tex]\frac{-b}{2a}[/tex]) )
-b/2a = -4/ (-1*2) = 4/2 = 2
f(2)= -2²+4*2-4 = -4+4-4 = -4
obviosly f(x) has a minimum wich less than g(x)'s maximum
Answer:
Step-by-step explanation:
g(x) i think
Question
Given that tan(0) =5/12
and 0 is in Quadrant III. what is cos(0)? Write your answer in exact form. Do not round.
Provide your answer below:
Answer:
cosΘ = - [tex]\frac{12}{13}[/tex]
Step-by-step explanation:
Given that Θ is in the third quadrant then cosΘ < 0
Given
tanΘ = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]
Then 5 and 12 are the legs of a right triangle (5- 12- 13 ) with hypotenuse = 13
Thus
cosΘ = - [tex]\frac{adjacent}{hypotenuse}[/tex] = - [tex]\frac{12}{13}[/tex]
A system of equations is shown below: Equation A: 3c = d − 8 Equation B: c = 4d + 8 Which of the following steps should be performed to eliminate variable d first?
Answer:
multiplying the equation A
Step-by-step explanation:
3c=d-8 ####### *4
+ c=4d + 8
After that you will get the value of c and d.
Answer:
Multiply equation A by -4
Step-by-step explanation:
3c = d - 8
c = 4d + 8
Multiply equation A by -4.
-12c = -4d + 32
c = 4d + 8
Add the equations.
-11c = 40
Variable d is eliminated.
Hi I need this question please asap.
Use the accompanying data set to complete the following actions. a. Find the quartiles. b. Find the interquartile range. c. Identify any outliers. 41 52 37 44 42 38 41 48 43 39 36 55 42 35 15 52 39 50 29 30
Answer:
(a) [tex]Q_1=36.5,M=Q_2=41,Q_3=46[/tex]
(b) [tex]IQR=9.5[/tex]
(c) 15
Step-by-step explanation:
The given data set is
41, 52, 37, 44, 42, 38, 41, 48, 43, 39, 36, 55, 42, 35, 15, 52, 39, 50, 29, 30
Arrange the data in ascending order.
15, 29, 30, 35, 36, 37, 38, 39, 39, 41, 41, 42, 42, 43, 44, 48, 50, 52, 52, 55
Divide the data in four equal parts.
(15, 29, 30, 35, 36), (37, 38, 39, 39, 41), (41, 42, 42, 43, 44), (48, 50, 52, 52, 55)
Now,
[tex]Q_1=\dfrac{36+37}{2}=36.5[/tex]
[tex]M=Q_2=\dfrac{41+41}{2}=41[/tex]
[tex]Q_3=\dfrac{44+48}{2}=46[/tex]
[tex]IQR=Q_3-Q_1=46-36.5=9.5[/tex]
Range for outlier is
[tex][Q_1-1.5IQR,Q_3+1.5IQR]=[36.5-1.5(9.5),46+1.5(9.5)][/tex]
[tex]=[22.25,60.25][/tex]
Since, 15 lies outside the interval [22.25,60.25], therefore 15 is an outlier.
Get every whole number from 0−10 using exactly five 3's, and any arithmetic operations and parentheses
Answer:
Step-by-step explanation:
(3 +3 - 3 -3) / 3 = 0
3 - 3/3 - 3/3 = 1
3 + 3 - 3 - 3/3 = 2
(3*3*3/(3*3) = 3
(3 + 3+ 3+ 3) / 3 = 4
(3 * 3) - (3 + 3/3) = 5
((3*3*3)/ 3)) - 3 = 6
(3 * 3) - 3 + 3/3 = 7
(3*3*3 - 3) / 3 = 8
(3 + 3+3 + 3) - 3 = 9
3 + 3 + 3 + 3/3 = 10.
Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is:
Answer: $323.33
Step-by-step explanation:
($17,000 + $4,900 - $2,500) ÷ 60 months = $323.33 per month
↓ ↓ ↓
price finance down payment
A manufacturer claims that the mean tensile strength of thread A exceeds the average tensile strength of thread B. To test his claim, 16 sample pieces of each type of thread are tested under similar conditions. Type A thread had a sample average tensile strength of 185 kg with a standard deviation of 6 kg, while type B thread had a sample average tensile strength of 178 kg with a standard of 9 kg. Assume that both populations are normally distributed and the variances are equal. Test the manufacturers claim using a = 0.05 level of significance.
The complete part of the first sentence is;
A manufacturer claims that the average tensile strength of thread A exceeds the average tensile strength of thread B by at least 12 kilograms.
Answer:
we fail to reject the null hypothesis and conclude that the difference of the average tensile strength of thread A and thread B is less than 12
Step-by-step explanation:
We are given;
n_A = 16
n_B = 16
x'_A = 185 kg
x'_B = 178 kg
s_A = 6 kg
s_B = 9 kg
Let μ_A denote the population average tensile strength of thread A
Also, Let μ_B represent the population average tensile strength of thread B
Thus;
Null Hypothesis; H0;μ_A - μ_B ≤ 12
Alternative hypothesis;H1; μ_A - μ_B > 12
From the image attached, with a significance level of 0.05, the critical value for right tailed is 1.645. So we will reject the hypothesis is z > 1.645
Formula for z is;
z = (x'_A - x'_B - d_o)/√((s_A²/n_A) + (s_B²/n_B))
Plugging in the relevant values, we have;
z = (185 - 178 - 12)/√((6²/16) + (9²/16))
z = -5/2.7041634566
z = - 1.849
Since the z-value is less than 1.645,we fail to reject the null hypothesis and conclude that the difference of the average tensile strength of thread A and thread B is less than 12
[tex]20+3x-15+x=27[/tex]
Answer:
x=11/2
Step-by-step explanation:
First we can combine similar terms on the left side. 3x + x is 4x and 20-15 is 5
Now that we have combined them, we are left with 4x+5=27
Subtract 5 on both sides to cancel out the 5.
4x=22
Divide both sides by 4
x=22/4
Simplify
x=11/2
Answer:
[tex] \boxed{\sf x = \frac{11}{2}} [/tex]
Step-by-step explanation:
[tex] \sf Solve \: for \: x: \\ \sf \implies 20 + 3x - 15 + x = 27 \\ \\ \sf Grouping \: like \: terms, \: 20 + 3x - 15 + x = \\ \sf (3x + x) + (20 - 15) : \\ \sf \implies \boxed{ \sf (3x + x) + (20 - 15)} = 27 \\ \\ \sf 3x + x = 4x : \\ \sf \implies \boxed{ \sf 4x} + (20 - 15) = 27 \\ \\ \sf 20 - 15 = 5 : \\ \sf \implies 4x + \boxed{ \sf 5} = 27 \\ \\ \sf Subtract \: 5 \: from \: both \: sides: \\ \sf \implies 4x + (5 - \boxed{ \sf 5}) = 27 - \boxed{ \sf 5} \\ \\ \sf 5 - 5 = 0 : \\ \sf \implies 4x = 27 - 5 \\ \\ \sf 27 - 5 = 22 : \\ \sf \implies 4x = \boxed{ \sf 22} \\ \\ \sf Divide \: both \: sides \: of \: 4x = 22 \: by \: 4 : \\ \sf \implies \frac{4x}{4} = \frac{22}{4} \\ \\ \sf \frac{ \cancel{4}}{ \cancel{4}} = 1 : \\ \sf \implies x = \frac{22}{4} \\ \\ \sf \implies x = \frac{11 \times \cancel{2}}{2 \times \cancel{2}} \sf \implies x = \frac{11}{2} [/tex]
Write the equation of the line in slope intercept form that passes through the points (4,-2) and (2,-1)
Answer:
y + 2 = (-1/2)(x - 4)
Step-by-step explanation:
Let's move from (2, -1) to (4, -2) and measure the changes in x and y. x increases by 2 units from 2 to 4, and y decreases by 1 unit from -1 to -2. Thus, the slope of the line connecting the two points is m = rise / run =
-1
--- = (-1/2).
2
Using the point-slope formula, we get:
y + 2 = (-1/2)(x - 4)
PLEASE HELP ?
Convert by looking at the thermometer and measure to the nearest 5 degrees F.
31 degrees Celsius to Fahrenheit
Answer:
90º
Step-by-step explanation:
just look at where 31º on the right lines up with the value on the left (aka around 90º)
Answer:
87.8 °F ≈ 90°F
Step-by-step explanation:
[tex]x \ degrees \ F = 31 \ degree \ Celsius *\frac{9}{5} + 32\\x \ degrees \ F = 55.8 + 32\\\\x \ degrees \ Fahrenheit = 87.8 \ degrees \ Farenheit[/tex]
For the functions f(x)=x4−x3−7x2+9x−2 and g(x)=x−1, find (f/g)(x) and (f/g)(2).
Answer:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex]
[tex](f/g)(2)=-4[/tex]
Step-by-step explanation:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex] and undefined for x = 1.
Notice that (x-1) is in fact a factor of f(x), so the quotient of the two functions introduces a "hole" for the new function at x = 1.
f(2) can be found by simply evaluating the expression for x = 2:
[tex](f/g)(2)=2^3-7(2)+2=-4[/tex]
You work at a coffee house. Roasted coffee beans retain approximately 3/5 of their initial weight. Approximately what percent of their inital weight do they retain?
Answer:
60%
Step-by-step explanation:
We need convert 3/5 into a percent in order to find the answer.
We can convert by first dividing 3 by 5 to find the decimal value.
3/5= .6
Now we need to multiply by 100 to make it a percentage
.6 x 100= 60
60%