What do Equations 1 and 2 predict will happen to the single-slit diffraction pattern (intensity, fringe width, and fringe spacing) as the slit width is increased.

Equation 1:
Sinθ = mλ/ω

Equaiton 2:
I= Io [Sinθ (πωλ/πωλ/Rλ)

Answers

Answer 1

Answer:

the firtz agrees with the expression for the shape of the curve of diracion of a slit

Explanation:

The diffraction phenomenon is described by the expression

              a sin θ = m λ

where a is the width of the slit, t is the angle from the center of the slit, l is the wavelength and m is an integer that corresponds to the maximum diffraction.

the previous equation qualitatively describes the curve of the diffraction phenomenon the equation takes the form

             I = I₀ [(sin ππ a y / R λ) / π a y / Rλ]²

             I = I₀ ’[sin π a y /Rλ]²

             I₀ ’= I₀ / (π a y /Rλ)²

By reviewing the two expressions given

equation 1

 w sin θ = m λ

where w =a  w   is the slit width

we see that the firtz agrees with the expression for the shape of the curve of diracion of a slit

Equation 2

the squares are missing


Related Questions

A ball with a mass of 275 g is dropped from rest, hits the floor and rebounds upward. If the ball hits the floor with a speed of 2.10 m/s and rebounds with a speed of 1.90 m/s, determine the following.
a. magnitude of the change in the ball's momentum (Let up be in the positive direction.)
________ kg - m/s
b. change in the magnitude of the ball's momentum (Let negative values indicate a decrease in magnitude.)
_______ kg - m/s
c. Which of the two quantities calculated in parts (a) and (b) is more directly related to the net force acting on the ball during its collision with the floor?
A. Neither are related to the net force acting on the ball.
B. They both are equally related to the net force acting on the ball.
C. The change in the magnitude of the ball's momentum
D. The magnitude of the change in the ball's momentum

Answers

Answer:

a) The magnitude of the change in the ball's momentum is 1.1 kilogram-meters per second, b) The change in the magnitude of the ball's momentum is -0.055 kilogram-meters per second, c) D. The magnitude of the change in the ball's momentum.

Explanation:

a) This phenomenon can be modelled by means of the Principle of Momentum Conservation and the Impact Theorem, whose vectorial form is:

[tex]\vec p_{o} + Imp = \vec p_{f}[/tex]

Where:

[tex]\vec p_{o}[/tex], [tex]\vec p_{f}[/tex] - Initial and final momentums, measured in kilogram-meters per second.

[tex]Imp[/tex] - Impact due to collision, measured in kilogram-meters per second.

The impact experimented by the ball due to collision is:

[tex]Imp = \vec p_{f} - \vec p_{o}[/tex]

By using the definition of momentum, the expression is therefore expanded:

[tex]Imp = m \cdot (\vec v_{f}-\vec v_{o})[/tex]

Where:

[tex]m[/tex] - Mass of the ball, measured in kilograms.

[tex]\vec v_{o}[/tex], [tex]\vec v_{f}[/tex] - Initial and final velocities, measured in meters per second.

If [tex]m = 0.275\,kg[/tex], [tex]\vec v_{o} = -2.10\,j\,\left [\frac{m}{s} \right][/tex] and [tex]\vec v_{f} = 1.90\,j\,\left [\frac{m}{s} \right][/tex], the vectorial change of the linear momentum is:

[tex]Imp = (0.275\,kg)\cdot \left[1.90\,j+2.10\,j\right]\,\left[\frac{m}{s} \right][/tex]

[tex]Imp = 1.1\,j\,\left[\frac{kg\cdot m}{s} \right][/tex]

The magnitude of the change in the ball's momentum is 1.1 kilogram-meters per second.

b) The magnitudes of initial and final momentums of the ball are, respectively:

[tex]p_{o} = (0.275\,kg)\cdot \left(2.10\,\frac{m}{s} \right)[/tex]

[tex]p_{o} = 0.578\,\frac{kg\cdot m}{s}[/tex]

[tex]p_{f} = (0.275\,kg)\cdot \left(1.90\,\frac{m}{s} \right)[/tex]

[tex]p_{o} = 0.523\,\frac{kg\cdot m}{s}[/tex]

The change in the magnitude of the ball's momentum is:

[tex]\Delta p = p_{f}-p_{o}[/tex]

[tex]\Delta p = 0.523\,\frac{kg\cdot m}{s} - 0.578\,\frac{kg\cdot m}{s}[/tex]

[tex]\Delta p = -0.055\,\frac{kg\cdot m}{s}[/tex]

The change in the magnitude of the ball's momentum is -0.055 kilogram-meters per second.

c) The quantity calculated in part a) is more related to the net force acting on the ball during its collision with the floor, since impact is the product of net force, a vector, and time, a scalar, and net force is the product of the ball's mass and net acceleration, which creates a change on velocity.

In a nutshell, the right choice is option D.

You are fixing a transformer for a toy truck that uses an 8.0-V emf to run it. The primary coil of the transformer is broken; the secondary coil has 40 turns. The primary coil is connected to a 120-V wall outlet.
(a) How many turns should you have in the primary coil?
(b) If you then connect this primary coil to a 240-V source, what emf would be across the secondary coil?
Comments: The relevant equation is N1/N2 = V1/V2 where N is the number of turns and V is the voltage. I'm just not sure how to get the voltage of the secondary coil using emf.

Answers

Answer:

a. The primary turns is 60 turns

b. The secondary voltage will be 360 volts.

Explanation:

Given data

secondary turns N2= 40 turns

primary turns N1= ?

primary voltage V1= 120 volts

secondary voltage V2= 8 volts

Applying the transformer formula which is

[tex]\frac{N1}{N2} =\frac{V1}{V2}[/tex]

we can solve for N1 by substituting into the equation above

[tex]\frac{N1}{40} =\frac{120}{8} \\\ N1= \frac{40*120}{8} \\\ N1= \frac{4800}{8} \\\ N1= 60[/tex]

the primary turns is 60 turns

If the primary voltage is V1 240 volts hence the secondary voltage V2 will be (to get the voltage of the secondary coil using emf substitute the values of the previously gotten N1 and N2 using V1 as 240 volts)

[tex]\frac{40}{60} =\frac{240}{V2}\\\\V2= \frac{60*240}{40} \\\\V2=\frac{ 14400}{40} \\\\V2= 360[/tex]

the secondary voltage will be 360 volts.

(a) In the primary coil, you have "60 turns".

(b) The emf across the secondary coil would be "360 volts".

Transformer and Voltage

According to the question,

Primary voltage, V₁ = 120 volts

Secondary voltage, V₂ = 8 volts

Secondary turns, N₂ = 40 turns

(a) By applying transformer formula,

→ [tex]\frac{N_1}{N_2} = \frac{V_1}{V_2}[/tex]

or,

   N₁ = [tex]\frac{N_2\times V_1}{V_2}[/tex]

By substituting the values,

        = [tex]\frac{40\times 120}{8}[/tex]

        = [tex]\frac{4800}{8}[/tex]

        = 60

(2) Again by using the above formula,

→ V₂ = [tex]\frac{60\times 240}{40}[/tex]

       = [tex]\frac{14400}{40}[/tex]

       = 360 volts.

Thus the above approach is correct.  

Find out more information about voltage here:

https://brainly.com/question/4389563

What is the minimum magnitude of an electric field that balances the weight of a plasticsphere of mass 5.4 g that has been charged to -3.0 nC

Answers

Answer:

E = 17.64 x 10⁶ N/C = 17.64 MN/C

Explanation:

The electric field is given by the following formula:

E = F/q

E= W/q

E = mg/q

where,

E = magnitude of electric field = ?

m = mass of plastic sphere = 5.4 g = 5.4 x 10⁻³ kg

g = acceleration due to gravity = 9.8 m/s²

= charge = 3 nC = 3 x 10⁻⁹ C

Therefore,

E = (5.4 x 10⁻³ kg)(9.8 m/s²)/(3 x 10⁻⁹ C)

E = 17.64 x 10⁶ N/C = 17.64 MN/C

21. What is the most likely outcome of decreasing the frequency of incident light on a diffraction grating?
A. lines become narrower
B. distance between lines increases
C. lines become thicker
D. distance between lines decreases

Answers

Answer:

B.distance between lines increases

Answer:

A. Lines become narrower

Explanation:

I  got it right on my quiz!

I hope this helps!! :))

A spherical capacitor contains a charge of 3.40 nC when connected to a potential difference of 240.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 4.10 cm.

Calculate:
a. The capacitance
b. The radius of the inner sphere.
c. The electric field just outside the surface of the inner sphere.

Answers

Answer:

A) 1.4167 × 10^(-11) F

B) r_a = 0.031 m

C) E = 3.181 × 10⁴ N/C

Explanation:

We are given;

Charge;Q = 3.40 nC = 3.4 × 10^(-9) C

Potential difference;V = 240 V

Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m

A) The formula for capacitance is given by;

C = Q/V

C = (3.4 × 10^(-9))/240

C = 1.4167 × 10^(-11) F

B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.

C = (4πε_o)/(1/r_a - 1/r_b)

Rearranging, we have;

(1/r_a - 1/r_b) = (4πε_o)/C

ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m

Plugging in the relevant values, we have;

(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))

(1/r_a) - 24.3902 = 7.8501

1/r_a = 7.8501 + 24.3902

1/r_a = 32.2403

r_a = 1/32.2403

r_a = 0.031 m

C) Formula for Electric field just outside the surface of the inner sphere is given by;

E = kQ/r_a²

Where k is a constant value of 8.99 × 10^(9) Nm²/C²

Thus;

E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²

E = 3.181 × 10⁴ N/C

3. Identify the mathematical relationship that exists between pressure and volume, when temperature and quantity are held constant, as being directly proportional or inversely proportional. Explain your answer and write an equation that relates pressure and volume to a constant, using variables

Answers

Answer:

P = cte / V

therefore pressure and volume are inversely proportional

Explanation:

For this exercise we can join the ideal gases equation

        PV = n R T

they indicate that the amount of matter and the temperature are constant, therefore

         PV = cte

        P = cte / V

therefore pressure and volume are inversely proportional

if a speed sound in air at o°c is 331m/s. what will be its value at 35 °c​

Answers

Answer:

please brainliest!!!

Explanation:

V1/√T1 =V2/√T2

V1 = 331m/s

T1 = 0°C = 273k

V2 = ?

T2 = 35°c = 308k

331/√273 = V2/√308331/16.5 = V2/17.520.06 = V2/17.5V2 = 20.06 x 17.5 V2 = 351.05m/s

A single slit of width 0.3 mm is illuminated by a mercury light of wavelength 254 nm. Find the intensity at an 11° angle to the axis in terms of the intensity of the central maximum.

Answers

Answer:

The  the intensity at an 11° angle to the axis in terms of the intensity of the central maximum is  

   [tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]

Explanation:

From the question we are told that

   The  width of the slit is  [tex]D = 0.3 \ mm = 0.3 *10^{-3} \ m[/tex]

    The  wavelength is  [tex]\lambda = 254 \ nm = 254 *10^{-9} \ m[/tex]

     The angle is  [tex]\theta = 11^o[/tex]

The intensity of at [tex]11^o[/tex] to the axis in terms of the intensity of the central maximum. is mathematically represented as

        [tex]I_c = \frac{I}{I_o} = [ \frac{sin \beta }{\beta }] ^2[/tex]

Where [tex]\beta[/tex] is mathematically represented as

        [tex]\beta = \frac{D sin (\theta ) * \pi}{\lambda }[/tex]

substituting values

      [tex]\beta = \frac{0.3 *10^{-3} sin (11 ) * 3.142}{254 *10^{-9} }[/tex]

     [tex]\beta = 708.1 \ rad[/tex]

So

  [tex]I_c = \frac{I}{I_o} = [ \frac{sin (708.1) }{(708.1)}] ^2[/tex]

   [tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]

what is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates

Answers

Answer:

 m = 3,265 10⁻²⁰  E

Explanation:

For this exercise we can use Newton's second law applied to our system, which consists of a capacitor that creates the uniform electric field and the drop of oil with two extra electrons.

             ∑ F = 0

             [tex]F_{e}[/tex] - W = 0

             

the electric force is

             F_{e} = q E

   

as they indicate that the charge is two electrons

             F_{e} = 2e E

The weight is given by the relationship

             W = mg

we substitute in the first equation

               2e E = m g

         

               m = 2e E / g

     

let's put the value of the constants

              m = (2 1.6 10⁻¹⁹ / 9.80) E

 

               m = 3,265 10⁻²⁰  E

 The value of the electric field if it is a theoretical problem must be given and if it is an experiment it can be calculated with measures of the spacing between plates and the applied voltage, so that the system is in equilibrium

An alternating current is supplied to an electronic component with a warning that the voltage across it should never exceed 12 V. What is the highest rms voltage that can be supplied to this component while staying below the voltage limit in the warning?

Answers

Answer:

The highest rms voltage will be 8.485 V

Explanation:

For alternating electric current, rms (root means square) is equal to the value of the direct current that would produce the same average power dissipation in a resistive load

If the peak or maximum voltage should not exceed 12 V, then from the relationship

[tex]V_{rms} = \frac{V_{p} }{\sqrt{2} }[/tex]

where [tex]V_{rms}[/tex] is the rms voltage

[tex]V_{p}[/tex] is the peak or maximum voltage

substituting values into the equation, we'll have

[tex]V_{rms} = \frac{12}{\sqrt{2} }[/tex] = 8.485 V

A wheel on a car is rolling without slipping along level ground. The speed of the car is 36 m/s. The wheel has an outer diameter of 50 cm. The speed of the top of the wheel is

Answers

Answer:

The speed of the top of the wheel is twice the speed of the car.

That is: 72  m/s

Explanation:

To find the speed of the top of the wheel, we need to combine to velocities: the tangential velocity of the rotating wheel due to rotational motion [tex](v_t=\omega\,R=\omega\,(0.25\,m)\,)[/tex] - with [tex]\omega[/tex] being the wheel's angular velocity,

plus the velocity due to the translation of the center of mass (v = 36 m/s).

The wheel's angular velocity (in radians per second) can be obtained using the tangential velocity for the pure rotational motion and it equals:[tex]\omega=\frac{v_t}{r} =\frac{36}{0.25} \,s^{-1}[/tex]

Then the addition of these two velocities equals:

[tex]\omega\,R+v=\frac{36}{0.25} (0.25)\,\,\frac{m}{s} +36\,\,\frac{m}{s} =72\,\,\frac{m}{s}[/tex]

A force acting on an object moving along the x axis is given by Fx = (14x - 3.0x2) N where x is in m. How much work is done by this force as the object moves from x = -1 m to x = +2 m?

Answers

Answer:

72J

Explanation:

distance moved is equal to 3m.then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

The answer is 72J.

Distance moved is equal to 3m.

Then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

Is there any definition of force?

A force is a push or pulls upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.

Learn more about force here https://brainly.com/question/25239010

#SPJ2

In the circuit shown, the galvanometer shows zero current. The value of resistance R is :


 
A)  1 W
B)  2 W
C)  4 W
D)  9 W​

Answers

Answer:

its supposed to be (a) 1W

A car is moving along a road at 28.0 m/s with an engine that exerts a force of
2,300.0 N on the car to balance the drag and friction so that the car maintains a
constant speed. What is the power output of the engine?

Answers

Answer:

Power = Force × Distance/time

Power = Force × Velocity

Power = 2,300.0 N × 28.0 m/s²

Power = 64400 Nm/s

Explanation:

First show the formula of Power

Re-arrange formula and used to work out Power

Pretty simple stuff!

Hope this Helps!!

The velocity of an object is given by the following function defined on a specified interval. Approximate the displacement of the object on this interval by sub-dividing the interval into the indicated number of sub-intervals. Use the left endpoint of each sub-interval to compute the height of the rectangles.
v= 4t + 5(m/s) for 3 < t < 7; n = 4
The approximate displacement of the object is______m.

Answers

Answer:

The approximate displacement of the object is  23  m.

Explanation:

Given that:

v = 4t + 5 (m/s)  for 3< t< 7; n= 4

The approximate displacement of the object can be calculated as follows:

The velocities at the intervals of t are :

3

4

5

6

the velocity at the intervals of t =  7 will be left out due the fact that we are calculating the left endpoint Reimann sum

n = 4 since there are 4 values for t, Then there is no need to divide the velocity values

v(3) = 4(3)+5

v(3) = 12+5

v(3) = 17

v(4)= 4(4)+5

v(4) = 16 + 5

v(4) = 21

v(5)= 4(5)+5

v(5) = 20 + 5

v(5) = 25

v(6) = 4(6)+5

v(6) = 24 + 5

v(6) = 29

Using Left end point;

[tex]= \dfrac{1}{4}(17+21+25+29)[/tex]

= 23 m

The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of the light passing through it. At wavelength 486.1 nm (blue, designated with letter F) -> nF=1.497, and at wavelength 656.3 nm (red, designated with letter C) -> nC=1.488. Two beams (one of each wavelength) are prepared to coincide, and enter the flat polished surface of an acrylic block at angle of 45 arc degree measured from the normal to the surface. What is the angle between the blue beam and the red beam in the acrylic block?

Answers

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 [tex]\theta _d =0.19 ^o[/tex]

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  [tex]n_F = 1.497[/tex]

     The  wavelength of the blue light is [tex]F = 486.1 nm = 486.1 *10^{-9} \ m[/tex]

    The  refractive index of the transparent acrylic plastic for red light is  [tex]n_C = 1.488[/tex]

       The  wavelength of the red light is [tex]C = 656.3 nm = 656.3 *10^{-9} \ m[/tex]

    The incidence angle is  [tex]i = 45^o[/tex]

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       [tex]r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ][/tex]

Where  [tex]n_a[/tex] is the refractive index of air which have a value of[tex]n_a = 1[/tex]

So

     [tex]r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ][/tex]

      [tex]r_F = 28.18^o[/tex]

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       [tex]r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ][/tex]

Where  [tex]n_a[/tex] is the refractive index of air which have a value of[tex]n_a = 1[/tex]

So

     [tex]r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ][/tex]

      [tex]r_F = 28.37^o[/tex]

The angle between the blue beam and the red beam in the acrylic block

     [tex]\theta _d = r_C - r_F[/tex]

substituting values

       [tex]\theta _d = 28.37 - 28.18[/tex]

       [tex]\theta _d =0.19 ^o[/tex]

 

change in entropy of universe during 900g of ice at 0 degree celcus to water at 10 degree celcius at room temp=30 degree celcius

Answers

Answer:

4519.60 J/K

Explanation:

Change in entropy is expressed as ΔS = ΔQ/T where;

ΔQ is the total heat change during conversion of ice to water.

T is the room temperature

First we need to calculate the total change in heat using the conversion formulae;

ΔQ = mL + mcΔθ (total heat energy absorbed during phase change)

m is the mass of ice/water = 900g = 0.9kg

L is the latent heat of fusion of ice = 3.33 x 10⁵J/kg

c is the specific heat capacity of water = 4200J/kgK

Δθ is the change in temperature of water = 10°C - 0C = 10°C = 283K

Substituting the given values into ΔQ;

ΔQ = 0.9(333000)+0.9(4200)(283)

ΔQ = 299700 + 1069740

ΔQ = 1,369,440 Joules

Since Change in entropy ΔS = ΔQ/T

ΔS =  1,369,440/30+273

ΔS = 1,369,440/303

ΔS = 4519.60 J/K

Hence, the change in entropy of the universe is 4519.60 J/K

A wooden artifact from a Chinese temple has a 14C activity of 41.0 counts per minute as compared with an activity of 58.2 counts per minute for a standard of zero age. You may want to reference (Pages 913 - 916) Section 21.4 while completing this problem. Part A From the half-life for 14C decay, 5715 yr, determine the age of the artifact. Express your answer using two significant figures. t

Answers

Answer:

Explanation:

The relation between activity and number of radioactive atom in the sample is as follows

dN / dt = λ N where λ is disintegration constant and N is number of radioactive atoms

For the beginning period

dN₀ / dt = λ N₀

58.2 = λ N₀

similarly

41 = λ N

dividing

58.2 / 41 = N₀ / N

N = N₀ x .70446

formula of radioactive decay

[tex]N=N_0e^{-\lambda t }[/tex]

[tex].70446 =e^{-\lambda t }[/tex]

- λ t = ln .70446 =   - .35

t = .35 / λ

λ = .693 / half life

= .693 / 5715

= .00012126

t = .35 / .00012126

= 2886.36

= 2900 years ( rounding it in two significant figures )

A 2.0 kg handbag is released from the top of the Leaning Tower of Pisa, and 55 m before reaching the ground, it carries a speed of 29 m / s. What was the average force of air resistance?

Answers

Answer:

4.31 N

Explanation:

Given:

Δy = -55 m

v₀ = 0 m/s

v = -29 m/s

Find: a

v² = v₀² + 2aΔy

(-29 m/s)² = (0 m/s)² + 2a (-55 m)

a = -7.65 m/s²

Sum of forces in the y direction:

∑F = ma

R − mg = ma

R = m (g + a)

R = (2.0 kg) (9.8 m/s² − 7.65 m/s²)

R = 4.31 N

Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?

Answers

Answer:

   R = r_protón / 2

Explanation:

The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement

      F = m a

Since the magnetic force is perpendicular, the acceleration is centripetal.

       a = v² / R

       

the magnetic force is

       F = q v x B = q v B sin θ

the field and the speed are perpendicular so the sin 90 = 1

we substitute

          qv B = m v² / R

          R = q v B / m v²

in the exercise they indicate

the charge  q = 2 e

the mass     m = 4 m_protón

        R = 2e v B / 4m_protón v²

we refer the result to the movement of the proton

         R = (e v B / m_proton) 1/2

the data in parentheses correspond to the radius of the proton's orbit

         R = r_protón / 2

A charged particle is moving with speed v perpendicular to a uniform magnetic field. A second identical charged particle is moving with speed 2v perpendicular to the same magnetic field. If the frequency of revolution of the first particle is f, the frequency of revolution of the second particle is

Answers

Answer:

the frequency of revolution of the second particle is f

Explanation:

centripetal force is balanced by the magnetic force for object under magnetic field is given as

Mv²/r= qvB

But v= omega x r

Omega= 2pi x f

f= qB/2pi x M

So since frequency does not depend on the velocity.therefore the frequency of revolution of the second particle remains the same and its equal to f

An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1950 K. (kb is Boltzmann's constant, 1.38x10-23 J/K).

Answers

Answer:

The de Broglie wavelength of electron βe = 2.443422 × 10⁻⁹ m

The de Broglie wavelength of proton βp = 5.70 × 10⁻¹¹ m

Explanation:

Thermal kinetic energy of electron or proton = KE

∴ KE = 3kbT/2

given that; kb = 1.38 x 10⁻²³ J/K , T = 1950 K

so we substitute

KE = ( 3 × 1.38 x 10⁻²³ × 1950 ) / 2

kE = 4.0365 × 10⁻²⁰ (  is the kinetic energy for both electron and proton at temperature T )

Now we know that

mass of electron M'e = 9.109 ×  10⁻³¹

mass of proton M'p = 1.6726 ×  10⁻²⁷

We also know that

KE = p₂ / 2m

from the equation, p = √ (2mKE)

{ p is momentum, m is mass }

de Broglie wavelength = β

so β = h / p = h / √ (2mKE)

h = Planck's constant = 6.626 ×  10⁻³⁴

βe =  h / √ (2m'e × KE)

βe = 6.626 ×  10⁻³⁴ / √ (2 × 9.109 ×  10⁻³¹ × 4.0365 × 10⁻²⁰ )

βe = 6.626 ×  10⁻³⁴ / √  7.3536957 × 10⁻⁵⁰

βe = 6.626 × 10⁻³⁴  / 2.71176984642871 × 10⁻²⁵

βe = 2.443422 × 10⁻⁹ m

βp =  h / √ (2m'p ×KE)

βp = 6.626 ×  10⁻³⁴ / √ (2 × 1.6726 ×  10⁻²⁷ × 4.0365 × 10⁻²⁰ )

βp = 6.626 ×  10⁻³⁴ / √ 1.35028998 × 10⁻⁴⁶

βp =  6.626 ×  10⁻³⁴ / 1.16201978468527 ×  10⁻²³

βp = 5.702140 × 10⁻¹¹ m

A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust reversers in a distance of 425 m along the runway with constant deceleration. The total mass of the aircraft is 140 Mg with mass center at G. Compute the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking. At lower speed, aerodynamic forces on the aircraft are small and may be neglected.

Answers

Answer:

257 kN.

Explanation:

So, we are given the following data or parameters or information in the following questions;

=> "A jet transport with a landing speed

= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"

= > The distance = 425 m along the runway with constant deceleration."

=> "The total mass of the aircraft is 140 Mg with mass center at G. "

We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"

Step one: determine the acceleration;

=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.

=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.

Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).

= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).

= 257 kN.

The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Given data :

Landing speed of Jet = 200 km/h

Distance = 425 m

Total mass of aircraft = 140 Mg  with mass center at G

Determine the reaction N under the nose of wheel B First step : calculate the value of the Jet acceleration

  Jet acceleration = 1 / (2 *425) * (200²  - 60² ) *  1 / (3.6)²

                              = 3.3 m/s²

Next step : determine the reaction N under the nose of Wheel

Reaction N = Total mass of aircraft * jet acceleration* 1.2 = 15N - (9.8*2.4* 140).   ----- ( 1 )

∴ Reaction N = 140 * 3.3 * 1.2 = 15 N - ( 9.8*2.4* 140 )  

 Hence Reaction N = 257 KN

                     

We can conclude that the The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Learn more about : https://brainly.com/question/15776281

A wave travels at a consent speed. how does the frequency change if the wavelength is reduced by a factor of 4?

Answers

Answer:

The frequency increases by 4 because it is inversely proportional to the wavelength.

An air-filled parallel-plate capacitor is connected to a battery and allowed to charge up. Now a slab of dielectric material is placed between the plates of the capacitor while the capacitor is still connected to the battery. After this is done, we find that

Answers

Answer:

The voltage across the capacitor will remain constant

The capacitance of the capacitor will increase

The electric field between the plates will remain constant

The charge on the plates will increase

The energy stored in the capacitor will increase

Explanation:

First of all, if a capacitor is connected to a voltage source, the voltage or potential difference across the capacitor will remain constant. The electric field across the capacitor will stay constant since the voltage is constant, because the electric field is proportional to the voltage applied. Inserting a dielectric material into the capacitor increases the charge on the capacitor.

The charge on the capacitor is equal to

Q = CV

Since the voltage is constant, and the charge increases, the capacitance will also increase.

The energy in a capacitor is given as

E = [tex]\frac{1}{2}CV^{2}[/tex]

since the capacitance has increased, the energy stored will also increase.

The specific heat of a certain type of cooking oil is 1.75 J/(g⋅°C). How much heat energy is needed to raise the temperature of 2.01 kg of this oil from 23 °C to 191 °C?

Answers

Answer:

Q = 590,940 J

Explanation:

Given:

Specific heat (c) = 1.75 J/(g⋅°C)

Mass(m) = 2.01 kg = 2,010

Change in temperature (ΔT) = 191 - 23 = 168°C

Find:

Heat required (Q)

Computation:

Q = mcΔT

Q = (2,010)(1.75)(168)

Q = 590,940 J

Q = 590.94 kJ

The copper wire to the motor is 6.0 mm in diameter and 1.1 m long. How far doesan individual electron travel along the wire while the starter motor is on for asingle start of the internal combustion engine

Answers

Answer:

0.306mm

Explanation:

The radius of the conductor is 3mm, or 0.003m

The area of the conductor is:

A = π*r^2 = π*(.003)^2 = 2.8*10^-5 m^2

The current density is:

J = 130/2.8*10^-5 = 4.64*10^6 A/m

According to the listed reference:

Vd = J/(n*e) = 4.64*10^6 / ( 8.46*10^28 * 1.6*10^-19 ) = 0.34*10^-6 m/s = 0.34mm/s

The distance traveled is:

x = v*t = 0.34 * .90 = 0.306 mm

An appliance with a 20.0-2 resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the appliance g

Answers

Q: An appliance with a 20 Ω resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the appliance g

Answer:

0.866 A

Explanation:

From the question,

P = I²R............................. Equation 1

Where P = power, I = maximum current, R = Resistance.

Make I the subject of the equation

I = √(P/R).................... Equation 2

Given: P = 15 W, R = 20 Ω

Substitute these values into equation 2

I = √(15/20)

I = √(0.75)

I = 0.866 A

Hence the maximum current that can flow safely through the appliance = 0.866 A

Two positive charges are located at x = 0, y = 0.3m and x = 0, y = -.3m respectively. Third point charge q3 = 4.0 μC is located at x = 0.4 m, y = 0.
A) Make a careful sketch of decent size that illustrates all force vectors with directions and magnitudes.
B) What is the resulting vector of the total force on charge q1 exerted by the other two charges using vector algebra?

Answers

Answer:

0.46N

Explanation:

See attached file

You indicate that a symbol
is a vector by drawing
A. through the symbol.
B. over the symbol.
c. under the symbol.
D. before the symbol.​

Answers

Answer:

B. over the symbol.

Explanation:

vectors are represented with a symbol carrying an arrow head with also indicates direction

Other Questions
Which of the following is a primary function of carbohydrates?Choose ONE answer:A. Acting as a long-term energy source.B. Speeding up chemical reactions.C. Storing genetic information.D. Providing short-term energy storage. meaning of massacre Solve for x in the equation X^2-16^x=0 can someone please help me? 4^3/4 x 2^x = 16^2/5work out the exact value of x A consumer has to choose between going to the movies or going out to dinner. If she chooses the movies, the cost of dinner is considered a/an _______ cost. A. marginal B. opportunity C. incremental D. accounting What is the actual distance, in miles, between two cities that are 3 inches apart on the map? ____________________________________________________________________Bennett brings 3 gallons of water to his football game. His teammate, Jordan, brings 3 times as many gallons of water as Bennett. If one gallon of water contains 128 fluid ounces, how many ounces of water did Bennett and Jordan bring to their football game? Which jojo reference is correct.A. ZA WARUDOB. Oh?, you're approaching me?C. AYAYAYAYAYAD. BreathingE. MUDA MUDA MUDA MUDA MUDA MUDA MUDA In classic research, Dweck (1975) found that boys tend to attribute their poor performance in math to _____ factors, whereas girls tend to attribute their poor performance in math to _____ factors. In your lab you are studying the genome of venomous rattlesnakes to find the gene which codes for their venom glands. You have tworattlesnakes, one rattlesnake has a mutation but can still produce venom. You compare his DNA to a normal rattlesnake. What type ofmutation has occurred?Normal: AATCGCTACGCACGTCAGMutated: TATCGCTACGCACGTCAGA. Deletion MutationB. Nonsense mutationC. Silent MutationD. Missense mutation Taylor s has a beta of .78 and a debt-to-equity ratio of .2. The market rate of return is 10.6 percent, the tax rate is 34 percent, and the risk-free rate is 1.4 percent. The pretax cost of debt is 6.1 percent. What is the firm's WACC Look at the image or images and choose the correct adjective to describe the image or images. Arrow pointing to teenager pointing to himself next to an ugly monster grande pequeo alto bonito A 1.8 kg microphone is connected to a spring and is oscillating in simple harmonic motion up and down with a period of 3s. Below the microphone is 1.8 hz, calculate the spring constant A 2-digit number is increased by 36 when the digits are reversed. The sum of the digits is 10. What is the original number? The rotor of a gas turbine is rotating at a speed of 7000 rpm when the turbine is shut down. It is observed that 3.5 minutes is required for the rotor to coast to rest. Assuming uniformly accelerated motion, determine the number of revolutions that the rotor executes before coming to rest. Hint: there will be a large number of rotations. In two to three paragraphs, explain how Vietnams political boundaries, affiliations, and alliances changed from the end of World War II to 1975, when the country finally achieved independence. Based on your research, include the causes and effects of foreign aggression on Vietnam during this period. In what way did industrialization affect the working class?o They improved their standard of living.o They fell far below other classes.They became more successful.o They were absorbed into the middle class.4Mark this and returnSave and ExitNexSubmit One student ate 3/20 of all candies and another 1.2 lb. The second student ate 3/5 of the candies and the remaining 0.3 lb. What weight of candies did they each eat? PLEASE HELP!! What is x, if the volume of the cylinder is 768 pi cm3? Do not use units or commas in your answer.