what evidence tells us that quasars are the centers of distant galaxies?

Answers

Answer 1

Quasars are extremely bright and distant celestial objects that emit a large amount of energy, including radiation, X-rays, and radio waves. Their brightness is believed to come from the accretion of gas and dust onto a supermassive black hole at the center of a distant galaxy.

This accretion process generates a tremendous amount of energy that is emitted as radiation, making quasars visible from vast distances.

There is strong evidence to support the theory that quasars are the centers of distant galaxies. Firstly, observations have shown that quasars are often surrounded by a large amount of gas and dust, which is believed to be the material being pulled into the supermassive black hole at the center of the galaxy. Secondly, studies of the motion of stars within galaxies have shown that the centers of galaxies are often associated with massive objects, such as supermassive black holes, which are believed to be the engines powering quasars. Additionally, the distribution of galaxies and quasars in the universe suggests a close relationship between the two, with quasars found mainly in the centers of galaxies.

To Learn more about Quasars. Click this!

brainly.com/question/29982221

#SPJ11


Related Questions

the mass density of normal air at a certain temperature is 1.29 kg/m3. if the average molecular mass of air is 29.0 u, how many air molecules are in spherical balloon of radius 15.0 cm?

Answers

There are approximately 3.52x10²¹ air molecules in the spherical balloon.

The number of air molecules in a spherical balloon can be calculated using the ideal gas law, which relates the number of molecules to the pressure, volume, temperature, and gas constant.

PV = nRT

where P is the pressure, V is the volume, n is the number of molecules, R is the gas constant, and T is the absolute temperature.

Assuming that the balloon is at atmospheric pressure, we can use the ideal gas law to solve for the number of molecules:

n = PV/RT

The volume of the balloon can be calculated as:

V = (4/3)πr³

where r is the radius of the balloon.

Substituting the values given, we have:

V = (4/3)π(0.15m)³ = 0.0141 m³

n = (1.01x10⁵ Pa)(0.0141 m³)/(8.31 J/mol K)(273 K)(1.29 kg/m³)(1 u/1.66x10⁻²⁷ kg) = 3.52x10²¹ molecules

To learn more about density click on,

https://brainly.com/question/24187825

#SPJ4

the smallest grains of dust stick together in an accretion disk by which force?

Answers

Answer:

Explanation:

Gravitational

The smallest grains of dust stick together in an accretion disk primarily through the force of Van der Waals attraction.

Van der Waals forces are weak intermolecular forces that arise due to temporary fluctuations in electron distributions around atoms or molecules. In the case of dust grains in an accretion disk, these forces play a crucial role in bringing the grains together and facilitating their growth. The force of Van der Waals attraction between two particles can be approximated using the equation:

F = -C/r^2

Where F is the attractive force, C is a constant related to the polarizability of the particles, and r is the distance between the particles. This force increases as the particles get closer together, leading to the aggregation of dust grains.

In the low-pressure and low-temperature environment of an accretion disk, the smallest dust grains stick together primarily through the force of Van der Waals attraction. As these grains collide and aggregate, they continue to grow, eventually forming larger bodies such as planetesimals or protoplanets. The process of dust grain sticking and growth through Van der Waals forces is a crucial step in the formation of planets and other celestial bodies in the early stages of planetary systems.

To know more about intermolecular visit :

https://brainly.com/question/12243368

#SPJ11

Soda from a me = 12 oz can at temperature Tg = 18°C is poured in its entirety into a glass containing a mass m = 0.14 kg amount of ice at temperature Ty=-19.5°C. Assume that ice and water have the following specific heats: e7=2090 J/(kg-°C) and es= 4186 J/(kg:°C), and the latent heat of fusion of ice is ly= 334 kJ/kg. In this problem you can assume that 1 kg of either soda or water corresponds to 35.273 oz. (a) In degrees Celsius, what is the final temperature final of the mixture? (b) Write an expression for how much of the ice melted has melted?

Answers

The final temperature of the mixture is -3.3°C. approximately 51 g of ice melts.

[tex]final = (m_soda * c_soda * Tg + m_ice * es * Ty + ml * ly) / (m_soda * c_soda + m_ice * es)[/tex]

Substituting the given values, we get:

final = (0.396 * 4186 * 18 + 0.14 * 2090 * (-19.5) + ml * 334000) / (0.396 * 4186 + ml * 334)

Simplifying and solving for ml, we get:

final = (0.34 kg * 4186 J/(kg°C) * 18°C + 0.14 kg * 2090 J/(kg°C) * (-19.5°C) + 0.14 kg * 334000 J/kg) / (0.34 kg * 4186 J/(kg°C) + 0.14 kg * 2090 J/(kg°C))

final = -3.3°C

(b) The expression for how much of the ice has melted, ml, is given by:

[tex]ml = m_ice * (Ty - final) / ly[/tex]

where m_ice is the mass of the initial ice. Substituting the given values, we get:

[tex]m_ice[/tex] = (0.14 kg * 334000 J/kg) / (334000 J/kg + 2090 J/(kg*°C) * (-3.3°C - (-19.5°C)))

[tex]m_ice[/tex] = 0.051 kg

Temperature is a measure of the degree of heat or coldness of an object or environment. It is one of the most fundamental and widely used physical quantities in the world today, and plays a crucial role in a wide range of scientific disciplines, from meteorology and climatology to chemistry and physics.

Temperature is typically measured using a thermometer, which can come in various forms, including mercury, alcohol, and digital. The most commonly used temperature scale is the Celsius scale, which sets the freezing point of water at 0 degrees and the boiling point at 100 degrees. Another commonly used scale is the Fahrenheit scale, which sets the freezing point of water at 32 degrees and the boiling point at 212 degrees.

To learn more about Temperature visit here:

brainly.com/question/7510619

#SPJ4

A 23 kg child is coasting at 3.6 m/s over flat ground in a 5.0 kg wagon. The child drops a 1.4 kg ball from the side of the wagon. What is the final speed (in m/s) of the child and wagon?

Answers

A 23 kg child is coasting at 3.6 m/s over flat ground in a 5.0 kg wagon. The child drops a 1.4 kg ball from the side of the wagon. 3.79 m/s is the final speed (in m/s) of the child and wagon.

To solve this problem, we need to use the conservation of momentum. The initial momentum of the system

(child + wagon + ball) is: P initial = (m child + m wagon + m ball) × v initial where m child = 23 kg, m wagon = 5.0 kg, m ball = 1.4 kg, and

v initial = 3.6 m/s P initial = (23 kg + 5.0 kg + 1.4 kg) × 3.6 m/s = 106.2 kg m/s When the ball is dropped, there is no external force acting on the system, so the total momentum must be conserved.

The final momentum of the system (child + wagon) is:

P final = (m child + m wagon) × v final where v final is the final speed of the child and wagon. The momentum of the ball is negligible compared to the momentum of the child and wagon, so we can ignore it in our calculations. Using the conservation of momentum, we can set

P initial = P final and solve for v final: 106.2 kg m/s = (23 kg + 5.0 kg) × v final v final = 106.2 kg m/s ÷ 28 kg = 3.79 m/s

Therefore, the final speed of the child and wagon is approximately 3.79 m/s.

Learn more about momentum here

https://brainly.com/question/3920210

#SPJ11

find a model for simple harmonic motion of a spring that has a maximum positive displacement of 1616inches when t=t=π2π2, and a period of 1212seconds.

Answers

The equation for the simple harmonic motion of a spring can be represented as x(t) = A * cos(ωt + φ), where A is the amplitude, ω is the angular frequency, t is time, and φ is the phase angle. Given that the maximum positive displacement (amplitude) of the spring is 16 inches when t = π/2 and the period of the motion is 12 seconds, we can solve for the constants.

The amplitude A of the motion can be determined from the given maximum positive displacement:

A = 16 inches

The period T of the motion is related to the angular frequency ω as:

T = 2π/ω

Solving for ω, we get:

ω = 2π/T = 2π/12 = π/6 radians per second

The phase angle φ can be determined by using the fact that the maximum positive displacement occurs at t = π/2:

x(π/2) = A * cos(ω(π/2) + φ) = A

cos(π/12 + φ) = 1

π/12 + φ = 0

φ = -π/12

Therefore, the equation for the simple harmonic motion of the spring is:

x(t) = 16 cos(πt/6 - π/12)

To learn more about Harmonic Motion click here

https://brainly.com/question/30404816

#SPJ11

A bus with a maximum speed of 20m/s takes 21 second to travel 270m from stop to stop. It acceleration is twice as great as its deceleration find A the acceleration

Answers

A. The acceleration of the bus, given that it has a maximum speed of 20 m/s is 0.74 m/s²

B. The deceleration of the bus is 0.37 m/s²

A. How do i determine the acceleration of the bus?

The acceleration of the bus can be obtain as illustrated below:

Initial velocity (u) = 0 m/sFinal velocity (v) = 75 m/sDistance (s) = 270 mAcceleration (a) = ?

v² = u² + 2as

20² = 0² + (2 × a × 270)

Clear bracket

400 = 0 + 540a

400 = 540a

Divide both side by 540

a = 400 / 540

a = 0.74 m/s²

Thus, the acceleration of the bus is 0.74 m/s²

B. How do i determine the deceleration of the bus?

The deceleration of the bus can be obtain as illustrated below:

Acceleration = 0.74 m/s²Deceleration =?

From the question given, we were told that:

Acceleration = 2 × deceleration

Inputting the value of acceleration, we have

0.74 = 2 × deceleration

Divide both sides by 2

Deceleration = 0.74 / 2

Deceleration = 0.37 m/s²

Learn more about acceleration:

https://brainly.com/question/491732

#SPJ1

Complete question:

A bus with a maximum speed of 20m/s takes 21 second to travel 270m from stop to stop. It acceleration is twice as great as its deceleration find A. The acceleration

B. The deceleration

what is the wavelength used by a radio station that broadcasts at a frequency of 920 khz? (c = 3.00 × 108 m/s) 175 m 326 m 22.6 m 226 m 276 m

Answers

To find the wavelength used by a radio station broadcasting at a frequency of 920 kHz, you can use the formula:
wavelength = speed of light / frequency

The wavelength used by the radio station broadcasting at a frequency of 920 kHz is approximately 326 meters.

Where, wavelength = speed of light / frequency
Given that the speed of light (c) is 3.00 × 10^8 m/s and the frequency is 920 kHz, you first need to convert the frequency to Hz:
920 kHz = 920,000 Hz
Now you can calculate the wavelength:
wavelength = (3.00 × 10^8 m/s) / (920,000 Hz)
wavelength ≈ 326 m
So, the wavelength used by the radio station broadcasting at a frequency of 920 kHz is approximately 326 meters.

Learn more about wavelength at

brainly.com/question/13533093

#SPJ11

Gold, which has a density of 19.32 g/cm3, is the most ductile metal and can be pressed into a thin leaf or drawn out into a long fiber. (a) If a sample of gold with a mass of 1.365 g, is pressed into a leaf of 7.696 um thickness, what is the area (in m2) of the leaf? (b) If, instead, the gold is drawn out into a cylindrical fiber of radius 2.600 um, what is the length (in m) of the fiber?

Answers

The required area of the gold leaf which is the most ductile metal is 0.009182 m² and the length of the fiber is 33.0024 m.

(a) To calculate the area of the gold leaf, we first need to determine the volume of the gold sample. We can use the density formula:
Density = Mass / Volume
Rearranging for Volume:
Volume = Mass / Density = 1.365 g / 19.32 g/cm³ ≈ 0.0707 cm³
Next, we convert the thickness to cm:
7.696 μm = 7.696 x 10⁻⁶ m = 7.696 x 10⁻⁴ cm
Now we can find the area (in cm²):
Area = Volume / Thickness = 0.0707 cm³ / 7.696 x 10⁻⁴ cm ≈ 91.82 cm²
Finally, we convert the area to m²:
Area = 91.82 cm² x (1 m / 100 cm)² ≈ 0.009182 m²
(b) To find the length of the fiber, we first determine the volume of the gold cylinder:
Volume = π × r² × h, where r is the radius and h is the height (length of the fiber).
We already know the volume (0.0707 cm³) and the radius (2.600 μm = 2.600 x 10⁻⁴ cm), so we can solve for the height (length) in cm:
0.0707 cm³ = π × (2.600 x 10⁻⁴ cm)² × h
h ≈ 3300.24 cm
Finally, we convert the length to meters:
Length = 3300.24 cm × (1 m / 100 cm) ≈ 33.0024 m

To learn more about ductile click here https://brainly.com/question/22212347

#SPJ11

if the 75-kg crate starts from rest at a, and its speed is 6 m>s when it passes point b, determine the constant force f exerted on the cable. neglect friction and the size of the pulley.

Answers

The constant force exerted on the cable is 1350/s, no friction and a pulley of negligible size.

In order to determine the constant force exerted on the cable, we can use the equation F = ma,

where F is the force, m is the mass of the crate (75 kg), and a is the acceleration.

We can use the formula for constant acceleration, which is v^2 = u^2 + 2as, where v is the final velocity (6 m/s), u is the initial velocity (0 m/s since the crate starts from rest), a is the acceleration, and s is the distance between points a and b. Solving for a, we get

a =\frac{ (v^2 - u^2) }{ 2s}

a = \frac{(6^2 - 0^2) }{ 2s}

a = 18/s. Now we can substitute this value for a in the equation

F = ma to get F = 75 x 18/s = 1350/s.

Therefore, the constant force exerted on the cable is 1350/s. It is important to note that this answer assumes no friction and a pulley of negligible size.

learn more about acceleration Refer: https://brainly.com/question/12550364

#SPJ11

what is the range of wavelengths for (a) fm radio (88 mhz to 108 mhz) and (b) am radio (535 khz to 1700 khz)?

Answers

The range of wavelengths for (a) FM radio (88 MHz to 108 MHz) and (b) AM radio (535 kHz to 1700 kHz) can be determined using the formula: wavelength = speed of light / frequency.

(a) For FM radio, the frequency range is 88 MHz to 108 MHz. Converting these to Hz, we have 88,000,000 Hz to 108,000,000 Hz. Using the formula, the wavelength range is approximately 3.41 meters to 2.78 meters.

(b) For AM radio, the frequency range is 535 kHz to 1700 kHz. Converting these to Hz, we have 535,000 Hz to 1,700,000 Hz. Using the formula, the wavelength range is approximately 561 meters to 176 meters.

In summary, FM radio has a wavelength range of 2.78 meters to 3.41 meters, while AM radio has a wavelength range of 176 meters to 561 meters.

you know more about range of wavelengths pls visit-

https://brainly.com/question/3476548

#SPJ11

find the volume v of the described solid s.the base of s is the region enclosed by the parabolay = 5 − 2x2and the x−axis. cross-sections perpendicular to the y−axis are squares.

Answers

The volume of the described solid is 25 cubic units. To find the volume of the solid, we need to integrate the area of each cross-section perpendicular to the y-axis over the range of y values.

First, let's sketch the base of the solid:

The base is the region enclosed by the parabola [tex]y = 5 - 2x^2[/tex] and the x-axis, which goes from x = 0 to x = 2.5. We can find the equation for the top of each square by solving for x in terms of y:

[tex]y = 5 - 2x^2[/tex]

[tex]x^2 = (5 - y) / 2[/tex]

x = √((5 - y) / 2)

So, the area of each square is (2x[tex])^2[/tex] = 4(5 - y)/2 = 2(5 - y). The volume of the solid is then:

V = ∫(A(y))dy from y = 0 to y = 5

V = ∫2(5 - y)dy from y = 0 to y = 5

V = [[tex]2(5y - y^2/2[/tex])] from y = 0 to y = 5

V = 25 cubic units

Therefore, the volume of the described solid is 25 cubic units.

Learn more about volume

https://brainly.com/question/28058531

#SPJ4

On the same website, move the compass near the north pole of the bar magnet and then the south pole of the bar magnet. 6) Does the north pole of a bar magnet attract or repel the north pole of the compass?7) Does the south pole of a bar magnet attract or repel the south pole of the compass?8) Does a north pole and a south pole attract or repel each other?9) Based on your previous answers, which of the Earth’s magnetic poles, north magnetic or south magnetic, is near the Earth’s geographic North Pole?

Answers

When you move the compass near the north pole of the bar magnet, the north pole of the compass will point towards the south pole of the bar magnet.

This is because opposite poles attract each other, so the north pole of the compass is attracted to the south pole of the magnet. When you move the compass near the south pole of the bar magnet, the north pole of the compass will point towards the north pole of the bar magnet. This is because like poles repel each other, so the north pole of the compass is repelled by the south pole of the magnet and is attracted to the opposite pole.

A north pole and a south pole attract each other, while like poles repel each other. Therefore, the north pole of the bar magnet attracts the south pole of the compass, and the south pole of the bar magnet attracts the north pole of the compass.

Based on the previous answers, the Earth's geographic North Pole is near the Earth's magnetic South Pole. This is because opposite magnetic poles attract each other, and the North Pole of the Earth is attracted to the South Magnetic Pole.

Learn more about magnets here:

https://brainly.com/question/23259407

#SPJ11

what is the frequency of a photon if the energy is 7.82 × 10⁻¹⁹ j? (h = 6.626 × 10⁻³⁴ j • s)

Answers

The frequency of a photon if the energy is 7.82 × 10⁻¹⁹  and h = 6.626 × 10⁻³⁴ J • s is 1.18 × 10¹⁵ Hz.

To find the frequency of a photon with energy of 7.82 × 10⁻¹⁹ J, we can use the equation E = hf, where E is the energy of the photon, h is Planck's constant (6.626 × 10⁻³⁴ J • s), and f is the frequency of the photon.

Rearranging the equation, we get f = E/h. Plugging in the given values, we get:

f = 7.82 × 10⁻¹⁹ J / 6.626 × 10⁻³⁴ J • s

Simplifying the expression, we get:

f = 1.18 × 10¹⁵ Hz

Therefore, the frequency of the photon is 1.18 × 10¹⁵ Hz.

Learn more about photon: https://brainly.com/question/30107923

#SPJ11

Suppose there are 5×106 civilizations broadcasting radio signals in the Milky Way Galaxy right now. Part A On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy. Express your answer using one significant figure. N1 N 1 = nothing Request Answer (Part B) How does your answer change if there are only 100 civilizations instead of 5×106? Express your answer using one significant figure.

Answers

The fewer civilizations there are, the more stars we would have to search before we could hear a signal.

Part A: If there are 5×10^6 civilizations broadcasting radio signal in the Milky Way Galaxy and there are 500 billion stars in the galaxy, then on average, we would have to search 100 stars before we would expect to hear a signal. This is because 500 billion stars divided by 5 million civilizations equals 100 stars per civilization.
Part B: If there are only 100 civilizations instead of 5×10^6, then on average, we would have to search 5 billion stars before we would expect to hear a signal. This is because 500 billion stars divided by 100 civilizations equals 5 billion stars per civilization. Thus, the fewer civilizations there are, the more stars we would have to search before we could hear a signal. It is important to note, however, that these calculations are based on many assumptions and estimates, and the actual number of civilizations and the likelihood of receiving a signal are unknown.

learn more about radio signal Refer: https://brainly.com/question/31680067

#SPJ11

complete question:

Suppose there are 5×106 civilizations broadcasting radio signals in the Milky Way Galaxy right now. Part A On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy. Express your answer using one significant figure. N1 N 1 = nothing Request Answer (Part B) How does your answer change if there are only 100 civilizations instead of 5×106?

if carpentry positions a and b required identical skill leveles, other things constant, which of the following would most likely increase the wage rate of position a relative to position b. The work place of position A is in the intense heat of the sun, whereas the work place of B is air-conditioned.

Answers

The harsh working conditions in position A (intense heat of the sun) compared to position B (air-conditioned) would likely increase the wage rate of position A relative to position B.

The harsh working conditions in position A would make the job less desirable and more challenging, leading to a decrease in the supply of workers willing to take up the job. As a result, employers would have to offer a higher wage rate to attract workers to position A. On the other hand, the air-conditioned workplace in position B would make the job more comfortable and easier, attracting more workers, which would increase the supply of workers relative to the demand, leading to a lower wage rate. Therefore, the wage rate of position A would likely be higher than that of position B due to the difference in working conditions.

Learn more about intense here:

https://brainly.com/question/17583145

#SPJ11

What is the difference in the interference patterns formed (a) by two slits 10^-4 cm apart, (b) by a diffraction grating containing 10^4 lines/cm?

Answers

The interference patterns formed by two slits 10^-4 cm apart and a diffraction grating containing 10^4 lines/cm are different in terms of the number of fringes, the spacing between the fringes, the intensity of the fringes, and the precision of the pattern. The interference patterns formed by two slits 10^-4 cm apart and by a diffraction grating containing 10^4 lines/cm are different in several ways.

The pattern formed by two slits will have a central bright fringe surrounded by alternating bright and dark fringes on either side. The spacing between adjacent bright fringes will be proportional to the wavelength of the light used and the distance between the slits. On the other hand, the interference pattern formed by a diffraction grating will have multiple bright fringes separated by dark regions. The spacing between the bright fringes will be inversely proportional to the spacing between the grating lines and directly proportional to the wavelength of the light used.

The intensity of the fringes in the interference pattern formed by a diffraction grating will be much higher than those formed by two slits. This is because the diffraction grating contains many more slits (or lines) than just two.

To know more about  interference visit :-

https://brainly.com/question/26004954

#SPJ11

Why is the top layer of the ocean the warmest?

Answers

Answer:

Explanation:

Because of the sun, the sun warms the top layer of the ocean.

celine is in a hot air balloon that has just taken off and is floating above its launching point. layla is standing on the ground, 20 meters away from the launching point. if celine and layla are 29 meters apart, how high up is celine?

Answers

Celine is approximately 28 meters high up in the hot air balloon.

To solve this problem, we can use the Pythagorean theorem, which states that in a right triangle, the sum of the squares of the two shorter sides is equal to the square of the hypotenuse (the longest side).

Let's label the distance from the launching point to Celine as "x", and the height of the balloon as "h".

Then, we can write two equations based on the given information:

x + 20 = 29  (since Celine and Layla are 29 meters apart)

[tex]x^2 + h^2[/tex] = [tex](29)^2[/tex]  (using the Pythagorean theorem)

We can simplify the first equation to find that x = 9. Then, we can substitute this value into the second equation and solve for h:

[tex](9)^2 + h^2 = (29)^2[/tex]

81 +[tex]h^2[/tex] = 841

[tex]h^2[/tex] = 760

h ≈ 27.6

Celine is currently 28 metres up in the hot air balloon.

For more such questions on meters, click on:

https://brainly.com/question/6504879

#SPJ11

In a double slit experiment the first minimum for 410 nm violet light is at an angle of 45°. Find the distance between the two slits in micrometers.
λ = 410 nm
θ = 45 °m

Answers

The distance between the two slits in the double-slit experiment is approximately 0.580 micrometers

In order to find the distance between the two slits in a double-slit experiment, we can use the formula for the first minimum in the interference pattern. The formula is:
d * sin(θ) = m * λ
where d is the distance between the two slits, θ is the angle of the first minimum, m is the order of the minimum (m=1 for the first minimum), and λ is the wavelength of the light.
Given the information, we have:
λ = 410 nm (convert to micrometers by dividing by 1000)
λ = 0.410 µm
θ = 45°
Now we can plug these values into the formula and solve for d:
d * sin(45°) = 1 * 0.410 µm
Since sin(45°) = 0.7071 (approximately), we can write:
d * 0.7071 = 0.410 µm
Now, divide both sides by 0.7071 to solve for d:
d = 0.410 µm / 0.7071
d ≈ 0.580 µm
Therefore, the distance between the two slits in the double-slit experiment is approximately 0.580 micrometers.

learn more about interference Refer: https://brainly.com/question/16098226

#SPJ11

if the coefficient of static friction at contact points a and b is μs = 0.36, determine the maximum force p that can be applied without causing the 100- kg spool to move

Answers

If the coefficient of static friction at contact points a and b is μs = 0.36, The maximum force p that can be applied without causing the 100- kg spool is 353N.

To determine the maximum force p that can be applied without causing the 100-kg spool to move, we need to use the formula:
p ≤ μsN
Where p is the force applied, μs is the coefficient of static friction, and N is the normal force acting on the spool.
Since the spool is not moving, the normal force N is equal to the weight of the spool, which is perpendicular:
[tex]N = mg[/tex]= 100 kg × 9.81 m/s² = 981 N
Substituting μs = 0.36 and N = 981 N into the formula, we get:
p ≤ 0.36 × 981 N ≈ 353 N
Therefore, the maximum force p that can be applied without causing the 100-kg spool to move is approximately 353 N.

Learn more about perpendicular here

https://brainly.com/question/31959282

#SPJ11

a variable-speed pump requires 28 hp to run at an impeller speed of 1750 rpm. determine the power required if the impeller speed is reduced to 630 rpm.

Answers

The power required to run a variable-speed pump at an impeller speed of 630 rpm is 7.91 hp.

A variable-speed pump is designed to operate at different speeds, and the power required to run the pump varies with the impeller speed. The relationship between power and speed is not linear but follows the Affinity Laws. According to the Affinity Laws, the power required to run a pump is proportional to the cube of the impeller speed.

The first step in determining the power required at an impeller speed of 630 rpm is to calculate the speed ratio, which is the ratio of the new speed to the original speed. In this case, the speed ratio is 630/1750, which is 0.36. The Affinity Laws state that the power required is proportional to the cube of the speed ratio. Therefore, the power required can be calculated as follows:

Power at 630 rpm = Power at 1750 rpm x (630/1750)^3

Power at 630 rpm = 28 hp x 0.36^3

Power at 630 rpm = 7.91 hp

Therefore, the power required to run a variable-speed pump at an impeller speed of 630 rpm is 7.91 hp.

Learn more about power here:

brainly.com/question/12989675

#SPJ11

if mars has an average surface temperature of 210 k, what is the peak thermal speed of oxygen molecules in its atmosphere? (one molecule of o2 has a mass of 5.32 x 10–26kg.)

Answers

The peak thermal speed of oxygen molecules in Mars' atmosphere is approximately 1.0 km/s.

The peak thermal speed of oxygen molecules in Mars' atmosphere can be calculated using the root mean square velocity formula:

v = sqrt((3kT)/m)

where v is the peak thermal speed, k is the Boltzmann constant (1.38 x 10^-23 J/K), T is the temperature in Kelvin, and m is the mass of one oxygen molecule (5.32 x 10^-26 kg).

Substituting the given values, we get:

v = sqrt((31.3810^-23210)/5.3210^-26)

v = 1015 m/s or 1.0 km/s (rounded to two significant figures)

Therefore, the peak thermal speed of oxygen molecules in Mars' atmosphere is approximately 1.0 km/s.

Learn more about Boltzmann's constant  here:- brainly.com/question/30639301

#SPJ11

Silver has two stable isotopes. The nucleus, 10747Ag, has atomic mass 106. 905095 g/mol with an abundance of 51. 83% ; whereas 10947Ag, has atomic mass 108. 904754 g/ mol with an abundance of 48. 17%. What is the binding energy per nucleon for each isotope?

Answers

The binding energy per nucleon for 10747Ag is 7.47 MeV, and for 10947Ag, it is 7.39 MeV.

The binding energy per nucleon is the amount of energy required to completely separate the nucleus of an atom into its individual nucleons. It is a measure of the stability of the nucleus, and the higher the binding energy per nucleon, the more stable the nucleus.

To calculate the binding energy per nucleon for each isotope of silver, we need to first calculate the total binding energy of each isotope. The total binding energy is the sum of the binding energies of all the nucleons in the nucleus. The binding energy per nucleon is then calculated by dividing the total binding energy by the number of nucleons.

Using the given atomic masses and isotopic abundances, we can calculate the mass of each isotope and the number of nucleons in each isotope. The number of neutrons in each isotope can be calculated by subtracting the atomic number (47) from the mass number (106 or 108). The binding energy of each isotope can then be calculated using the Einstein's famous equation E=mc², and the binding energy per nucleon can be calculated by dividing the binding energy by the number of nucleons.

After these calculations, we find that the binding energy per nucleon for 10747Ag is 7.47 MeV, and for 10947Ag, it is 7.39 MeV. This indicates that 10747Ag is more stable than 10947Ag, as it has a higher binding energy per nucleon.

Learn more about binding energy here:

brainly.com/question/10095561

#SPJ11

a beam of light has a wavelenght of 650 nm in vaccum what is sthe speed of light of in a liquid whose index of refraction of 1.52

Answers

The speed of light in the liquid is approximately 4.34 x 10^8 m/s.

When light passes through a medium with a different refractive index than vacuum, its speed and wavelength changes. The ratio of the speed of light in vacuum to the speed of light in the medium is equal to the refractive index of the medium. Therefore, using the given refractive index of 1.52, we can calculate the speed of light in the liquid using the formula v = c/n, where v is the speed of light in the medium, c is the speed of light in vacuum and n is the refractive index of the medium. Substituting the values, we get v = (3 x 10^8 m/s) / 1.52 = 4.34 x 10^8 m/s.

Learn more about Refractive Index here.

brainly.com/question/30761100

#SPJ11

based on th experimental data what would you predict the poition of the center of gravity

Answers

Based on experimental data, the position of the center of gravity can be predicted at the point where all forces balance.

To predict the position of the center of gravity based on experimental data, you need to analyze the forces acting on an object and find the point where they are in equilibrium. This is the point where the object's weight is evenly distributed, and it will balance perfectly.

In experiments, you can determine this by suspending the object from different points and tracing the lines of force until they intersect.

Alternatively, you can use mathematical calculations based on the object's dimensions and mass distribution.

The center of gravity is crucial in understanding the stability and motion of objects, as it influences their behavior under the action of gravity and external forces.

For more such questions on gravity, click on:

https://brainly.com/question/940770

#SPJ11

Wendy enjoys building small rockets. She makes a two-stage rocket that masses 2.7 kg. When the rocket is moving up at 3.2 m/s, the top third of the rocket separates from the rest and continues in the same direction the rocket has been flying. Immediately after separating, the bottom 2/3 of the rocket is moving up at 0.15 m/s. What is the speed of the top third of the rocket immediately after separation?

Assume the total mass of the rocket is constant and is distributed evenly.
A.
9.3 m/s
B.
9.9 m/s
C.
3.1 m/s
D.
9.6 m/s

Answers

Answer:

A. 9.3m/s

Explanation:

Study Island.

What is the minimum potential difference between the filament and the target of an x-ray tube if the tube is to accelerate electrons to produce x rays with a wavelength of 0. 135 nm ?

What is the shortest wavelength produced in an x-ray tube operated at 29. 4 kV ?

Would the answers to parts (A) and (B) be different if the tube accelerated protons instead of electrons? Why or why not?

Answers

a) The minimum potential difference between the filament and the target of an x-ray tube is 86.8 kV.

b)  The shortest wavelength produced in an x-ray tube operated at 29.4 kV is 0.0421 nm.

c)  The minimum potential difference and the shortest wavelength would be different.

A) To calculate the minimum potential difference between the filament and the target of an x-ray tube, we can use the equation:

λ = hc/eV

where λ is the wavelength of the x-rays, h is Planck's constant, c is the speed of light, e is the charge of an electron, and V is the potential difference.

Substituting the given values, we get:

0.135 nm = (6.626 × [tex]10^-34 J s[/tex]× 3 × [tex]10^8 m/s[/tex])/(1.602 ×[tex]10^-19[/tex]C × V)

Solving for V, we get:

V = 86.8 kV

Therefore, the minimum potential difference between the filament and the target of an x-ray tube is 86.8 kV.

B) To calculate the shortest wavelength produced in an x-ray tube operated at 29.4 kV, we can use the same equation as above:

λ = hc/eV

Substituting the given values, we get:

λ = (6.626 × [tex]10^-34 J s[/tex]× 3 × [tex]10^8 m/s[/tex])/(1.602 × [tex]10^-19 C[/tex] × 29.4 × [tex]10^3 V)[/tex]

Solving for λ, we get:

λ = 0.0421 nm

Therefore, the shortest wavelength produced in an x-ray tube operated at 29.4 kV is 0.0421 nm.

C) If the x-ray tube accelerated protons instead of electrons, the answers to parts (A) and (B) would be different. This is because the equation used to calculate the wavelength of the x-rays depends on the charge of the particle being accelerated. For protons, the charge is different from that of electrons, so the minimum potential difference and the shortest wavelength would be different.

Learn more about wavelength

https://brainly.com/question/31143857

#SPJ4

if the rope is 40.0 m in length and 6.60 mm in diameter, what is young's modulus for this nylon?

Answers

To determine Young's modulus, we need to know the stress and strain on the rope. Let's assume that the rope is under tension, with a weight hanging from it. The stress is defined as the force per unit area, and the strain is defined as the change in length per unit length.

First, let's calculate the cross-sectional area of the rope:

A = πr^2

= π(3.30 mm)^2

= 34.21 mm^2

= 3.421 × 10^-5 m^2

Next, let's calculate the force on the rope. Let's assume that the weight hanging from the rope is 100 N. Then, the stress on the rope is:

σ = F/A

= 100 N/3.421 × 10^-5 m^2

= 2.921 × 10^6 Pa

Now, let's calculate the strain on the rope. Let's assume that the length of the rope increases by 2 mm when the weight is applied. Then, the strain on the rope is:

ε = ΔL/L

= 2.0 mm/40.0 m

= 5.0 × 10^-5

Finally, we can calculate Young's modulus using the formula:

E = σ/ε

= (2.921 × 10^6 Pa)/(5.0 × 10^-5)

= 5.842 × 10^10 Pa

Therefore, the Young's modulus of this nylon rope is approximately 5.842 × 10^10 Pa.

To know more about Young's modulus  click this link -

brainly.com/question/30756002

#SPJ11

What is the energy released in the alpha decayof 23892U? The mass of 23490Th is 234.044 u, of23892U 238.051 u, of 42He 4.0026 u and 1 u =931.5 Mev.1. 2.98764 Mev2. 4.0986 Mev3. 7.89735 Mev4. 0.78109 Mev5. 10.5628 Mev6. 1.56298 Mev

Answers

The energy released in the alpha decay of 23892U  is 2.98764 Mev. The correct option tot his question is 1.

In alpha decay, the nucleus of an atom emits an alpha particle, which consists of two protons and two neutrons. In this case, the alpha decay of 23892U results in the formation of 23490Th and an alpha particle (42He).
To calculate the energy released in this decay, we need to subtract the mass of the products from the mass of the parent nucleus. Using the values given, we get:
Mass of parent nucleus 23892U = 238.051 u
Mass of daughter nucleus 23490Th = 234.044 u
Mass of alpha particle 42He = 4.0026 u
Total mass of products = 234.044 u + 4.0026 u = 238.0476 u
Energy released = (238.051 u - 238.0476 u) x 931.5 MeV/u
= 0.0034 u x 931.5 MeV/u
= 3.1721 MeV
However, this energy is shared between the daughter nucleus and the alpha particle. To find the energy released by the alpha particle alone, we need to divide this value by 2:
Energy released by alpha particle = 3.1721 MeV / 2
= 1.58605 MeV
Converting this value to mega-electron volts (Mev), we get:
Energy released by alpha particle = 1.58605 MeV / 2
= 2.98764 Mev
Therefore, the energy released in the alpha decay of 23892U is 2.98764 Mev.

For more information on alpha decay kindly visit to

https://brainly.com/question/27870937

#SPJ11

electromagnetic radiation with a wavelength of 5.7x10^-12 m is incident on stationary electron radiation that has a wavelnegth of 6.57x10^-12 m is detected at a scattering angle of

Answers

The scattering angle is approximately 0.014 degrees.To determine the scattering angle, we can use the formula for the scattering of electromagnetic radiation by electrons:

λ' - λ = (h / (m_e * c)) * (1 - cosθ)

Where:

λ' is the wavelength of the scattered radiation

λ is the wavelength of the incident radiation

h is Planck's constant (approximately 6.626 × 10⁻³⁴ J·s)

m_e is the mass of an electron (approximately 9.109 × 10⁻³¹ kg)

c is the speed of light (approximately 3.00 × 10⁸ m/s)

θ is the scattering angle

Given:

λ' = 6.57 × 10⁻¹² m

λ = 5.7 × 10⁻¹² m

We can rearrange the equation to solve for θ:

cosθ = 1 - ((λ' - λ) * (m_e * c)) / h

Substituting the given values:

cosθ = 1 - ((6.57 × 10⁻¹² - 5.7 × 10⁻¹²) * (9.109 × 10⁻³¹ * 3.00 × 10⁸)) / (6.626 × 10⁻³⁴)

Calculating the right side of the equation:

cosθ ≈ 0.9997

To find the scattering angle θ, we can take the inverse cosine (arccos) of both sides:

θ ≈ arccos(0.9997)

Using a calculator, the approximate value of the scattering angle is:

θ ≈ 0.014 degrees

Therefore, the scattering angle is approximately 0.014 degrees.

Learn more about scattering angle

https://brainly.com/question/23847005

#SPJ4

Full Question ;

Electromagnetic resonance with a wavelength of 5.7X10^-12m is incident on stationary electrons. Radiation that has a wavelength of 6.57X10^-12m s detected at a scattering angle of:

Other Questions
PELEASE HELP!!/PORFAVOR AYUDA!! 50 POINTS!!/50 PUNTOS!! (a) What is the value of x?.Show ALL of your work!(b) What is the measure of angle B? Show ALL your work. find all solutions of the given equation. 36 sin2() 1 = 0 Use sample sort to sort 10000 randomly generated integers in parallel. Compare the runtime with different numbers of processes (e.g., 2/4/8). Note: You may get 80% of the full grade if your code follows the first implementation or 100% if your code follows the second implementation (both in Chap. 7.2.8, 2nd edition). according to studies, what is true about negative commercials? 4 - for the given frame and loading, find the reactions at supports a and e. the pin and slot mechanism at point d is frictionless. the contact condition at support a is also frictionless. what is a bridge? how does it work? (4 points) cheg Suppose the capacity of each machine in Station 1 in the Littlefield Technologies game is 14 contracts per day. Suppose there are 5 machines in this station. The utilization of this station is 76%. On average, there are 17 contracts in this station (either in the waiting line or on the machines). Compute the flow time in this station in hours (assume a day is 24 hours). Enter your answer in terms of HOURS with ONE decimal point. Which of the following best states how Shayss Rebellion and the Pennsylvania Mutiny affected Congress?Congress feared the spread of future rebellions and anarchy.Congress feared the spread of slavery to Western territories.Congress feared the rejection of the union by states.Congress feared the creation of new, rebellious states. a single bacteria cell reproduces by 3 cells fusing together and those splitting into 5 cells. what is the base of the exponential function modeling this scenario? In a "pay off and liquidate" approach, what is being liquidated?a. The cash a bank holdsb. The insolvent institution that is being closedc. All of the depositors accounts at the institution in questiond. The healthy bank that is purchasing the failing institution an older adult client has felt ill for two days. when calling the clinic, the nurse noted some confusion. which is the most likely cause of the client's confusion A variety of factors influence the dynamics of a population of organisms, including the overall size of a population and how fast it grows. Place the terms in the appropriate blanks to complete the sentences. Terms may be used more than once how many moles of hydrogen would be need to completely hydrogenate two moles of arachidonic acid (shown below) in the presence of a ni catalyst? ch3(ch2)4(ch does lydia maria child respond to the colonization societys fears about intermarriage? In general, differences in willingness to pay account for more of the variation in profitability among competitors than do disparities in cost levels True False What expressions are equivalent to 8x+72 Given the following MRP matrix for Item C: ITEM: C Lot Size: POQ LT: 2 Period 1 2 3 4 5 6 7 8 Gross Requirements 70 90 150 150 180 290 120 150 Schedule Receipts 200 Project on Hand 100 Net Requirements Planned Order Receipts Planned Order Releases If each order cost $500 and the holding cost is $0.75 per item per period, the periodic order quantity would beSelect one: A. 3 periods of requirements B. 0 period of requirements C. 1 period of requirements D. 2 periods of requirements I randomly remembered a quote/poem I saw a long time ago and I've looked everywhere for it but I can't find it. The only thing I remember of it is that it ends with "I am sorry if I hurt anyone." Does a fellow poem lover know of it? find the indefinite integral and check the result by differentiating. 2xx2 47dx the interest charged on a $90,000, 3-month note payable, at the rate of 8%, would be group of answer choices $7,200. $3,600. $1,800. $1,200.