Answer:
0.1/4-3/20=1/40-6/40=-1/8 200% of this is -1/4
Step-by-step explanation:
This shows that 200 percent of (0.020(5/4) + 3 ((1/5) - (1/4))) is -2.75
Given the expression as shown in the question:
[tex]200\% \ of \ [0.020(\frac{5}{4} )+3(\frac{1}{5}- \frac{1}{4} )][/tex]
Expand the expression in the square bracket using the distribution law as shown:
[tex]=200\% \ of \ [0.020(\frac{5}{4} )+3(\frac{4-5}{20} )]\\=200\% \ of \ [0.020(\frac{5}{4} )+3(\frac{-1}{20} )]\\=200\% \ of \ [0.020(\frac{5}{4} )-(\frac{3}{20} )]\\=200\% \ of \ [0.020(1.25 )-\frac{3}{20}]\\=\frac{200}{100} \times [0.025-0.15]\\=2 \times [-0.125]\\=-2.75[/tex]
Hence the correct answer to the expression is -2.75.
Learn more here: https://brainly.com/question/19383460.
In the DBE 122 class, there are 350 possible points. These points come from 5 homework sets that are worth 10 points each and 3 exams that are worth 100 points each. A student has received homework scores of 7, 8, 7, 5, and 8 and the first two exam scores are 81 and 80. Assuming that grades are assigned according to the standard scale, where if the grade percentage is 0.9 or higher the student will get an A, and if the grade percentage is between 0.8 and 0.9 the student will get a B, and there are no weights assigned to any of the grades, is it possible for the student to receive an A in the class? What is the minimum score on the third exam that will give an A? What about a B?
Answer:
a) The student cannot receive an A in the class.
b) The student must score 119 in the third exams to make an A. This is clearly not possible, since he cannot make 119 in a 100-points exam.
c) The student can make a B but he must score at least 84 in the third exam.
Step-by-step explanation:
To make an A, the student must score 315 (350 x 90%) in both home and the three exams.
The student who scored 35 (7 + 8 + 7 + 5 + 8) in the homework and 161 (81 + 80), getting a total of 196, is short by 119 (315 - 196) scores in making an A.
To make a B, the student must score 280 (350 x 80%) or higher but not reaching 315.
B ≥ 280 and < 315.
Since, the student had scored 196, he needs to score 84 and above to make a B in the last exam.
please help! the number of candies consumed varies inversely with the number of children present
Answer:
The answer is
210 candiesStep-by-step explanation:
Let n represent the number of children
Let c represent the number of candies
The above variation is written as
[tex]c = \frac{k}{n} [/tex]
when n = 12 c = 140
So we have
[tex]140 = \frac{k}{12} [/tex]
Cross multiply
That's
k = 1680
So the formula for the variation is
[tex]c = \frac{1680}{n} [/tex]
when n = 8
[tex]c = \frac{1680}{8} [/tex]
c = 210
Therefore there are 210 candies consumed when there are 8 children
Hope this helps you
help with this I don't know how to solve plz greatly appreciate
Answer:
cos∅ = 16√481/481
Step-by-step explanation:
Pythagorean Theorem: a² + b² = c²
cos∅ = adjacent/hypotenuse
tan∅ = opposite/adjacent
Step 1: Find hypotenuse
15² + 16² = c²
c = √481
Step 2: Find cos∅
cos∅ = 16/√481
cos∅ = 16√481/481
(a) Which unit fraction 1/n for n s 50 has the decimal expansion of longest period?
(b) Justify your reasoning
Answer:
0.02
Step-by-step explanation:
If n is 50, 1/n is equivalent to 1/50. 1/50 as a decimal is 0.02.
Determine whether the random variable is discrete or continuous. In each case, state the possible values of the random variable. (a) The number of people in a restaurant that has a capacity of 300. (b) The weight of a Upper T dash bone steak.
Answer:
a) Discrete random variable
b) Continous random variable.
Step-by-step explanation:
a) As the number of people can take only integer values, from 0 to n (0, 1, 15, 256, for example, but not 5.6) and not decimals values, we can say that it is a discrete variable.
b) In this case, the weight of a Upper T dash bone steak is a physical variable and can take decimals positive values (0.645 lbs for example).
Then, this variable is a continous variable.
Find the volume of the solid generated by revolving the region enclosed by the triangle with vertices (1 comma 0 ), (3 comma 2 ), and (1 comma 2 )about the y-axis. Use the washer method to set up the integral that gives the volume of the solid.
Answer: Volume = [tex]\frac{20\pi }{3}[/tex]
Step-by-step explanation: The washer method is a method to determine volume of a solid formed by revolving a region created by any 2 functions about an axis. The general formula for the method will be
V = [tex]\pi \int\limits^a_b {(R(x))^{2} - (r(x))^{2}} \, dx[/tex]
For this case, the region generated by the conditions proposed above is shown in the attachment.
Because it is revolting around the y-axis, the formula will be:
[tex]V=\pi \int\limits^a_b {(R(y))^{2} - (r(y))^{2}} \, dy[/tex]
Since it is given points, first find the function for points (3,2) and (1,0):
m = [tex]\frac{2-0}{3-1}[/tex] = 1
[tex]y-y_{0} = m(x-x_{0})[/tex]
y - 0 = 1(x-1)
y = x - 1
As it is rotating around y:
x = y + 1
This is R(y).
r(y) = 1, the lower limit of the region.
The volume will be calculated as:
[tex]V = \pi \int\limits^2_0 {[(y+1)^{2} - 1^{2}]} \, dy[/tex]
[tex]V = \pi \int\limits^2_0 {y^{2}+2y+1 - 1} \, dy[/tex]
[tex]V=\pi \int\limits^2_0 {y^{2}+2y} \, dy[/tex]
[tex]V=\pi(\frac{y^{3}}{3}+y^{2} )[/tex]
[tex]V=\pi (\frac{2^{3}}{3}+2^{2} - 0)[/tex]
[tex]V=\frac{20\pi }{3}[/tex]
The volume of the region bounded by the points is [tex]\frac{20\pi }{3}[/tex].
3. A photograph is 40 cm long and 20 cm wide. Find its area.
Answer:
Area = 40×20
=800Step-by-step explanation:
Use the drawing tools to graph the solution to this system of inequalities on the coordinate plane. y > 2x + 4 x + y ≤ 6
Answer:
Graph is attached.
Step-by-step explanation:
We are to graph the following inequalities:
y > 2x + 4 ... (i)
x + y ≤ 6 ... (ii)
We can graph these inequalities on an online graphing calculator but its recommended that you graph them on your physical graph book.
Your graph is attached below. The shaded region is the required part.
The graph of a system of inequalities represents the solution of the inequalities
The solution to the system of inequalities is [tex]\mathbf{y > \frac 23}[/tex] and [tex]\mathbf{x \le \frac{16}3}[/tex]
The system of inequalities is given as:
[tex]\mathbf{y > 2x + 4}[/tex]
[tex]\mathbf{x + y \le 6 }[/tex]
See attachment for the graphs of [tex]\mathbf{y > 2x + 4}[/tex] and [tex]\mathbf{x + y \le 6 }[/tex]
From the graph, we have:
[tex]\mathbf{y > \frac 23}[/tex]
[tex]\mathbf{x \le \frac{16}3}[/tex]
Read more about system of inequalities at:
https://brainly.com/question/19526736
College students were given three choices of pizza toppings and asked to choose one favorite Results are shown in the table toppings Sremam 15 24 28 28 15 1 11 23 28 cheese meat 23 15 veggie Estimate the probability that a randomly selected student who is a junior or senior prefers veggie. Round the answer to the nearest thousandth
A. 371
B. 220
C. 395
D. 662
Answer:
B. 0.220
Step-by-step explanation:
The table is presented properly below:
[tex]\left|\begin{array}{c|cccc|c}$toppings&$Freshman&$Sophomore&$Junior&$Senior&$Total\\---&---&---&---&---&---\\$Cheese&11&15&24&28&78\\$Meat&23&28&15&11&77\\$Veggie&15&11&23&28&77\\---&---&---&---&---&---\\$Total&&&&&232\end{array}\right|[/tex]
Number of junior students who prefers veggies =23
Number of senior students who prefers veggies =28
Total =23+28=51
Therefore, the probability that a randomly selected student who is a junior or senior prefers veggie
=51/232
=0.220 (to the nearest thousandth)
The correct option is B.
30 POINTS IF ANSWERED IN THE NEXT FIVE MINUTES. Ms. Roth has made 200 headbands and is deciding what price to charge for them. She knows that she will sell more if the price is lower. To estimate the number she can expect to sell, she uses the function defined as ()=200−1.5, where is the price in dollars. Which choice describes a function, (), that models the total sales in dollars she can expect?
Answer:
198.5
Step-by-step explanation:
() = 200 - 1.5
() = 198.5
im not sure if this is what you are asking, but i hope it helps
Answer:
S=p(200-1.5)
Using Volume Formulas: Tutorial
14 of 23 Save & Exit
Question 2
Suppose that you want to design a set of four congruent square pyramids whose combined volume is the same as the volume of a single
rectangular pyramid. What values of land h for the four square pyramids and what values of I, w, and h for the rectangular pyramid will produce
identical volumes? There is more than one correct answer.
B
TUX
X
Font Sizes
A. A
E JE
Square Pyramids
Rectangular Pyramid
Volume
Base Length Height
Volume
Volume x4 Base Length Base Width Height
(2x)
3
(lxwh
3
I
Characters used: 110 / 15000
Submit
Answer:
For the Square
Base length is 6 units
Height is 4 units
Volume is 48 cubic units
Volume of 4 square pyramids is 192 cubic units
(Rectangular)
Base length is 12 units
Base width is 8 units
Height is 6 units
Volume is 192 cubic units
Step-by-step explanation:
Square pyramids is a geometric shape having square base. The appex is perpendicularly at the center of the square. If all the edges are equal it is equilateral square pyramid.
Rectangular pyramids have four sided base and four triangle sides that are coming together to the appex. Each base and appex form a triange called lateral face. The triangular faces are non rectangular base. Pyramid with n side have n + 1 vertices and 2n edges.
3. Given the polynomial p(x) = x^4 - 2x^3 -7x^2 + 18x – 18 a. Without long division, find the remainder if P is divided by x+1. b. If one zero of P is 1-i, find the remaining zeros of P. c. Write P in factored form.
Answer:
(a) remainder is -40
(b) The remaining zeroes are (x+3) and (x-3)
Step-by-step explanation:
p(x) = x^4 - 2x^3 -7x^2 + 18x – 18
(a) Remainder of P(x) / (x+1) can be found using the remainder theorem, namely
let x + 1 = 0 => x = -1
remainder
= P(-1)
= (-1)^4 - 2(-1)^3 -7(-1)^2 + 18(-1) – 18
= 1 +2 -7-18-18
= -40
remainder is -40
(b)
If one zero is 1-i, then the conjugate 1+i is another zero.
in other words,
(x-1+i) and (x-1-i) are both factors.
whose product = (x^2-2x+2)
Divide p(x) by (x^2-2x+2) gives
p(x) by (x^2-2x+2)
= (x^4 - 2x^3 -7x^2 + 18x – 18) / (x^2-2x+2)
= x^2 -9
= (x+3) * (x-3)
The remaining zeroes are (x+3) and (x-3)
If the ratio of red hairbands to green hair bands is 5 to 9 with a total of 70 hairbands, how many of them are green?
Answer:
45
Step-by-step explanation:
This can be written as 5r:9g. Add 5 and 9 to get the total of 14. You can write a ratio of 9 green: (out of) 14 total = x green: (out of) 70 total. Multiply 9 and 14 by 7 to get 45:70. Therefore, if there are 70 hairbands, 45 are green.
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer does not exist, enter DNE.) f(x) = x4 − 8x3 + 7
Answer:
D
Step-by-step explanation:
In a survery of 154 households, a Food Marketing Institute found that 106 households spend more than $125 a week on groceries. Please find the 95% confidence interval for the true proportion of the households that spend more than $125 a week on groceries.
Answer:
The 95% confidence interval for the true proportion of the households that spend more than $125 a week on groceries is (0.6151, 0.7615).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 154, \pi = \frac{106}{154} = 0.6883[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.6883 - 1.96\sqrt{\frac{0.6883*0.3117}{154}} = 0.6151[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.6883 + 1.96\sqrt{\frac{0.6883*0.3117}{154}} = 0.7615[/tex]
The 95% confidence interval for the true proportion of the households that spend more than $125 a week on groceries is (0.6151, 0.7615).
A simple random sample of size nequals17 is drawn from a population that is normally distributed. The sample mean is found to be x overbar equals 56 and the sample standard deviation is found to be sequals10. Construct a 95% confidence interval about the population mean. The lower bound is nothing. The upper bound is nothing. (Round to two decimal places as needed.)
Answer:
95% confidence intervals about the population mean is
(51.7656 , 60.2344)
Step-by-step explanation:
Step(i):-
Given random sample of size 'n' =17
Given mean of the sample 'x⁻' = 56
Given standard deviation of sample 's' = 10
95% confidence intervals about the population mean is determined by
[tex](x^{-} - t_{0.05} \frac{s}{\sqrt{n} } ,x^{-} + t_{0.05} \frac{s}{\sqrt{n} } )[/tex]
Degrees of freedom
ν = n-1 = 17-1 =16
t₀.₀₅ = 1.7459 (from t-table)
Step(ii):-
95% confidence intervals about the population mean is determined by
[tex](x^{-} - t_{0.05} \frac{s}{\sqrt{n} } ,x^{-} + t_{0.05} \frac{s}{\sqrt{n} } )[/tex]
[tex](56 - 1.7459 \frac{10}{\sqrt{17} } ,56 + 1.7459 \frac{10}{\sqrt{17} } )[/tex]
( 56 - 4.2344 , 56 + 4.2344)
(51.7656 , 60.2344)
Conclusion:-
95% confidence intervals about the population mean is
(51.7656 , 60.2344)
If f(x) = 4x – 8 and g(x) = 5x + 6, find (f - g)(x).
Answer:
(f - g)(x) = -x - 14
Step-by-step explanation:
Step 1: Plug in equations
4x - 8 - (5x + 6)
Step 2; Distribute negative
4x - 8 - 5x - 6
Step 3: Combine like terms
-x - 14
Answer:
-x-14
Step-by-step explanation:
Hope this helps
When would you need to arrange polynomials
If the coefficient of realism alpha equals 1, then the criterion of realism will yield the same result as the maximax criterion.
A. True
B. False
Answer:
True
Step-by-step explanation:
Coefficient of realism called alpha which is a decimal number between 0 and 1. This number provides the optimistic view. The number 1 - [tex]\alpha[/tex] is amount of emphasis that is placed in pessimistic outcome. If the coefficient of realism alpha is 1 then criterion of realism will yield same result as maxi max criterion.
Marko drovev75mile in 1 1/2 hours .how many mile can he he drive in 1 hour
Answer: 50 miles
Step-by-step explanation:
75 miles in one and half hours.
That's 25 miles per half hour
So, in 1 hour, he will drive 50 miles
What is 1(y), when y=-7/12?
Answer: -7/12
Step-by-step explanation: an number multiplied by 1 is itself
PLEASE HELP ME!! A hexagon has vertices (3,1) and (4,1). The hexagon is dilated. The new hexagon has vertices (6,1) and (10,1). {In the same spots as the old hexagon}. What is the center of dilation? What is the dilation factor? I can try to add information.
Answer:
( 2,1) is the center of dilation and 4 is the scale factor
Step-by-step explanation:
A' = k( x-a) +a, k( y-b)+b where ( a,b) is the center of dilation and k is the scale factor
3,1 becomes 6,1
6,1 = k( 3-a) +a, k( 1-b)+b
6 = 3k -ka+a
1 = k -kb +b
4,1 becomes 10,1
10,1 = k( 4-a) +a, k( 1-b)+b
10 = 4k -ka+a
1 = k -kb +b
Using these two equations
6 = 3k -ka+a
10 = 4k -ka+a
Subtracting the top from the bottom
10 = 4k -ka+a
-6 = -3k +ka-a
------------------------
4 = k
Now solving for a
6 = 3k -ka+a
6 = 3(4) -4a+a
6 =12 -3a
Subtract 12
6-12 = -3a
-6 = -3a
Divide by -3
-6/-3 = -3a/-3
2 =a
Now finding b
1 = k -kb +b
1 = 4 - 4b+b
1 =4 -3b
Subtract 4
-3 = -3b
Divide by -3
1 = b
Answer:
Dilation factor: 4.
Center of dilation: (2, 1).
Step-by-step explanation:
The distance between the old vertices was 4 - 3 = 1. The distance between the new vertices is 10 - 6 = 4. 4 / 1 = 4. That means that the dilation factor is 4.
Now that we have a dilation factor, we can use the formulas x1 = d(x-a) +a and y1 = d( y-b)+b to solve for the center of dilation.
In this case, d = 4, x1 = 10, x = 4, y1 = 1, and y = 1.
10 = 4(4 – a) + a
10 = 16 – 4a + a
10 = 16 – 3a
-3a + 16 = 10
-3a = -6
a = 2
1 = 4(1 – b) + b
1 = 4 – 4b + b
1 = 4 – 3b
-3b + 4 = 1
-3b = -3
b = 1
And so, your center of dilation will be (2, 1).
Hope this helps!
3. A tunnel is 300 feet deep and makes an angle of 30° with the ground, as shown below.
30°
300 feet
Tunne
How long is the tunnel?
Answer:
173.20 ft
Step-by-step explanation:
[tex] \tan \: 30 \degree = \frac{length \: of \: tunnel}{depth \: of \: tunnel} \\ \\ \frac{1}{ \sqrt{3} } = \frac{length \: of \: tunnel}{300} \\ \\ length \: of \: tunnel \\ \\ = \frac{300}{ \sqrt{3} } \\ \\ = \frac{300 \sqrt{3} }{3} \\ \\ = 100 \sqrt{3} \\ \\ = 100 \times 1.7320 \\ \\ = 173.20 \: ft[/tex]
A biologist samples and measures the length of the fish in a lake. What is the level of measurement of the data?
Answer:Ratio
Step-by-step explanation:
The ratio data because length has a true zero, and ratios of lengths are meaningful.
what is the answer?!?!??!
Answer:
Option D
Step-by-step explanation:
It forms a linear pair (Angles on a straight line) with one of the interior angles of the triangle.
Answer:
D
Step-by-step explanation:
A linear pair of angles is when two angles add up to 180 degrees on a line.
Interior angles and exterior angles form a linear pair.
What is the length of Line segment B C?
Answer:
given,
AB= 17
AC= 8
angle BCA =90°
as it is a Right angled triangle ,
taking reference angle BAC
we get,h=AB=17
b=AC=8
p=BC=?
now by the Pythagoras theorem we get,
p=
[tex] \sqrt{h { }^{2} - b {}^{2} } [/tex]
so,p=
[tex] \sqrt{17 {}^{2} - 8 {}^{2} } [/tex]
[tex] = \sqrt{225} [/tex]
=15 is the answer....
hope its wht u r searching for....
Find the lateral area of a regular square pyramid if the base edges are of length 12 and the perpendicular height is 8.
Answer:
Lateral area of the pyramid = 120 square units
Step-by-step explanation:
In the figure attached,
A pyramid has been given with square base with edges of 12 units and perpendicular height as 8 units.
Lateral area of a pyramid = Area of the lateral sides
Area of one lateral side = [tex]\frac{1}{2}(\text{Base})(\text{Lateral height})[/tex]
= [tex]\frac{1}{2}(\frac{b}{2})(\sqrt{(\frac{b}{2})^2+h^2})[/tex] [Since l = [tex]\sqrt{r^{2}+h^{2}}[/tex]]
= [tex]\frac{1}{2}(6)(\sqrt{6^2+8^2})[/tex]
= [tex]3\sqrt{100}[/tex]
= 30 units²
Now lateral area of the pyramid = 4 × 30 = 120 square units
Answer: 240 units^2
Step-by-step explanation:
LA= 1/2 Pl
P= perimeter of base
l= lateral height
l= 8^2 + (12/2)^2 = 10^2
P= 12 x 4 = 48
48 x 10 = 480
480/2 = 240
240 units^2
what is the answer to this ??
Answer:
[tex] A.\angle 1\: \\\\D. \angle 3[/tex]
Step-by-step explanation:
[tex] \angle 1\: \&\: \angle 3[/tex] are remote interior angles of [tex] \angle 6[/tex]
The weights of beagles have a mean of 25 pounds and a standard deviation of 3 pounds. A random sample of 50 beagles is collected. What is the probability that a sample of this size has a mean weight below 26 pounds?
Answer:
[tex] z =\frac{26-25}{\frac{3}{\sqrt{50}}}= 2.357[/tex]
And we can find the probability using the normal distribution table and we got:
[tex] P(z<2.357) =0.9908[/tex]
Step-by-step explanation:
Let X the random variable of interest and we can find the parameters:
[tex] \mu =25, \sigma= 3[/tex]
And for this case we select a sample size n =50. And since the sample size is higher than 30 we can use the central limit theorem and the distribution for the sample mean would be given by:
[tex] \bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]
We want to find the following probability:
[tex] P(\bar X <26)[/tex]
And we can use the z score formula given by:
[tex] z =\frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
And replacing we got:
[tex] z =\frac{26-25}{\frac{3}{\sqrt{50}}}= 2.357[/tex]
And we can find the probability using the normal distribution table and we got:
[tex] P(z<2.357) =0.9908[/tex]
Find the perimeter of the following trapezoid:
6 ft
2.5 ft/ 12 ft
2.5 ft
8 ft
Answer:
31ft
Step-by-step explanation:
6 ft + 2.5 ft + 12 ft + 2.5 ft + 8 ft = 31ft
I assumed the slash in the space between 2.5ft and 12ft was an error, so I ignored it in the solution to this problem.
Besides that, perimeter is found by adding all sides of the shape or figure together, and the sum of that is the perimeter.
The basic formula for perimeter is:
base + height + base + height.
I do not think you square perimeter as you do area (e.g. 31ft^2).