What is one movement that liquid water CANNOT do while on or at the Earth's surface? (GIVE RIGHT ANSWER OR I DELETE 100 POINTS)

Answers

Answer 1

Answer:

One movement that i can't do is float in mid air

Explanation:


Related Questions

Hl Weakly dissociates in water according to the chemical equation below. H20+ Hl <-> H3O^+ + l- What is a conjugate acid-base pair in this reaction?

Answers

Answer:

https://www.clutchprep.com/chemistry/practice-problems/70217/hi-aq-h2o-l-h3o-aq-i-aq-identify-each-as-either-a-bronsted-lowry-acid-bronsted-l

Explanation:

https://www.clutchprep.com/chemistry/practice-problems/70217/hi-aq-h2o-l-h3o-aq-i-aq-identify-each-as-either-a-bronsted-lowry-acid-bronsted-l

PLEASE HELP I HAVE 19 MINUTES LEFT I WILL MARK BRAINLIEST
How much more acidic is a pH of 4 as compared to a pH of 6.5?

Answers

Answer:

316.227766

Explanation:

Answer 3.16 hope it helps

1. Which individuals are most likely to die before reproducing, those with adaptive traits or
nonadaptive traits? Why? (Hint: You may use the newt population as an example in your
explanation.)

Answers

Nonadaptive traits .

when rolling a number cube 500 times, how many times you expect to get a 3?

Answers

Answer:

[tex]\frac{250}{3}[/tex]

Explanation:

you can expect to get a 3 (theoretically) 1 time every 6 times you roll. A 1/6 chance.

Here's the equation:

[tex]\frac{1}{6} =\frac{x}{500}[/tex]

cross multiply (i think that's what it is called)

500=6x

divide by 6 on both sides:

x=[tex]\frac{250}{3}[/tex] or approx 83 times.

Hope this helps! Lmk if u have more questions <3

Inquiry Extension Consider a reaction that occurs between solid potassium and chlorine gas. If you start with an initial mass of 15.20 g K, and an initial mass of 2.830 g Cl2, calculate which reactant is limiting. Explain how to determine how much more of the limiting reactant would be needed to completely consume the excess reactant. Verify your explanation with an example

Answers

The 3.13 g of K would be needed to completely react with the remaining [tex]Cl_2[/tex].

To determine which reactant is limiting, we need to calculate the amount of product that can be formed from each reactant and compare them. The reactant that produces less product is the limiting reactant, since the reaction cannot proceed further once it is consumed.

The balanced chemical equation for the reaction between solid potassium and chlorine gas is:

2 K(s) + [tex]Cl_2[/tex](g) -> 2 KCl(s)

From the equation, we can see that 2 moles of K react with 1 mole of [tex]Cl_2[/tex] to form 2 moles of KCl.

First, we need to convert the masses of K and [tex]Cl_2[/tex] into moles:

moles of K = 15.20 g / 39.10 g/mol = 0.388 mol

moles of [tex]Cl_2[/tex] = 2.830 g / 70.90 g/mol = 0.040 mol

Now, we can use the mole ratio from the balanced equation to calculate the theoretical yield of KCl from each reactant:

Theoretical yield of KCl from K: 0.388 mol K x (2 mol KCl / 2 mol K) = 0.388 mol KCl

Theoretical yield of KCl from [tex]Cl_2[/tex]: 0.040 mol [tex]Cl_2[/tex] x (2 mol KCl / 1 mol [tex]Cl_2[/tex]) = 0.080 mol KCl

We can see that the theoretical yield of KCl from K is 0.388 mol, while the theoretical yield of KCl from [tex]Cl_2[/tex] is 0.080 mol. Therefore, the limiting reactant is [tex]Cl_2[/tex], since it produces less product.

To determine how much more of the limiting reactant would be needed to completely consume the excess reactant, we can use the stoichiometry of the balanced equation.

We know that 1 mole of [tex]Cl_2[/tex] reacts with 2 moles of K to produce 2 moles of KCl. Therefore, the amount of additional K needed to react with the remaining [tex]Cl_2[/tex] can be calculated as follows:

moles of K needed = 0.040 mol [tex]Cl_2[/tex] x (2 mol K / 1 mol [tex]Cl_2[/tex])

                                = 0.080 mol K

This means that 0.080 moles of K would be needed to completely consume the remaining [tex]Cl_2[/tex]. We can convert this to a mass by multiplying by the molar mass of K:

mass of K needed = 0.080 mol K x 39.10 g/mol

                              = 3.13 g K

Therefore, The 3.13 g of K would be needed to completely react with the remaining.

Example verification:

Suppose we had an additional 0.50 g of [tex]Cl_2[/tex] in the reaction. Would all of the K be consumed, or would there still be excess K?

Moles of additional [tex]Cl_2[/tex] = mass of [tex]Cl_2[/tex] / molar mass of [tex]Cl_2[/tex]

Moles of additional [tex]Cl_2[/tex] = 0.50 g / 70.90 g/mol

Moles of additional [tex]Cl_2[/tex] = 0.0070 mol

The theoretical yield of KCl that can be formed from the additional [tex]Cl_2[/tex] is:

0.0070 mol [tex]Cl_2[/tex] x (2 mol KCl / 1 mol [tex]Cl_2[/tex]) x (74.55 g KCl / 1 mol KCl) = 1.04 g KCl

Therefore, the total amount of KCl that can be formed from all of the [tex]Cl_2[/tex] is:

5.95 g + 1.04 g = 6.99 g

The amount of K that would be needed to completely consume all of the [tex]Cl_2[/tex].

Learn more about Solid Potassium at

brainly.com/question/27549056

#SPJ1

15. Objects can have kinetic energy, potential energy, or both. Energy can be in the form of motion. Energy can
also be stored by objects in various ways, including position, chemical bonds, or physical state.

Which statement is true? And why?
a. An object’s mass has no effect on its potential energy.
b. Potential energy is converted to kinetic energy as a stationary object begins to move.
c. Kinetic energy is converted to potential energy as a stationary object begins to move.
d. A stretched rubber band stores no energy.

Answers

Answer: b because Potential energy is converted to kinetic energy as a stationary object begins to move.

Explanation:

1. How does a virus differ from a common cell?
A. It has no nucleus, cell wall, or organelles.
B. It has two nuclei and no cell wall or organelles.
C. A virus has no cell well, no nucleus, and only organelles for
movement.
D. A virus differs from a cell only in shape.

Answers

The answer is letter C

Give the ratio that balances out the following equation: ___Cr + ___Pb(NO3)4 ---> ___ Cr(NO3)3 + ____ Pb

Answers

Answer:  Ratio : 4, 3, 4, 3 are the answers.

Explanation:

1. How many grams of water are in a cup containing
0.1 moles of H2O?

Answers

Answer:

Explanation:

fdcdf

man i need help with this too i don’t care about points but if you get the answers messages me


At 27.0°C, the volume of a gas is 630 L. At the same pressure, its volume is 92,0 mL at a temperature of

Answers

Answer:

–272.96 °C

Explanation:

From the question given above, the following data were obtained:

Initial temperature (T₁) = 27.0 °C

Initial volume (V₁) = 630 L.

Final volume (V₂) = 92.0 mL

Final temperature (T₂) =?

Next, we shall convert 27.0 °C to Kelvin temperature. This can be obtained as follow:

T(K) = T(°C) + 273

Initial temperature (T₁) = 27.0 °C

Initial temperature (T₁) = 27.0 °C + 273

Initial temperature (T₁) = 300 K

Next, we shall convert 92.0 mL to L. This can be obtained as follow:

1000 mL = 1 L

Therefore,

92 mL = 92 mL × 1 L / 1000 mL

92 mL = 0.092 L

Next, we shall determine the final temperature.

Initial temperature (T₁) = 300 K

Initial volume (V₁) = 630 L.

Final volume (V₂) = 0.092 L

Final temperature (T₂) =?

V₁ / T₁ = V₂ / T₂

630 / 300 = 0.092 / T₂

2.1 = 0.092 / T₂

Cross multiply

2.1 × T₂ = 0.092

Divide both side by 2.1

T₂ = 0.092 / 2.1

T₂ = 0.04 K

Finally, we shall convert 0.04 K to celsius temperature. This can be obtained as follow:

T(°C) = T(K) – 273

Final temperature (T₂) = 0.04 K

Final temperature (T₂) = 0.04 – 273

Final temperature (T₂) = –272.96 °C

200.0g of a 3.0% NaF solution, how much distilled water do we weigh out?

197g of distilled water
194g of distilled water
140g of distilled water
170g of distilled water

Answers

Answer:

194g of distilled water.

Explanation:

Hello there!

In this case, according to the given information for this problem, it turns out possible for us to use the given mass of the solution and the percent by mass of NaF to firstly calculate the grams of this solute as shown below:

[tex]\%m=\frac{m_{solute}}{m_{solution}} *100\%\\\\m_{solute}=\frac{\%m*m_{solution}}{100\%} \\\\m_{solute}=\frac{3.0\%*200.0g}{100\%} \\\\m_{solute}=6g[/tex]

And finally, since the mass of solution is calculated by adding mass of solute and mass of solvent we obtain the mass of water (solvent) as follows:

[tex]m_w=200g-6g=194g[/tex]

Therefore, the answer is 194g of distilled water

Regards!


A certain mass of water was heated with 41,840 Joules, raising its temperature from 22.0°C to 28.5 °C. Find the
mass of the water.

Answers

Answer:

1.5 × 10³ g

Explanation:

Step 1: Given and required data

Transferred heat (Q): 41,840 JInitial temperature: 22.0 °CFinal temperature: 28.5 °CSpecific heat capacity of water (c): 4.184 J/g.°C

Step 2: Calculate the temperature change

ΔT = 28.5°C - 22.0 °C = 6.5 °C

Step 3: Calculate the mass (m) of water

We will use the following expression.

Q = c × m × ΔT

m = Q / c × ΔT

m = 41,840 J / (4.184 J/g.°C) × 6.5 °C = 1.5 × 10³ g

A balloon is inflated to a volume of 8.0 L on a day when the atmospheric pressure is 1.013 bar . The next day, a storm front arrives, and the atmospheric pressure drops to 0.968 bar . Assuming the temperature remains constant, what is the new volume of the balloon, in liters

Answers

Answer:

[tex]V_2=8.4L[/tex]

Explanation:

Hello there!

In this case, according to the definition of the Boyle's law, which describes de pressure-volume behavior as an inversely proportional relationship, it is possible for us to write:

[tex]P_1V_1=P_2V_2[/tex]

Thus, since we are given the initial pressure and temperature, and the final pressure, we are able to calculate the final volume as shown below:

[tex]baV_2=\frac{P_1V_1}{P_2}\\\\V_2=\frac{8.0L*1.013bar}{ 0.968bar}\\\\V_2=8.4L[/tex]

Regards!

A 0.150-kg sample of a metal alloy is heated at 540 Celsius an then plunged into a 0.400-kg of water at 10.0 Celsius, which is contained in a 0.200-kg aluminum calorimeter cup. The final temperature of the system is 30.5 Celsius. What is the specific heat of the metal alloy in J/Kg.Celsius

Answers

Answer:

[tex]C_{alloy}=0.497\frac{J}{g\°C}[/tex]

Explanation:

Hello there!

In this case, according to this calorimetry problem on equilibrium temperature, it is possible for us to infer that the heat released by the metal allow is absorbed by the water for us to write:

[tex]Q_{allow}=-(Q_{water}+Q_{Al})[/tex]

Thus, by writing the aforementioned in terms of mass, specific heat and temperature, we have:

[tex]m_{alloy}C_{alloy}(T_{eq}-T_{alloy})=-(m_{water}C_{water}(T_{eq}-T_{water})+m_{Al}C_{Al}(T_{eq}-T_{Al})[/tex]

Then, we solve for specific heat of the metallic alloy to obtain:

[tex]C_{alloy}=\frac{-(m_{water}C_{water}(T_{eq}-T_{water})+m_{Al}C_{Al}(T_{eq}-T_{Al})}{m_{alloy}(T_{eq}-T_{alloy})}[/tex]

Thereby, we plug in the given data to obtain:

[tex]C_{alloy}=\frac{-(400g*4.184\frac{J}{g\°C} (30.5\°C-10.0\°C)+200g*0.900\frac{J}{g\°C}(30.5\°C-10.0\°C)}{150g(30.5\°C-540\°C)} \\\\C_{alloy}=0.497\frac{J}{g\°C}[/tex]

Regards!

how many molecules in 400g of acetic acid

Answers

Answer:chemical formula of acetic acid is  or

so, molecular mass of acetic acid = 2 × atomic mass of C + 4 × atomic mass of H + 2 × atomic mass of O

= 2 × 12 + 4 × 1 + 2 × 16

= 24 + 4 + 32

= 60g/mol

given mass of acetic acid = 22g

so, no of moles of acetic acid = given mass/molecular mass

= 22/60 ≈ 0.367

so, number of moles of acetic acid is 0.367mol

number of molecules in 0.367 mol of acetic acid = 6.022 × 10²³ × 0.367

= 2.21 × 10²³

Explanation:

12. An electrolysis reaction is
A. hydrophobic.
B. spontaneous.
C. exothermic.
D. non-spontaneous.

Answers

Answer: D.) non-spontaneous.

Explanation:

8
What happens to solid waste in the circulatory system?
A it's expelled through the lungs
B
It pumps into the coronary circulation
C
It's dropped off in the kidneys
D
It's deposited in the aorta

Answers

Answer:c it’s dropped off in the kidneys

Explanation:

I took the quiz

The solid wastes are from the circulatory system is expelled to the kidney where, the nitrogenous wastes like urea and uric acid is excreted as urine from the body.

What is circulatory system ?

A circulatory system is an organ system, where the blood is purified and oxygenation of blood takes place. Through circulatory system, the blood reaches throughout the body pumped from the heart through veins.

The organs included in circulatory system are lungs, heart, aorta, veins, blood vessels etc. There are various kinds of blood vessels each having specific functions.

There is a network of blood vessels including arteries and large veins, capillaries that join the venules and other veins. All the nutrients and ions are circulated throughout the body through blood and solid wastes are then expelled to kidney.

Kidney function as a sieve to clean the good fluid from waste products. Uric acid and urea along with water excreated as urine then. Thus, option C is correct.

To find more about circulatory system, refer the link below:

https://brainly.com/question/10103458

#SPJ6

130 cm of a gas at 20°C exerts a pressure of
750 mm Hg. Calculate its pressure if its volume
is increased to 150 cm3 at 35 °C.​

Answers

Answer: The pressure is 1137.5 mm Hg its pressure if its volume is increased to 150 [tex]cm^{3}[/tex] at 35 °C

Explanation:

Given: [tex]P_{1}[/tex] = 750 mm Hg,    [tex]V_{1} = 130 cm^{3}[/tex],     [tex]T_{1} = 20^{o}C[/tex]

[tex]P_{2}[/tex] = ?,          [tex]V_{2} = 150 cm^{3}[/tex],            [tex]T_{2} = 35^{o}C[/tex]

Formula used to calculate the new pressure is as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]

Substitute the values into above formula as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{750 mm Hg \times 130 cm^{3}}{20^{o}C} = \frac{P_{2} \times 150 cm^{3}}{35^{o}C}\\P_{2} = 1137.5 mm Hg[/tex]

Thus, we can conclude that the pressure is 1137.5 mm Hg its pressure if its volume is increased to 150 [tex]cm^{3}[/tex] at 35 °C.

If 3.13 mol of an ideal gas has a pressure of 2.33 atm and a volume of 72.31 L, what is the temperature of the sample in degrees Celsius?

Answers

Answer:

382.49 C degree Celsius

Explanation:

Hello,

This problem deals with understanding the ideal gas law which hopes to predict how ideal gases might behave in any given condition. I listed the formula below and we are basically just going to solve for temperature by rearranging the equation as seen on the picture (there's also other rearranged ones in case you need to solve for those).

Universal gas constant R has a value of 0.0821 L * atm/(mole * K) when working with these given units so it will be part of this equation. R value changes based on what units you have.

T = PV/nR

   = (2.33) (72.31) / (3.13)(0.0821)

   = 655.64 K

Question is asking temperature in celsius so we employ the formula attached below:

C = K - 273.15

   = 655.64-273.15

    = 382.49 degree Celsius

382.49 degree Celsius is the answer!

Do u believe that you are beautiful/handsome?


Yes or No?

Answers

i think i’m beautiful some days but other days no. Mainly only depends on my mood.

Which of the following is true for a gas under conditions of very high pressure? (5
points)
1) PV > nRT, because the real volume of the gas would be more than the ideal
volume.
2) PV = nRT, because intermolecular forces are considerable at very high
pressures.
3) PV = nRT, because all gases behave as ideal gases at very high pressures.
04) PV = nRT, because the volume of the gas would become negligible.

Answers

Answer:

1) PV > nRT, because the real volume of the gas would be more than the ideal

volume.

Explanation:

According to the ideal gas equation; PV = nRT.  Let us recall that this equation only holds under ideal conditions.

Gases exhibit ideal behavior under high temperature and low pressure. At higher pressure, the real volume of the gas is larger than the ideal volume of the gas.

Thus, at high pressure,  PV > nRT, because the real volume of the gas would be more than the ideal  volume.

Answer:

1) PV > nRT, because the real volume of the gas would be more than the ideal volume.

Explanation:

just took the test :)

PLEASE HELP!! ORGANIC CHEMISTRY

A sample of a diatonic gas is loaded into an evacuated bottle at STP. The 0.25 L bottle contains 1.76 grams of the unidentified gas. Calculate the molar mass of the gas. What is the identity of the diatomic gas?

Answers

Answer:

(a) 157.7 g

(b) 7.04 g/dm³

Explanation:

(a) From the question,

According to Avogadro's Law,

1 mole of every gas at STP occupies a volume of 22.4 dm³

But mass of 1 mole of the diatomic gas  = molar mass of the gas.

This Implies that,

The molar mass of the gas at STP occupies a volume of 22.4 dm³

From the question,

If,

0.25 L bottle contain 1.76 g of the gas,

Therefore,

Molar mass of the gas = (1.76×22.4)/0.25

Molar mass of the gas = 157.7 g.

(b) Density of the gas = mass/volume

D = m/v

Given: m = 1.76 g, v = 0.25 L = 0.25 dm³

Therefore,

D = 1.76/0,25

D = 7.04 g/dm³

What compound(s) does pure water contain?

Answers

oxygen hydrogen beau clutch

Explain what matter is, and all of the states it can have.

Answers

Answer:

matter is anything that occupies space

states of matter : solid,liquid, gas,plasma

Answer:

matter can be anything, tables chairs, literally anything. it has volume and takes up space.

Explanation:

Solids, liquids, gases, plasmas, and Bose-Einstein condensates (BEC)

How are solutions and compounds similar?

Answers

Answer:

hope you liked it!!!!!!

A compound is a pure substance that is composed of elements chemically bonded in definite proportions. A compound can be broken down into simpler substances only by chemical reactions, such as electrolysis.

A solution is a homogeneous mixture, meaning that it is the same throughout. A solution is composed of one or more solutes dissolved in a solvent. The proportions of the solute(s) can vary, as the components of a solution are not chemically bonded. The components of a mixture can be separated by physical means, such as filtration and distillation

Cell membranes are selectively permeable. This means that A. only water can move freely across the cell membrane. B. any substance can move across the cell membrane, but chemical energy will always be required. C. some substances can move freely across the cell membrane, while others must be transported. D. no substances can move freely across the cell membrane.

Answers

Answer:

C. some substances can move freely across the cell membrane, while others must be transported.

Explanation:

What is the limiting reactant in the following equation? How much Fe2O3 will be produced if 2.1 g of Fe reacts with 2.1 g of O2?

4 Fe + 3O2 —> 2Fe2O3

Answers

Answer:

Fe is limiting reactant and 3.00g of Fe2O3 will be produced

Explanation:

To solve this question we must convert the mass of each reactant to moles and, using the reaction we can find limiting reactant. With moles of limiting reactant we can find moles of Fe2O3 and its mass as follows:

Moles Fe -Molar mass: 55.845g/mol-

2.1g * (1mol / 55.845g) = 0.0376 moles

Moles O2 -Molar mass: 32g/mol-

2.1g * (1mol / 32g) = 0.0656 moles

For a complete reaction of 0.0656 moles of O2 are needed:

0.0656moles O2 * (4mol Fe / 3 mol O2) = 0.0875 moles Fe

As there are just 0.0376 moles,

Fe is limiting reactant

The mass of Fe2O3 is:

Moles:

0.0376 moles Fe* (2mol Fe2O3 / 4mol Fe) = 0.0188 moles Fe2O3

Mass:

0.0188 moles Fe2O3 * (159.69g / mol) =

3.00g of Fe2O3 will be produced

A community located downwind from a coal-fired power plant has seen a recent increase in the number of dead and dying trees. A so scientist measured values for the following parameters before and after the trees died off. Which of the following oil data should be used to determine if the coalfired power plant emiations were the cause of the damage to the trees
a. Moisture content and water retention
b. Parent material composition
c. Pesticide and herbicide residue levels
d. Calcium and aluminum levels

Answers

Answer:

Option D, Calcium and Aluminum levels

Explanation:

The coal fired power plant releases huge amount of particulate and gaseous emissions such as mercury, sulphur dioxide, nitrogen oxide etc. When there is rain, these gaseous and particulate matter comes to the ground along with rain water and pollute the soil. There are also chances of acid rain due to the presence of sulphur dioxide. Polluted soil and acid rain negatively impact the growth of the plants and causes leaching of Aluminium thereby decreasing the availability of calcium for the plants. Thus, the trees die. Hence, if the amount of Aluminium and Calcium in soil is determined, one can easily deduce the cause of death of trees.

Hence, option D is correct

How are tadpoles and larvae similer

Answers

Answer: Tadpole, also called polliwog, aquatic larval stage of frogs and toads. Compared with the larvae of salamanders, tadpoles have short, oval bodies, with broad tails, small mouths, and no external gills. The internal gills are concealed by a covering known as an operculum.

Explanation:

There are four stages to the classical demographic transition model Pre-transitional Europe was characterized by high and
fluctuating mortality and a high birth rate. The transition model began to progress into and through stage 2 in the late 18th and early
19th century. All BUT ONE contributed to the decline in mortality.
S- -1]))
A)
Enacting measures to provide clean water supplies.
B)
Public health advances including quarantine of settlements undergoing
epidemics
The development of vaccines to prevent disease and antibiotics to treat
infection.
D)
Widespread acceptance of germ theory resulting in more hygienic
practices, including hand washing and sterilizing medical equipment and
infants' bottles.

Answers

The answer is D! Explaination:
Other Questions
Find the missing values in the Table of Values. Write your numbers from top to bottom in the space below with a comma between each value.PLEASE DON'T GIVE A LINK OR DELETE THE ANSWER BECAUSE THIS IS MY SECOND TIME POSTING THIS SO PLS PLS PLS GIVE A PROPER ANSWER TO ALL OF THE PICTURES. Use the given Nernst equation and reaction to solve this problem. What is the potential of this cell with the given conditions?2Li (aq) + F2(g) 2Li+(aq) + 2F- (aq)E = +5.92 voltsT = 200C[Li+] = 10.0 molar[F-] = 10.0 molar Define each of the following: League of nation, status quo, puppet state, Manchuria, two fronts The diameter of a circle is 9 m. Find the circumference to the nearest tenth. Como se chama a transferencia de enrgia termica flui de um corpo com maior temperatura quando ao outro de menor temperatura quando ha diferena de temperatura entre ambos please help me with this question The Federal Reserve cannot put a dollar in anyones pocket, provide jobs for very many people, or buy more than a tiny amount of goods and services that the nation produces. But the 86-year-old government bank can have an enormous impact on how you spend, invest, or borrow money. . . . That is because the Fed . . . is in charge of the nations monetary policy, taking actions almost daily to help determine how much money is available, how easily it may be borrowed, and how costly it will be. Summarize what the passage is saying about the Federal Reserves participation in the economy and its impact on it. Can you solve this for x? 7x-1 What is the correct definition of global interdependence?independent nations across the globe seeking to meet their own needs and wantscountries and populations depending on each other for resources, goods, and servicesgovernments across the globe forming bonds based on political beliefs rather than economic needsdeveloped nations offering financial aid, support, and charity to developing nations Justin likes to get 7 hours of sleep. He woke up after sleeping for 5 1/3 hour. How many more hours does he need to get the amount of sleep he likes? One of these text types will likely be adopted when writing a book on cake making 5. BHinduismG. When one lets go and livesothersItiple Choice, 1 pt each:6.What religions did not originate in South Asia?A. BuddhismB. IslamC. Hinduism For recessive trait to be expressed you need to receive the allele from both parents. True or false What is the solution to the inequality -3x - 5 < -20? Why do we call the conflict between the United States and the Soviet Union the Cold War? Why did it never become a real war? can anyone tell me the answer Which of the following is one way that humans can protect biodiversity? Which ONE category does this list fit in? Improper answers including links, will be reported Can someone help me What are the words Gimby and others use to describe Charlie? *flower of algernon*