Answer:
15
Step-by-step explanation:
The product of distances from P to the two intersection points along the same secant (tangent) is the same for each. For this purpose, the tangent can be considered to intersect the circle twice at the same point. That is ...
PN·PM = PQ²
x(2x +7) = (x +6)²
2x² +7x = x² +12x +36
x² -5x -36 = 0
(x -9)(x +4) = 0 . . . . . . . true for x=9, x=-4
The relevant value of x is 9.
PQ = x +6 = 9 +6
PQ = 15
Dr. Hernandez is a conservation biologist studying the impacts a derelict pharmaceutical company is having on a native fish population in a nearby lake. The lake has been contaminated with bovine growth hormone and Dr. Hernandez wants to see if the fish reaching adulthood in the contaminated lake are larger than the fish in a pristine lake that is nearby. Dr. Hernandez has the weights of 30 fish from the contaminated lake and of 30 fish from the pristine lake.
Based on the experimental design of Dr. Hernandez's research and the kind of data collected, which statistical test should be used to determine whether the bovine growth hormone is increasing the growth of native fish?
A. Two-tailed two-sample t-test
B. One-tailed paired t-test
C. Two-tailed paired t-test
D. One-tailed two-sample t-test
E. One-Way ANOVA
F. Linear Regression with t-test for significance of slope
Answer:
C. Two-tailed paired t-test.
Step-by-step explanation:
Since Dr. Hernandez takes 30 samples from a contaminated lake and 30 fish from a pristine lake, he should use a two-tailed t-test.
Paired t-tests describe tests used to compare the means of two samples when each observation in one sample can be paired with an observation in the other sample. Dr. Hernandez can certainly pair the samples and observe the differences, so the answer is C. Two-tailed paired t-test.
Hope this helps!
Given a joint PDF, f subscript X Y end subscript (x comma y )equals c x y comma space 0 less than y less than x less than 4, (1) (5 pts) Determine the constant c value such that the above joint PDF is valid. (2) (6 pts) Find P (X greater than 2 comma space Y less than 1 )(3) (9 pts) Determine the marginal PDF of X given Y
(1) Looks like the joint density is
[tex]f_{X,Y}(x,y)=\begin{cases}cxy&\text{for }0<y<x<4\\0&\text{otherwise}\end{cases}[/tex]
In order for this to be a proper density function, integrating it over its support should evaluate to 1. The support is a triangle with vertices at (0, 0), (4, 0), and (4, 4) (see attached shaded region), so the integral is
[tex]\displaystyle\int_0^4\int_y^4 cxy\,\mathrm dx\,\mathrm dy=\int_0^4\frac{cy}2(4^2-y^2)=32c=1[/tex]
[tex]\implies\boxed{c=\dfrac1{32}}[/tex]
(2) The region in which X > 2 and Y < 1 corresponds to a 2x1 rectangle (see second attached shaded region), so the desired probability is
[tex]P(X>2,Y<1)=\displaystyle\int_2^4\int_0^1\frac{xy}{32}\,\mathrm dy\,\mathrm dx=\boxed{\dfrac3{32}}[/tex]
(3) Are you supposed to find the marginal density of X, or the conditional density of X given Y?
In the first case, you simply integrate the joint density with respect to y:
[tex]f_X(x)=\displaystyle\int_{-\infty}^\infty f_{X,Y}(x,y)\,\mathrm dy=\int_0^x\frac{xy}{32}\,\mathrm dy=\begin{cases}\frac{x^3}{64}&\text{for }0<x<4\\0&\text{otherwise}\end{cases}[/tex]
In the second case, we instead first find the marginal density of Y:
[tex]f_Y(y)=\displaystyle\int_y^4\frac{xy}{32}\,\mathrm dx=\begin{cases}\frac{16y-y^3}{64}&\text{for }0<y<4\\0&\text{otherwise}\end{cases}[/tex]
Then use the marginal density to compute the conditional density of X given Y:
[tex]f_{X\mid Y}(x\mid y)=\dfrac{f_{X,Y}(x,y)}{f_Y(y)}=\begin{cases}\frac{2xy}{16y-y^3}&\text{for }y<x<4\text{ where }0<y<4\\0&\text{otherwise}\end{cases}[/tex]
Determine an expression for the perimeter of the following shape. For full marks, evidence of work MUST BE SHOWN.
Answer:
Perimeter=8x +34
Step-by-step explanation:
The only missing side if the shape is the slant side .
To determine the slant height we'll use the right angle rule and take the slant side as the hypotenuse.
For the slant side, let it be y
(2(x+7) -(x+5 +x-3))² +((2x+5)-(2x))²= y²
(2x+14-2x-2)² + (5)² = y²
(12)² +25 = y²
144+25 = y²
169= y²
Y= √169
Y= 13
Now the perimeter= 2(x+7)+(2x+5)+(x-3)+(2x)+(x+5)+13
Perimeter= 2x+14+2x+5+x-3+2x+x+5+13
Perimeter=8x +34
Beginning three months from now, you want to be able to withdraw $2,300 each quarter from your back account to cover college expenses over the next four years. If the account pays .45 percent interest per quarter, how much do you need to have in your bank account today to meet your expense needs over the next four years?
Answer:
$36,450.46
Step-by-step explanation:
The amortization formula can be used to figure this. For quarterly payment A, the principal invested must be P for interest rate r and compounding n times per year for t years.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
2300 = P(0.0045/4)/(1 -(1 +0.0045/4)^(-4·4))
2300 = P·0.06309934
P = 2300/0.06309934 = 36450.46
You need $36,450.46 in your account today so that you can withdraw $2300 quarterly for 4 years.
Which equation, when solved, gives 8 for the value of x?
A: 5/2x+7/2x=3/4x+14
B: 5/4x-9=3/2x-12
C: 5/4x-2=3/2x-4
D: 5/2x-7=3/4x+14
Answer:
Step-by-step explanation:
C. 5x/4-2=3x/2-4
5x/4 -2=6x/4-4
+4 +4
5x/4+2=6x/4
-5x/4
2=x/4
*4
x=8
Answer:
your answer is C
Step-by-step explanation:
X^4-13x^2+36 =
a. (x - 2)2(x - 3)2
b. (x2 + 4)(x 2 + 9)
C. (x - 2)(x + 2)(x - 3)(x + 3)
d. (x2 - 4)(x 2 + 9)
Answer:
answer C
Step-by-step explanation:
hello,
[tex]x^4-13x^2+36=(x^2-4)(x^2-9)[/tex]
as the sum of the zeroes are 13 and their product 36
4 + 9 = 13
4 * 9 = 36
and then we can write
[tex](x^2-4)=(x-2)(x+2)\\(x^2-9)=(x-3)(x+3)[/tex]
so
[tex]x^4-13x^2+36=(x^2-4)(x^2-9) = (x-2)(x+2)(x-3)(x+3)[/tex]
hope this helps
Please Help! Select the correct answer. Simon used these steps to solve an equation:
Answer:
A.
Step-by-step explanation:
From Step 3 to Step 4, Simon added -42 to both sides.
This is the addition property of equality: as long as you add the same thing to both sides, the equation remains equal.
A.
Arrange in ascending order. 8/13, 2/9,28/29
Step-by-step explanation:
he operation of sorting fractions in ascending order: 18/46, 28/41, 29/38, 29/44, 32/30 ... terms equivalents: 18/46=(2×3^2)/(2×23)=((2×3^2)÷2)/((2×23)÷2)=9/23; 28/41 already reduced to ... by the largest exponents: LCM (9, 28, 29)=2^2×3^2× 7×29=7308 Calculate LCM, the least ... /10 </13 </19
Frank had hip replacement surgery and was given a prescription with instructions to take a 200 milligram (mg) tablet three times a day for pain. How many milligrams (mg) will Frank take in 21 days
9514 1404 393
Answer:
12,600 mg
Step-by-step explanation:
The amount Frank will take in 21 days is ...
(200 mg/tab)(3 tab/day)(21 day) = 200·3·21 mg = 12,600 mg
(09.06 HC)
The function H(t) = -16t2 + 90t + 75 shows the height H(t), in feet, of a projectile after t seconds. A
second object moves in the air along a path represented by g(t) = 31 + 32.2t, where g(t) is the height, in
feet, of the object from the ground at time t seconds.
Part A: Create a table using integers 2 through 5 for the 2 functions. Between what 2 seconds is the
solution to H(t) = g(t) located? How do you know? (6 points)
Part B: Explain what the solution from Part A means in the context of the problem.(4 points)
Answer: h(t) = g(t) between 4 and 5 seconds
Step-by-step explanation:
h(t) = -16t² + 90t + 75
g(t) = 31 + 32.2t
[tex]\begin{array}{c|c|c|c|c}\qquad&\underline{\quad t=2\quad }&\underline{\quad t=3\quad}&\underline{\quad t=4\quad }&\underline{\quad t=5\quad }\\h(t)&191&201&179&125\\g(t)&95.4&127.6&159.8&192\end{array}\right][/tex]
Notice that g(t) is increasing from t=2 to t=5, while h(t) is increasing from t=2 to t=3 and then decreasing.
At t=4, h(t) > g(t)
At t = 5, g(t) > h(t)
therefore, the two lines must intersect at a point between t=4 and t=5.
You can graph this to verify the answer.
solve for n n/5+0.6=2
Answer:
N=7
Step-by-step explanation:
It is correct on Khan
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76
What is coefficient of the term of degree of degree 5 in the polynomial below 3x^6+5-x^2+4x^5-9 which one is the right answer A. 3 B. 4 C. 6 D. 5
Answer:
B. 4
Step-by-step explanation:
We are looking for the coefficient of the term x⁵. When we see it in the polynomial as 4x⁵, our coefficient and answer would then be 4.
Find the midpoint of the line segment defined by the points (1/2, -5/2) and (-4/3, -1/6)
Answer:
-5/6 and -8/3
Step-by-step explanation:
To find the cordinates of the midpoint we must add the coordinates together and divide them by 2
let A be the midpoint of this line :
A (1/2-4/3 , -5/2-1/6)
A( -5/6, -8/3)
Answer:
(-5/12 , - 4/3)Step-by-step explanation:
The midpoint of the points (1/2, -5/2) and (-4/3, -1/6) is
[tex] (\frac{ \frac{1}{2} - \frac{4}{3} }{2} \: \: \frac{ - \frac{ 5}{2} - \frac{1}{6} }{2} ) \\ \\ = ( \frac{ - \frac{5}{6} }{2} \: \: \frac{ - \frac{8}{3} }{2} ) \\ \\ = ( - \frac{5}{12} \: \: \: - \frac{4}{3} )[/tex]
(-5/12 , - 4/3)Hope this helps you
Solve the inequality a−32<1 and write the solution in interval notation, using improper fractions if necessary.
Answer:
( -∞ , 33 )
Step-by-step explanation:
To solve the inequation a-32 < 1, we need to sum on both sides 32, as:
a - 32 + 32 < 1 + 32
a < 33
It means that the solutions are all the number that are smaller than 33 or in interval notation it would be:
( -∞ , 33 )
Where 33 is not included in the interval.
Consider the following function. f(x) = 2x + 5. Place the steps for finding f-1 (x) in the correct order. A. x-2/5= y B. y = 2x + 5 C. y-5 = 2x D. X-5/2=y E. f-1(x) = x-5/2 F.x= 2y+ 5 G. x-5= 2y H. f-1(x) = x-2/5
Answer:
[tex]\boxed{\sf \ \ f^{-1}(x)=\dfrac{x-5}{2} \ \ }[/tex]
Step-by-step explanation:
hello,
the easiest way to understand what we have to do is the following in my opinion
we can write
[tex](fof^{-1})(x)=x\\<=>f(f^{-1}(x))=x\\<=>2f^{-1}(x)+5=x\\<=>2f^{-1}(x)+5-5=x-5 \ \ \ subtract \ \ 5\\<=> 2f^{-1}(x)=x-5 \\<=> f^{-1}(x)=\dfrac{x-5}{2} \ \ \ divide \ by \ 2\\[/tex]
so to follow the pattern of your question
y = 2x + 5
we need to find x as a function of y, so let's swap x and y
x = 2y + 5
then subtract 5
x - 5 = 2y
then divide by 2
[tex]\dfrac{x-5}{2}=y[/tex]
finally
[tex]f^{-1}(x)=\dfrac{x-5}{2} \\[/tex]
hope this helps
Answer:
1. y= 2x + 5
2. x = 2y + 5
3. x - 5 = 2y
4. (x-5)/2 =u
5. f^-1(x) = (x-5)/2
Step-by-step explanation:
:)
Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)
Answer:
Step-by-step explanation:
(x+yi)+4+6i=7-2i
x+yi=7-2i-4-6i
x+yi=3-8i
equating real and imaginary parts
x=3,y=-8
B.
x+yi=5+9i+(-8+11i)
x+yi=5+9i-8-11i
x+yi=-3-2i
equating real ,and imaginary parts
x=-3
y=-2
The value of x and y for equation A is
[tex]x=3, y=-8[/tex]
The value of x and y for equation B is
[tex]x=-3 , y=20[/tex]
Given :
[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]
find the value of x and y in the given equation
Lets open the parenthesis and combine like terms
Equate the real and imaginary part to solve for x and y
[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]
The value of x=3 and y=-8
Now we do the same with second equation
[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]
The value of x and y is x=-3 and y=20
Learn more : brainly.com/question/18552411
the twelve inch square tiles are shipped in boxes of sixteen pieces per box. each of the boxes weighs twenty four pounds. approximately how many ounces does each tile weigh?
Answer:
1.411764706
Step-by-step explanation:
24/17=1.411764706
Construct a confidence interval of the population proportion at the given level of confidence.
x equals =860
n equals =1200
94% confidence
The lower bound of the confidence interval is __?
Answer:
The lower bound of the confidence interval is 0.6922.
Step-by-step explanation:
We have to calculate a 94% confidence interval for the proportion.
The sample proportion is p=0.7167.
[tex]p=X/n=860/1200=0.7167[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.7167*0.2833}{1200}}\\\\\\ \sigma_p=\sqrt{0.000169}=0.013[/tex]
The critical z-value for a 94% confidence interval is z=1.8808.
The margin of error (MOE) can be calculated as:
[tex]MOE=z\cdot \sigma_p=1.8808 \cdot 0.013=0.0245[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=p-z \cdot \sigma_p = 0.7167-0.0245=0.6922\\\\UL=p+z \cdot \sigma_p = 0.7167+0.0245=0.7412[/tex]
The 94% confidence interval for the population proportion is (0.6922, 0.7412).
compute the probability of drawing two spades from a deck of cards
Answer:
The probability of drawing two spades is 3/51. Hope this helps!!
Step-by-step explanation:
what is a definition of complex number?
Answer:
Step-by-step explanation:
A complex number is a number that contains a real part and an imaginary one .
Mathematical expression : a+bi xhera a and b are real numbers and i the solution of an equation like x²) -1 ..
Answer:a complex number is a number that can be shown in a form a+bi when a and b are real numbers and i is the answer to the equation x^2=-1
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. Write an expression to represent the total change in the airplane's elevation. ( plz answer, will give brainliest )
Answer:
-.15 km/ minute * 60 minutes
-9 km
Step-by-step explanation:
The rate is -.15 km per minute
We have 60 minutes
distance = rate times time
change in elevation is the same as the distance change
change in elevation = -.15 km/ minute * 60
change in elevation =-9 km
Answer:
(0.15 km/min) * (60 min)
Step-by-step explanation:
We see that the plane descends 0.15 kilometres every minute over the span of 60 minutes.
Use the distance-rate-time formula: d = rt, where d is the distance, r is the rate, and t is the time.
Here, our rate is r = 0.15 km/min and our time is t = 60 minutes. Then the total change in elevation is:
d = rt
d = 0.15 * 60 = 9 km
Note that we disregard the negative sign from -0.15 km/min because the question is asking for the change in elevation. Change is never a negative value.
Hence, the expression will be: 0.15 * 60, which simplifies to 9 km.
~ an aesthetics lover
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
Please help! Need Geometry help!!!!!
Answer:
938 feet
Step-by-step explanation:
b/c every angle of a rectangle is 90° u can u Pythagorean theroem to solve the question
a*a+ b*b=c*c
900*900+264*264=c*c
c=√879,696
c=938feet
Answer:
938 feet
Step-by-step explanation:
Well to solve this we need to use the Pythagorean Theorem,
[tex]a^2 + b^2 = c^2[/tex].
So we have a and b which are 900 and 264,
and we need to find c or the walking distance.
So we plug in 900 and 264 for a and b.
[tex](900)^2 + (264)^2 = c^2[/tex]
So, 900*900 = 810,000
264 * 264 = 69696
810000 + 69696 = 879696
So now we have,
879696 = c^2
To get the c by itself we do,
[tex]\sqrt{879696} = \sqrt{c}[/tex]
= c = 937.921105424
c = 938 rounded to the nearest foot
Thus,
the solution is 938.
Hope this helps :)
The shape on the left is transformed to the shape on the right. Figure A B C D is rotated to form figure A prime B prime C prime D prime. Which of the following statements describes the transformation? A B C D right-arrow A prime B prime C prime D prime A prime B prime C prime D prime right-arrow A B C D A B C D right-arrow D prime A prime C prime B prime D prime B prime C prime A prime right-arrow C A D B
Answer:
A
Step-by-step explanation:
I did the test and it is the only one that makes sense
Answer:
a
Step-by-step explanation:
The figure shows a person estimating the height of a tree by looking at the
top of the tree with a mirror. Assuming that both the person and the tree form
right angles with the ground, which of the following proportions can be used
to estimate the height of the tree
Answer:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Step-by-step explanation:
Write a proportion in the form:
Height/side= height/side
The side lengths are 5 and 12.
The height (of the 5 side) is 6.
The proportion can be written as:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Different hotels in a certain area are randomly selected, and their ratings and prices were obtained online. Using technology, with x representing the ratings and y representing price, we find that the regression equation has a slope of 125 and a y-intercept of negative 400. Complete parts (a) and (b) below. a. What is the equation of the regression line? Select the correct choice below and fill in the answer boxes to complete your choice.
Answer:
Step-by-step explanation:
Hello!
A linear regression for the price of renting a room in a hotel and the rating said hotel received was calculated from a sample of n= 25 hotels.
The theoretical regression model is E(Y)= α + βXi
And the estimated regression equation is: ^Y= a + bXi
Where:
The estimator for the slope is b= 125
And the estimator of the Y-intercept is a= -400
So for this example the estimated regression line for the price of the hotel rooms given the ratings of the hotel is:
^Y= -400 + 125 Xi
^Y= represents the estimated average price of a hotel room
a= -400 is the estimated average price of a hotel room when the rating of the hotel is zero.
b= 125 is the modification of the estimated average price of a hotel room when the rating of the hotel increases one unit.
I hope this helps!
Comparing to an standard linear equation, it is found that the equation of the regression line is:
[tex]y = 125x - 400[/tex]
The equation of a line has the following format:
[tex]y = mx + b[/tex]
In which:
m is the slope.b is the y-intercept.In this problem:
The slope is of 125, hence [tex]m = 125[/tex].The y-intercept is of -400, hence [tex]b = -400[/tex]Hence, the equation of the regression line is:
[tex]y = 125x - 400[/tex]
A similar problem is given at https://brainly.com/question/16302622
Change 17 out of 25 to a percentage
Answer:
Hello!
_____________________
Your answer would be ( 68% ).
Step-by-step explanation: To find percentage, we need to find an equivalent number with denominator 100. Multiply both numerator & denominator by 100
[tex]\frac{17}{25} . \frac{100}{100}[/tex]
[tex]= ( \frac{17 . 100}{25} ) . \frac{1}{100} = \frac{68}{100}[/tex]
Therefore, the answer is 68%
If you are using a calculator, simply enter 17÷25×100 which will give you 68 as the answer.
Hope this helped you!
The solution after change into percentage is, 68%
We have to change 17 out of 25 to a percentage.
Since, A number or ratio that can be expressed as a fraction of 100 or a relative value indicating hundredth part of any quantity is called percentage.
We can change it as,
⇒ 17/25
⇒ (17/25) × 100%
⇒ 1700/25
⇒ 68%
Therefore, The solution after change into percentage is, 68%
Learn more about the percent visit:
https://brainly.com/question/24877689
#SPJ6
The solution for which of the following requires the use of an absolute value? A.Of the 100 marbles contained in a jar, there are 48+3 blue marbles. How many marbles are not blue? B.From a survey, local grocer found that 64% of her customers named apple as their favorite fruit.Out of the 110 people surveyed, how many preferred fruits other than apples? C.Eduardo ran a marathon(about 26.2 miles) in 5 hours and 22 minutes. What was his speed? D. Shari is standing 50 feet from a tree that is 100 feet tall. what is the distance between Shari’s foot and the top of the tree?
Answer:
D. Shari is standing 50 feet from a tree that is 100 feet tall. what is the distance between Shari’s foot and the top of the tree
Step-by-step explanation:
When we want to calculate the distance between Shari’s foot and the top of the tree, we apply the Pythagorean Theorem as follows.
[tex]h^2=50^2+100^2\\h^2=12500\\h=\pm \sqrt{12500} \\h=\pm 111.8\\h=|\pm 111.8|\\h=111.8$ feet[/tex]
Recall, there is always a plum/minus sign before the square root symbol. This is as a result of the fact that:
[tex](-a)^2=a^2\\a^2=a^2[/tex]
However, since we are looking for distance, we ignore the negative sign by making use of the absolute sign.
The correct option is D
3a. Write an equation in slope-intercept form of a
line that passes through (2,1) and (6,-5).
Answer:
[tex]y =- 3/2x + 4[/tex]
Step-by-step explanation:
[tex](2,1) and (6,-5).\\x_1 = 2\\x_2 = 6\\y_1 =1\\y_2 =-5\\\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}\\ \\\frac{y-1}{x-2} = \frac{-5-1}{6-2}\\\\\frac{y-1}{x-2} = \frac{-6}{4} \\Cross-Multiply\\4(y-1) = -6(x-2)\\4y-4=-6x+12\\4y =-6x+12+4\\4y = -6x+16\\Divide- through-by ; 4\\\frac{4y = -6x+16}{4} \\\\y = -\frac{3}{2} x +4[/tex]