Answer: i believe it’s 0.28, but tbh i’m on a unit test so i can’t see what’s wrong and what’s right. good luck!
Step-by-step explanation:
Answer:
c- 0.28
Step-by-step explanation:
Need answer now in 10 min!!!
Answer:
40 deg
Step-by-step explanation:
The vertical sides of the rectangle are parallel, so the triangle is a right triangle.
The triangle is a right triangle, so the acute angles are complementary.
The bottom right angle of the triangle measures 90 - 50 = 40 deg.
The bottom line and the top side of the rectangle are parallel, so corresponding angles are congruent. x and the 40-deg angle are corresponding angles, so they are congruent.
x = 40 deg.
If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 8?
NO
54
оо
96
Answer:
2/3
Step-by-step explanation:
The equation for direct variation is: y = kx, where k is a constant.
Here, we see that y varies directly with x when y = 6 and x = 72, so let's plug these values into the formula to find k:
y = kx
6 = k * 72
k = 6/72 = 1/12
So, k = 1/12. Now our formula is y = (1/12)x. Plug in 8 for x to find y:
y = (1/12)x
y = (1/12) * 8 = 8/12 = 2/3
Thus, y = 2/3.
~ an aesthetics lover
Answer:
Step-by-step explanation: I hope i'm right
[tex]y \alpha x\\y=kx....(1)\\6=72k\\\frac{6}{72} =\frac{72k}{72} \\\\1/12 =k\\y = 1/12x=relationship-between;x-and;y\\x =8 , y =?\\y = \frac{8}{12} \\Cross-Multiply\\12y =8\\12y/12 = 8/12\\\\y = 2/3[/tex]
A college student completed some courses worth 3 credits and some courses worth 4 credits. The student earned a total of 59 credits after completing 18 courses. How many courses worth 3 credits did the student complete?
Answer:
They completed 13, 3 credit classes
Step-by-step explanation:
1. Make 2 formulas. In this case: x+y=18
and 3x+4y=59
2. Then multiply x+y=18 by 3 and subtract the two equations.
Find y which is 5 and input into the equations. Then find your answer.
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below 15 and 39
Answer:
36
Step-by-step explanation:
You did not attach a picture, so I just assumed where the lengths of 15 and 39 were.
The value of x that will make L and M
Greetings from Brasil...
Here we have internal collateral angles. Its sum results in 180, so:
(6X + 8) + (4X + 2) = 180
6X + 4X + 8 + 2 = 180
10X + 10 = 180
10X = 180 - 10
10X = 170
X = 170/10
X = 17Solve for x in the equation X^2-16^x=0
Answer:
-1/2
Step-by-step explanation:
x^2- 16^x = 0x^2 = 16^xx^2 = 4^2xx = 4^xlogx = xlog41/x×logx = log4log(x^1/x) = log4x^(1/x) = 4At this point you can guess and try. And it seems that x = -1/2, lets check:
(-1/2)^(1 /-1/2)= (-1/2)^-2= 2^2= 4So, this is correct: x= -1/2
How many ten-digit numbers have at least two equal digits?
Please explain!
Between 1,000,000,000 and 9,999,999,999 there are 9,000,000,000 different ten-digit numbers. Of those, 9*9! (9 times 9 factorial) = 3,265,920 have all ten digits different, i.e., no two equal digits. Take the difference of those two numbers, and you will have your answer.
--------------------
Hope this helps!
Brainliest would be great!
--------------------
With all care,
07x12!
Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2
The graph which shows the solution to the system of inequalities is attached in the picture below :
Given the inequalities :
y ≥ 2x + 1
y ≤ 2x - 2
From y ≥ 2x + 1 ;
Since the inequality sign is ≥, a solid line is used to draw the straight line graph of y ≥ 2x + 1
From :
y = mx + c
Where, m = slope ; c = intercept
Hence, a straight line graph with ;
Intercept, c = 1 (where the line crosses the y-intercept)
Slope, m = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality :
0 ≥ 2(0) + 1
0 ≥ 0 + 1
0 ≥ 1
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
From : y ≤ 2x - 2
Since the inequality sign is ≤, a solid line is used to draw the straight line graph of y ≤ 2x - 2
Graph the line y ≤ 2x - 2, with ;
Intercept, c = - 2
Slope = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality y ≤ 2x - 2:
0 ≤ 2(0) - 2
0 ≤ 0 - 2
0 ≤ - 2
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
Learn more : https://brainly.com/question/19670553
Answer:
Its graph B on edge 2022
Step-by-step explanation:
A ball is thrown straight down from the top of a 435-foot building with an initial velocity of -27 feet per second. Use the position function below for free-falling objects. s(t) = -16t^2 + v_0t + s_0 What is its velocity after 2 seconds? v(2) = -91 ft/s What is its velocity after falling 364 feet? v = 1.61 ft/s Find an equation of the parabola y = ax^2 + bx + c that passes through (0, 1) and is tangent to the line y = 5x - 5 at (1, 0). Y = 5x + 10
Answer:
a) The velocity of the ball after 2 seconds is -91 feet per second, b) The velocity of the ball after falling 364 feet is 155 feet per second, c) The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].
Step-by-step explanation:
a) The velocity function is obtained after deriving the position function in time:
[tex]v (t) = -32\cdot t -27[/tex]
The velocity of the ball after 2 seconds is:
[tex]v(2\,s) = -32\cdot (2\,s) -27[/tex]
[tex]v(2\,s) = -91\,\frac{ft}{s}[/tex]
The velocity of the ball after 2 seconds is -91 feet per second.
b) The time of the ball after falling 364 feet is found after solving the position function as follows:
[tex]435\,ft - 364\,ft = -16\cdot t^{2}-27\cdot t + 435\,ft[/tex]
[tex]-16\cdot t^{2} - 27\cdot t + 364 = 0[/tex]
The solution of this second-grade polynomial is represented by two roots:
[tex]t_{1} = 4\,s[/tex] and [tex]t_{2} = -5.688\,s[/tex].
Only the first root is physically reasonable since time is a positive variable. Now, the velocity of the ball after falling 364 feet is:
[tex]v(4\,s) = -32\cdot (4\,s) - 27[/tex]
[tex]v(4\,s) = -155\,\frac{ft}{s}[/tex]
The velocity of the ball after falling 364 feet is 155 feet per second.
c) Let consider the equation for a second order polynomial that passes through (0, 1) and its first derivative that passes through (1, 0) and represents the give equation of the tangent line. That is to say:
Second-order polynomial evaluated at (0, 1)
[tex]c = 1[/tex]
Slope of the tangent line evaluated at (1, 0)
[tex]5 = 2\cdot a \cdot (1) + b[/tex]
[tex]2\cdot a + b = 5[/tex]
[tex]b = 5 - 2\cdot a[/tex]
Now, let evaluate the second order polynomial at (1, 0):
[tex]0 = a\cdot (1)^{2}+b\cdot (1) + c[/tex]
[tex]a + b + c = 0[/tex]
If [tex]c = 1[/tex] and [tex]b = 5 - 2\cdot a[/tex], then:
[tex]a + (5-2\cdot a) +1 = 0[/tex]
[tex]-a +6 = 0[/tex]
[tex]a = 6[/tex]
And the value of b is: ([tex]a = 6[/tex])
[tex]b = 5 - 2\cdot (6)[/tex]
[tex]b = -7[/tex]
The equation of the parabola that passes through (0,1) and is tangent to the line y = 5x - 5 is [tex]y = 6\cdot x^{2}-7\cdot x +1[/tex].
What are some key words used to note addition operations?
Answer:
The correct answer is
For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.
Step-by-step explanation:
hope this helps u!!!
how do you find the x- and y-intersepts of an equation
Answer:
To find the x-intercept, simply plug in the value y = 0 into your equation and then solve for x. To find the y-intercept, plug in x = 0 and solve for y.
how to simplify this expression ?
Answer:
[tex]\large \boxed{\sf \ \ \dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{2x+1}{x^2(x+1)} \ \ }[/tex]
Step-by-step explanation:
Hello,
This is the same method as computing for instance:
[tex]\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{3+2}{2*3}=\dfrac{5}{6}[/tex]
We need to find the same denominator.
Let's do it !
For any x real different from 0, we can write:
[tex]\dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{1}{x^2}+\dfrac{1}{x(x+1)}\\\\=\dfrac{x+1+x}{x^2(x+1)}=\dfrac{2x+1}{x^2(x+1)}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
According to the histogram below, how many people took the test? 39 9 16 23
The correct answer is D. 23
Explanation:
Histograms similar to other graphs represent numerical information, usually by using bars, as well as ranges. For example, in the case presented the information presented belongs to the scores obtained in a test, which are shown using ranges. Moreover, it is possible to know the total of people that took the test by adding each of the frequencies, as the frequency in the y-axis shows the number of times the range repeated and it is expected each grade registered belongs to 1 person. This means the total of people is equal to 2 (score from 60-69) + 9 (score from 70-79) + 7 (score from 80-89) + 5 (score from 90-99) = 23 people.
Answer:
the answer is 23
Step-by-step explanation:
hopes this helps:)
I need to know if the following questions are true or false
Answer:
False
Step-by-step explanation:
To find <A, we can do 5x - 80 = 3x + 20.
As we simplify, we will get 2x = 100, which is x = 50
Therefore, <A will be 50 degrees and not 45 degrees.
Also, if you need y, you can do:
3y - 7 = y + 7
2y = 14
y = 7
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
Y = -4x + 11 , 3x + y = 1
Answer:
(10, -29)
Step-by-step explanation:
I assume you are looking for the solution to this system of equations.
Plug them both into a graphing calculator. The point where they cross is:
(10, -29)
Answer:(10, -29)
Step-by-step explanation:
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105
Answer:
8 and 9
Step-by-step explanation:
If x is the smaller integer, and x + 1 is the larger integer, then:
(x + 1)² + 3x = 105
x² + 2x + 1 + 3x = 105
x² + 5x − 104 = 0
(x + 13) (x − 8) = 0
x = -13 or 8
Since x is positive, x = 8. So the two integers are 8 and 9.
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
odd function definition
You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth
Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
The ratio of boys to girls in Jamal's class is 3:2. If four more girls join the class, there will be the same number of boys and girls. What is the number of boys in the class?
Answer:
4 boys
Step-by-step explanation:
Let x represent boys and y represent girls
Hence, x : y = 3 : 2
x/y = 3/2
2x = 3y ------ (1)
x/y + 4 = 3/3
3x = 3(y + 4)
3x = 3y + 12 --------- (2)
From (1): x = 3y/2
Substitute x into (2) we have:
9y/2 = 3y + 12
9y = 6y + 24
9y - 6y = 24
3y = 24
∴ y = 8
From (2) : 3x = 24 - 12 = 12
∴ x = 4
Hence there Four boys
A box with a hinged lid is to be made out of a rectangular piece of cardboard that measures 3 centimeters by 5 centimeters. Six squares will be cut from the cardboard: one square will be cut from each of the corners, and one square will be cut from the middle of each of the -5 centimeter sides . The remaining cardboard will be folded to form the box and its lid . Letting x represent the side-lengths (in centimeters) of the squares, to find the value of that maximizes the volume enclosed by this box. Then give the maximum volume. Round your responses to two decimal places.
Answer:
x = 0.53 cm
Maximum volume = 1.75 cm³
Step-by-step explanation:
Refer to the attached diagram:
The volume of the box is given by
[tex]V = Length \times Width \times Height \\\\[/tex]
Let x denote the length of the sides of the square as shown in the diagram.
The width of the shaded region is given by
[tex]Width = 3 - 2x \\\\[/tex]
The length of the shaded region is given by
[tex]Length = \frac{1}{2} (5 - 3x) \\\\[/tex]
So, the volume of the box becomes,
[tex]V = \frac{1}{2} (5 - 3x) \times (3 - 2x) \times x \\\\V = \frac{1}{2} (5 - 3x) \times (3x - 2x^2) \\\\V = \frac{1}{2} (15x -10x^2 -9 x^2 + 6 x^3) \\\\V = \frac{1}{2} (6x^3 -19x^2 + 15x) \\\\[/tex]
In order to maximize the volume enclosed by the box, take the derivative of volume and set it to zero.
[tex]\frac{dV}{dx} = 0 \\\\\frac{dV}{dx} = \frac{d}{dx} ( \frac{1}{2} (6x^3 -19x^2 + 15x)) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\\frac{dV}{dx} = \frac{1}{2} (18x^2 -38x + 15) \\\\0 = \frac{1}{2} (18x^2 -38x + 15) \\\\18x^2 -38x + 15 = 0 \\\\[/tex]
We are left with a quadratic equation.
We may solve the quadratic equation using quadratic formula.
The quadratic formula is given by
[tex]$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$[/tex]
Where
[tex]a = 18 \\\\b = -38 \\\\c = 15 \\\\[/tex]
[tex]x=\frac{-(-38)\pm\sqrt{(-38)^2-4(18)(15)}}{2(18)} \\\\x=\frac{38\pm\sqrt{(1444- 1080}}{36} \\\\x=\frac{38\pm\sqrt{(364}}{36} \\\\x=\frac{38\pm 19.078}{36} \\\\x=\frac{38 + 19.078}{36} \: or \: x=\frac{38 - 19.078}{36}\\\\x= 1.59 \: or \: x = 0.53 \\\\[/tex]
Volume of the box at x= 1.59:
[tex]V = \frac{1}{2} (5 – 3(1.59)) \times (3 - 2(1.59)) \times (1.59) \\\\V = -0.03 \: cm^3 \\\\[/tex]
Volume of the box at x= 0.53:
[tex]V = \frac{1}{2} (5 – 3(0.53)) \times (3 - 2(0.53)) \times (0.53) \\\\V = 1.75 \: cm^3[/tex]
The volume of the box is maximized when x = 0.53 cm
Therefore,
x = 0.53 cm
Maximum volume = 1.75 cm³
Help please!! Thank you
Answer:
D. 6
Step-by-step explanation:
here, as given set Q consists { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}
and set Z contains {3, 6, 9, 12, 15, 18, 21,24, 27, 30, 33, 36, .... }
so be comparing both, we can see that the numbers 6, 12, 18, 24, 30 and 36 is repeated.
An oil company is interested in estimating the true proportion of female truck drivers based in five southern states. A statistician hired by the oil company must determine the sample size needed in order to make the estimate accurate to within 2% of the true proportion with 99% confidence. What is the minimum number of truck drivers that the statistician should sample in these southern states in order to achieve the desired accuracy?
Answer: n = 2401
Step-by-step explanation:
Given;
Confidence level = 2% - 99%
n = ? ( which is the sample size is unknown ).
Solution:
Where;
n = [z/E]^2*pq
Since no known value for ( p ) estimate is given, the "least biased" estimate is p = 1/2
Substituting the given data into the formula.
n = [1.96/0.02]^2(1/2)(1/2)
n = 2401
The minimum number of truck drivers the statistician needs to sample for an accurate result is 2401
At the city museum, child admission is $ 5.30 and adult admission is $ 9.40 . On Sunday, three times as many adult tickets as child tickets were sold, for a total sales of $ 1206.00 . How many child tickets were sold that day?
Answer:
36 tickets
Step-by-step explanation:
At a city museum, child tickets are sold for $5.30, and adult tickets are sold for $9.40
The total sales that were made are $1206
Let x represent the number of child tickets that were sold
Let y represent the number of adult tickets that was sold
5.30x +9.40y= 1206
The number of adult tickets sold was three times greater than the child tickets
y= 3x
Substitute 3x for y in the equation
5.30x + 9.40y= 1206
5.30x + 9.40(3x)= 1206
5.30x + 28.2x= 1206
33.5x= 1206
Divide both sides by the coefficient of x which is 33.5
33.5x/33.5= 1206/33.5
x = 36
Hence the number of child tickets that were sold that day is 36 tickets
Which point is a solution to the inequality shown in this graph?
Answer: A, (0, -3)
Step-by-step explanation:
Inequalities, once graphed, take the form of the image you attached:
Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.
Any point in the shading is a correct solution to the inequality.
When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.In this case, the line is solid, so any point on the line is a solution to the inequality.
Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.
The correct choice is A.
Solving exponential functions
Answer:
approximately 30Step-by-step explanation:
[tex]f(x) = 4 {e}^{x} [/tex]
[tex]f(2) = 4 {e}^{2} [/tex]
[tex]f(2) = 4 \times 7.389[/tex]
[tex]f(2) = 29.6[/tex]
( Approximately 30)
Hope this helps..
Good luck on your assignment..
Answer:
approximately 30
Step-by-step explanation:
[tex]f(x)=4e^x[/tex]
Put x as 2 and evaluate.
[tex]f(2)=4e^2[/tex]
[tex]f(2)=4(2.718282)^2[/tex]
[tex]f(2)= 29.556224 \approx 30[/tex]
Solve for w in terms of t
3w-8=t
Please explain steps
Answer:
[tex]w=\frac{t+8}{3}[/tex]
Step-by-step explanation:
[tex]3w - 8 = t[/tex]
Add 8 on both sides.
[tex]3w - 8 + 8 = t + 8[/tex]
[tex]3w = t + 8[/tex]
Divide both sides by 3.
[tex]\frac{3w}{3} =\frac{t+8}{3}[/tex]
[tex]w=\frac{t+8}{3}[/tex]
The value of w is w = (t + 8)/3 in terms of t after solving and making the subject w the answer is w = (t + 8)/3.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
We have an equation:
3w - 8 = t
To solve for w in terms of t
Make the subject as w
In the equation:
3w - 8 = t
Add 8 on both sides:
3w - 8 + 8 = t + 8
3w = t + 8
Divide by 3 on both sides:
3w/3 = (t + 8)/3
w = (t + 8)/3
The equation represents a function of w in terms of t
As we know, the function can be defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
Thus, the value of w is w = (t + 8)/3 in terms of t after solving and making the subject w the answer is w = (t + 8)/3.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2