Answer:
[tex]f^{-1}(x)=\cfrac{x^2+2}{3}[/tex]============
Given function[tex]f(x)=\sqrt{3x-2}[/tex]Find its inverse, substitute x with y and f(x) with x[tex]x=\sqrt{3y-2}[/tex][tex]x^2=3y-2[/tex][tex]3y=x^2+2[/tex][tex]y=\cfrac{x^2+2}{3}[/tex]The inverse of f(x) is[tex]f^{-1}(x)=\cfrac{x^2+2}{3}[/tex]Help Please!
Solve the inequality and graph it’s solution.
A city doubles its size every 5 years. If the population is currently 469,900, what will the
population be in 20 years?
the population would be 7,518,400
469,900 • 2^20/5
* 20/5 is part of the exponent
Answer:
7518400
Step-by-step explanation:
Doubling time model:
[tex]P= P_o 2^{\frac{t}{D}}[/tex]
Here, P is the initial value, D is the time taken to double the quantity, t is the given period of time.
[tex]P_o = 469,900\\\\\\D = 5 \ years\\t = 20 \ years[/tex]
[tex]P = 469,900 * 2^\frac{20}{5}\\\\P = 469,900 * 2^4[/tex]
= 469,900 * 2 * 2 * 2 * 2
= 7518400
Write 10x - 5y = -30 in slopeintercept form.
y =
X +
Answer:
[tex]y=2x+6[/tex]
Step-by-step explanation:
Slope-intercept form is [tex]y=mx+b[/tex].
Therefore, rearranging the given formula:
[tex]10x-5y=-30[/tex]
[tex]-5y=-10x-30[/tex]
[tex]\frac{-5y}{-5}=\frac{-10x}{-5}-\frac{30}{-5}[/tex]
[tex]y=2x-(-6)[/tex]
[tex]y=2x+6[/tex]
Answer: y=2x+6
Step-by-step explanation:
A slope-intercept form is y=mx+b
Hence,
[tex]10x-5y=-30\\\\10x-5y+5y=-30+5y\\\\10x=-30+5y\\\\10x+30=-30+5y+30\\\\10x+30=5y[/tex]
Divide both parts of the equation by 5:
2x+6=y
Thus, y=2x+6
Select the correct symbol to make 11⎯⎯⎯⎯√ , 1 of 1.
Select Choice
323 a true statement.
The correct inequality symbol that makes the statement true is:
1000 < (6²)³.
How to choose the inequality symbol?The inequality symbols, and their meaning, are presented as follows:
> x: greater than x.< x: less than x.≥ x: at least x.≤ at most x.In the context of this problem, the numbers being compared are presented as follows:
1000 and (6²)³.
The power of power property of a number with multiple exponents means that the base is kept while the exponents are multiplied.
The number in which this property is applied in this problem is (6²)³, in which:
The base is of 6.The exponents are of 2 and 3.Hence the equivalent number is given as follows:
(6²)³ = 6^6 = 6 x 6 x 6 x 6 x 6 x 6 = 46,656
Which is a greater number than 1,000, meaning that 1,000 is less than the number, and the inequality is:
1000 < (6²)³.
Missing InformationThe problem is given by the image at the end of the answer.
More can be learned about inequalities at brainly.com/question/25275758
#SPJ1
a tank contains 1360l of pure water. a solution that contains 0.02kg of sugar per liter enters a tank at the rate 2 l/min. the solution is mixed and drains from the tank at the same rate. how much sugar is in the tank initially? find the amount of sugar in the tank after t minutes. find the concentration of sugar in the solution in the tank after 60 minutes
a) Amount of sugar in the tank initially is 0.
b) The amount of sugar in the tank after t minutes is 13.6(1 - [tex]e^{\frac{4t}{1360} }[/tex]).
c) The concentration of sugar in the solution in the tank after 60 minutes is 3.672.
a) Assign the sugar content of the tank for time t to the symbol A(t). Starting with only clean water, the tank
A(0) = 0
b) Sugar flows in at a rate of
(0.02 kg/L) × (2 L/min) = 0.04 kg/min
and flows out at a rate of
(A(t) ÷ 1360 kg/L) × (2 L/min) = (2A(t) ÷ 1360) kg/min
so that the net rate of change of A(t) is governed by the ODE,
dA(t) ÷ dt = (4 ÷ 100) - (2A(t) ÷ 1360)
A'(t) + (2A(t) ÷ 1360) = 2 ÷ 100
Multiply both sides by the integrating factor [tex]e^{\frac{4t}{1360} }[/tex] to condense the left side into the derivative of a product:
[tex]e^{\frac{4t}{1360} }[/tex] A'(t) + (2 [tex]e^{\frac{4t}{1360} }[/tex] A(t) ÷ 1360) = 4 [tex]e^{\frac{4t}{1360} }[/tex] ÷ 100
( [tex]e^{\frac{4t}{1360} }[/tex] A(t))' = 4 [tex]e^{\frac{4t}{1360} }[/tex] ÷ 100
Integrate both sides:
[tex]e^{\frac{4t}{1360} }[/tex] A(t) = ∫ 4 [tex]e^{\frac{4t}{1360} }[/tex] ÷ 100
[tex]e^{\frac{4t}{1360} }[/tex] A(t) = 13.6 [tex]e^{\frac{4t}{1360} }[/tex] + C
Solve A(t);
A(t) = 13.6 + C [tex]e^{\frac{4t}{1360} }[/tex]
A(0) = 0, substitute the value
0 = 13.6 + C [tex]e^{\frac{4t}{1360} }[/tex]
C = -13.6
so that the amount of sugar at any time t is,
A(t) = 13.6 - 13.6[tex]e^{\frac{4t}{1360} }[/tex]
A(t) = 13.6(1 - [tex]e^{\frac{4t}{1360} }[/tex])
c) As t → 60, the exponential term converges to 0 and is left with
[tex]\lim_{t \to \(60}[/tex] A(t) = 13.6 × (1 - 0.73)
[tex]\lim_{t \to \(60}[/tex] A(t) = 3.672 kgs of sugar.
Learn more about the rate of flow at
https://brainly.com/question/29050709?referrer=searchResults
#SPJ4
if he uses upper and lower control limits of 520 and 480 hours, what is the probability that a sample mean is out of control?( assuming the process standard deviation is known to be 20 hours)
0.0456 is the probability that a sample mean is out of control.
What is probability in math?
Probability refers to potential. The subject of this area of mathematics is the occurrence of random events.The range of the value is 0 to 1. To forecast how likely events are to occur, probability has been introduced in mathematics.UCL = 520
LCL = 480
Mean (X ) = 500
Standard Deviation of sample (Sn) = 11.55
Z (for UCL) = (UCL - Mean)/Sn
Z (for UCL) = (520-500)/10
Z (for UCL) = 2
Z (for LCL) = (LCL - Mean)/Sn
Z (for LCL) = (480 - 500)/10
Z (for LCL) = -2
*Use Z table to find confidence level between Z value of -2 and 2.
Confidence level = 0.4772 + 0.4772
Confidence level = 0.9544
Risk (α ) = 1 - confidence level
Risk (α) = 1 - 0.9544
Risk (α) = 0.0456
Learn more about probability
brainly.com/question/11234923
#SPJ4
help meeeeeeeeeeee pleaseeeeeeeeeee rn rnnnnnnnnn!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
help meeeeeeeeeeee pleaseeeeeeeeeee rn rnnnnnnnnn!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The equation of the parabola from the vertex is f(x) = 7(x - 3)² + 5
How to determine the equation of the parabola?The equation of the function is given as
f(x) = 7x²
Also, we have
Vertex = (3, 5)
The form of the equation is given as
f(x) = a(x - h)² + k
Where
Vertex = (h, k)
This means that
Vertex = (h, k) = (3, 5)
Substitute (h, k) = (3, 5) in the equation f(x) = a(x - h)² + k
So, we have
f(x) = a(x - 3)² + 5
This also means that
f(x) = 7(x - 3)² + 5
The 7 is gotten from f(x) = 7x²
Hence, the equation of the parabola is f(x) = 7(x - 3)² + 5
Read more about parabola at
https://brainly.com/question/1480401
#SPJ1
Solve for the value of q.
46⁰
(q-3)⁰
There are 5 consecutive even integers with a sum of –80. What is the greatest of these integers?
The greatest even integers that the 5 consecutive number has a sum of - 80 is - 12.
How to find the greatest even integers?Even numbers are those numbers that can be divided into two equal groups or pairs and are exactly divisible by 2.
Therefore, even integers are integers that are even.
There are 5 consecutive even integers with a sum of –80.
let
x = first integers
Therefore,
x + x + 2 + x + 4 + x + 6 + x + 8 = - 80
5x + 20 = - 80
5x = -80 - 20
5x = - 100
divide both sides by 5
x = - 100 / 5
x = -20
Therefore,
greatest integer = - 20 + 8 = - 12
learn more on even integers here: https://brainly.com/question/19124009
#SPJ1
20-foot extension ladder set base six feet from house How far up will ladder reach?
The top of the 20-foot ladder used for painting will be 19 feet up from the base of the house
How to determine how high up the house the ladder will goinformation given in the question
Brian borrowed a 20-foot extension ladder: hypotenuse = 20-foot ladder
he sets the base of the ladder six feet from the house
adjacent = 6 feet from the house
opposite = how far up will the top of the ladder reach = ?
The problem is solved using the Pythagoras theorem is applicable to right angle triangle. the formula of the theorem is
hypotenuse² = adjacent² + opposite²
substituting the values into the equation
let x be thow far up will the top of the ladder reach
20² = 6² + x²
400 = 36 + x²
400 - 36 = x²
x² = 364
x = √364
x = 19.08
The ladder Brain borrowed will go 19 feet high
Learn more on leaning a ladder here:
https://brainly.com/question/29241066
#SPJ1
complete question
Brian borrowed a 20-foot extension ladder to use to paint his house. If he sets the base of the ladder six feet from the house how far up will the top of the ladder reach?
suppose that people's heights (in centimeters) are normally distributed, with a mean of 170 and a standard deviation of 5. we find the heights of 60 people. (you may need to use the standard normal distribution table. round your answers to the nearest whole number.) (a) how many would you expect to be between 165 and 175 cm tall? people (b) how many would you expect to be taller than 167 cm?
The expected number of people between 165 and 175 is 41.
The expected number of people taller than 168 is 39.
Given that the mean and standard deviation of people's heights (measured in centimeters) are 170 and 5 respectively. The heights of 60 people are revealed.
μ = 170
σ = 5
n = 60
(a) The probability would you expect to be between 165 and 175 cm tall;
P( 165 < x < 175 ) = P( (165 - 170)/5 < z < (175 - 170)/5 )
= P( -1 < z < 1 )
= P( z < 1) - P( z < -1 )
= 0.8413 - 0.1587
= 0.6826
Expected number of people between 165 and 175 = n * p
= 60 * 0.6826
= 40.956
≅ 41
(b) The probability would you expect to be taller than 167 cm;
P( x > 167 ) = P( z > (167 - 170)/5 )
= P( z > -0.6 )
= 0.7257
Expected number of people taller than 168 = n * p
= 60 * 0.7257
= 43.542
≅ 39
Hence,
The expected number of people between 165 and 175 is 41.
The expected number of people taller than 168 is 39.
To learn more about probability click here:
brainly.com/question/11234923
#SPJ4
please help me with this
Answer: final answer = 3/8
Step-by-step explanation:
it says 1/8 + 1/4. before you can add them you have to make sure that both fractions have the same denominator first you have to make both of the bottom denominators the same so its 1/8+2/8.
1/8+2/8=3/8
if sec2a is 3 find the value of sina.
By using trigonometry, it can be calculated that
The value of sina is [tex]\pm \frac{1}{\sqrt{3}}[/tex]
What is Trigonometry?
Trigonometry shows the relationship between sides and angles of a right angled triangle.
There are six trigonometrical functions. They are
[tex]sin \theta, \ cos\theta, \ tan \theta, \ cot\theta, \ sec\theta, \ cosec\theta[/tex]
[tex]sin\theta = \frac{perpendicular}{hypotenuse}\\\\cos\theta = \frac{base}{hypotenuse}\\\\tan\theta = \frac{perpendicular}{base}\\\\cot\theta = \frac{base}{perpendicular}\\\\sec\theta = \frac{hypotenuse}{base}\\\\cosec\theta = \frac{hypotenuse}{perpendicular}[/tex]
Trigonometry is a very important tool in mathematics.
Here, the trigonometric equation is
sec 2a = 3
cos 2a = [tex]\frac{1}{3}[/tex]
we know,
[tex]1 - cos 2a = 2 sin^2a\\\\1 - \frac{1}{3} = 2sin^2a\\\\2 sin^2a = \frac{2}{3}\\\\sin^2a = \frac{2}{3} \times \frac{1}{2}\\\\sin^2a = \frac{1}{3}\\\\ sina = \pm \frac{1}{\sqrt{3}}[/tex]
To learn more about trigonometry, refer to the link-
https://brainly.com/question/24349828
#SPJ1
Which statement justifies the given ordered pair as a solution to the system of equations? (−1, −13) {y=3x−10y=−2x−15
x = -1 and y = -13, (-1,-13) is the solution to the system of equation y = 3x - 10 and y = -2x - 15.
What is the solution to the given system of equation?Given the system of equation in the question;
y = 3x - 10 y = -2x - 15Is (-1,-13) the correct ordered pair?To find the solution to the system of equation, replace the occurrence of y in the second equation with y = 3x - 10 and solve for x.
y = -2x - 15
3x - 10 = -2x - 15
Add 10 to both sides
3x - 10 + 10 = -2x - 15 + 10
3x = -2x - 15 + 10
Add 2x to both sides
3x + 2x = -2x + 2x - 15 + 10
3x + 2x = - 15 + 10
Add like terms
5x = -5
x = -5/5
x = -1
Now, to solve for y, replace all occurrence of x with -1 in the first equation and solve for y.
y = 3x - 10
y = 3( -1 ) - 10
y = -3 - 10
y = -13
Therefore, the solution to the system of equation is (-1,-13).
Learn more about simultaneous equation here: brainly.com/question/16763389
#SPJ1
A triangle is shown with its exterior angles. The interior angles of the triangle are angles 2, 3, 5. The exterior angle at angle 2 is angle 1. The exterior angle at angle 3 is angle 4. The exterior angle at angle 5 is angle 6. Which statements are always true regarding the diagram? Select three options. m∠5 + m∠3 = m∠4 m∠3 + m∠4 + m∠5 = 180° m∠5 + m∠6 =180° m∠2 + m∠3 = m∠6 m∠2 + m∠3 + m∠5 = 180°
Considering the triangle with exterior angles and interior angles as described. The statements that are true include
m∠5 + m∠6 =180° m∠2 + m∠3 = m∠6 m∠2 + m∠3 + m∠5 = 180°How to determine the statements that are correctThe problem is solved considering this 3 theorems about triangles
exterior angle of a triangle theoremlinear pair theoremsum of angles in a triangleexterior angles theorem: m∠2 + m∠3 = m∠6
If a triangle side is created, the outside angle that results is equal to the sum of the two opposite internal angles.
Linear pair theorem: m∠5 + m∠6 =180°
Linear pairs are particular instances of supplementary angles that only involve two neighboring angles.
Sum of angles in a triangle is equal to 180 degrees:
m∠2 + m∠3 + m∠5 = 180°
Learn more on proof Linear pairs here:
https://brainly.com/question/29247347
#SPJ1
what is the value of m and n?
The value of m is 36 degrees and the value of n is 27 degrees
Consider the triangle on right side
Two sides of the triangle is equal, therefore it is an isosceles triangle.
One angle of the triangle = 126 degrees
Other two angles of the triangle is equal
The sum of interior angles of the triangle is 180 degrees
Then, the equation will be
126 + n + n = 180
2n + 126 = 180
2n = 180 - 126
2n = 54
n = 54/2
n = 27 degrees
Consider the full triangle
The equation will be
(m +27) + 90 +27 = 180
m + 27 + 90 + 27 = 180
m + 144 = 180
m = 180 - 144
m = 36 degrees
Hence, the value of m is 36 degrees and the value of n is 27 degrees
Learn more about triangle here
brainly.com/question/27682397
#SPJ9
Annalise withdraws $22.50 each day from
her account for a week. How can you represent the change in the
account for the week?
(PLEASE HELP QUICK)
The rate of change in the account for a week is $157.5.
Annalise has some money in her bank account. She withdraws $22.50 per day from her account for a week. We need to represent the change in the account for the week. The number of days in a week is seven. So, it means that she withdraws money from her bank account daily for seven days. The total amount of money withdrawn from the bank account is the product of the withdrawal amount per day and the total number of days in a week.
A = $22.5*7 = $157.5
Let the initial amount of money in the bank be "$x". The change in the bank balance is $157.5. The current balance is $(x - 157.5).
To learn more about rate of change, visit :
https://brainly.com/question/12786410
#SPJ1
an educational psychologist wanted to know the effects of four different methods of teaching arithmetic. using 12 classrooms, each method was used in the classes. at the end of the school year, all the pupils took the same achievement test, and the means for groups receiving different methods were compared. answer the following questions about the study. a. what was the dependent variable? b. what was the independent variable? c. what was a controlled variable? d. give an example of a parameter.
The dependent variable depends on a particular situation. The independent variable does depends on the result of an experiment. The controlled variable is a variable whose value is constant.
What is dependent variable?
The variable being measured or tested in an experiment is known as the dependent variable. The results of the participants' tests, for instance, since that is what is being measured, would be the dependent variable in a study looking at how tutoring affects test scores.
What is independent variable?
This isn't the same as an experiment's independent variable, which is a variable that can stand on its own. Tutoring would be the independent variable in the aforementioned case. The dependent variable (test results), however, may alter depending on the independent variable (tutoring).
What is controlled variable?
Anything kept constant or constrained in a research study is referred to as a control variable. Despite not being relevant to the study's objectives, this variable is controlled because it might have an impact on the results.
Numbers called parameters are used to define the characteristics of entire populations. Statistics are numerical representations of sample characteristics. One population parameter is the average income in the United States.
To learn more about variables, you visit the below site:
https://brainly.com/question/17344045?
#SPJ4
Michael is having party. He'll have 12 tables for every 32 guests. Complete the table below to find the number of guests he can seat with 3
tables.
Number of guests 32
Number of tables 3
air is pumped into a spherical balloon at the constant rate of 200 cubic centimeters per second. how fast is the surface area of the balloon changing when the radius is 5 centimeters?
The rate of change of the surface area of the balloon is 32cm²/sec
We know that volume of the sphere is,
V = 4/3πr³
Given,
dV / dt = +200
r = 5cm
d(SA) / dt = ?
dV / dt = 4πr² dr/dt
80 = 4π (25) dr/dt
dr / dt = 0.8 / π
SA = 4πr²
d(SA) / dt = 8πr dr / dt
d(SA) / dt = 8π × 5 × 0.8 / π
d(SA) / dt = 32cm²/sec
Hence the rate of change of the surface area is 32cm²/sec
To learn more about differential equations,
https://brainly.com/question/14620493
#SPJ4
A statement that two numbers or expressions are equal is a(n)
A statement that two numbers or expressions are equal is an equation.
What is an equation?An equation is a mathematical expression that states that two expressions are equal. An equation's solution is the value that, when substituted for the variable, makes the equation true. To accomplish our goal, we employ two equality principles: the addition principle and the multiplication principle.
An equation is the statement that illustrates the variables given. In this case, two or more components are taken into consideration to describe the scenario. It is vital to note that an equation is a mathematical statement which is made up of two expressions that are connected by an equal sign.
Learn more about equations on:
https://brainly.com/question/2972832
#SPJ1
on average, the number of students that choose to study application development subjects at brock university is 18 each year. (hint: use poisson distribution formula). what is the probability that exactly 13 students will take up application development in the coming year? a. 0.06585 b. 0.05093 c. 0.14260 d. 0.08795
0.05093 is the probability that exactly 13 students will take up application development in the coming year .
Describe probability using an example?
It is based on the probabilities that something could happen. The theory of probability primarily relies on the justification for probability. A coin is tossed, for instance, and the theoretical likelihood of receiving a head is 1 in 2.Average rate (number) of students who chose to study Application Development (λ)= 18
Poisson random variable(number of students taking up Application Development in the coming year)(x)=13
Poisson distribution = P(X = x) = e^−λ (λ)^x/ x!
Here, probability of 13 students choosing application development next year= P(X=13)
= ^(−18 ) 18^13/ 13!
P(X=13) = 0.0509286= 0.05093
Learn more about probability
brainly.com/question/11234923
#SPJ4
Please help me, I need the answer asap
Find m<2
28
62
56
142
The given equation m<2 = 28⁰ so here in this case option A is correct .
What three characteristics do angles have?A transversal's corresponding angles are equal when it crosses two parallel lines.Angles that are vertically opposite are equal.All of the interior angles alternately are equal.Every other external angle is equivalent.On the same side of the transversal, the pair of internal angles is additional.Simplification:
<1 = <3
<1 = 5x + 8 ………………equation 1.
<3 = 12x – 20 ………………equation 2.
By angle property <1 = <3 [ given ]
and
<1 = <2 [ vertically opposite angles ]
We have some options so we can use it to get answer more quickly:
Put <1=28 and <3=28
And solve it for X.
28 = 5x + 8 Eq1
20=5x => x=4
28 = 12x - 20 Eq2
28 + 20 = 12x
48 = 12x
4 = x
X = 4
As <1 = <2 ( vertically opposite angles )
From the first equation <1 = <2 = 5x + 8 ......( equation 3)
Putting the value of x = 4 in (equation 3)
<2 = 5* 4+ 8
<2=28
To know more about triangle properties here:
https://brainly.com/question/17235690
#SPJ1
Evaluate to find the value of x.
-2x - 6 = -18
Answer:
x=6
Step-by-step explanation:
-2x-6=-18
+6. +6
-2x=-12
/-2. /-2
x=6
Hopes this helps please mark brainliest
Activity 8. Counting the roots of polynomial equation
by inspection determine the number of real roots of each polynomial equation. Roots multiply n are counted n times
1. (x-4)(x+3)^2(x-1)^3=0
2. X^2(x^3-1)=0
3. X(x+3)(x-6)^2=0
4. 3x(x^3-1)^2=0
5. (x^3-8)(x^4+1)=0
patulong po plss.
The number of real roots found are-
1. (x-4)(x+3)^2(x-1)^3=0 ; 6 real roots.
2. X^2(x^3-1)=0 ; 3 real roots.
3. X(x+3)(x-6)^2=0 ; 4 real roots.
4. 3x(x^3-1)^2=0 ; 3 real roots.
5. (x^3-8)(x^4+1)=0 ; 1 real roots.
Define the term roots of polynomial?If a root is not imaginary (defined as a number as in form a + bi, whereby I is a number which is not on any real number line, which is why the name imaginary), it is said to be real.Consider the given cases-
1. (x-4)(x+3)^2(x-1)^3=0,
Put each equals zero.
x – 4 = 0 or (x + 3)^2 = 0 or (x – 1)^3 = 0,
Thus,
x = 4
x = –3 twice
x = 1 thrice
All are real numbers, thus given polynomial has 6 real roots.
2. x^2(x^3-1)=0
Put each equals zero.
x² = 0
x³ – 1 = x³ – 1³ = (x – 1)(x² + x + 1) = 0
The quadratic expressions has 2 imaginary roots.
Use the discriminant formula to find-
D = b² – 4ac = 1² – 4(1)(1) = 1 – 4 = –3 < 0.
Thus, roots that are not real.
So, the real roots of this polynomial : 0(twice) and 1.
Hence, thus given polynomial has 3 real roots.
3. x(x+3)(x-6)^2=0
Put each equals zero.
x = 0
x = 3
x = 6 twice
Hence, thus given polynomial has 4 real roots.
4. 3x(x^3-1)^2=0
Put each equals zero.
3x = 0 and x = 0
(x^3 – 1)² = [(x – 1)(x² + x + 1)]² = (x – 1)²(x² + x + 1)² = 0,
Here, only two roots are real
The quadratic expression do have unreal roots, thus 1 twice are the real roots.
Hence, thus given polynomial has 3 real roots..
5. (x^3-8)(x^4+1)=0
Put each equals zero.
x³ – 8 = x³ – 2³ = (x – 2)(x² + 2x + 4) = 0
There is only one real root i.e, 2, the quadratic expression do have imaginary roots
Check using the discriminant formula
D = b² – 4ac = 2² – 4(1)(4) = 4 – 16 = – 12 < 0.
x⁴ + 1 = 0 has imaginary roots.
Hence, thus given polynomial has 1 real roots..
To know more about the roots of polynomial, here
https://brainly.com/question/2833285
#SPJ4
which of the following is a quantitative research method that aims to observe the relationship between an independent variable and a dependent variable? a.) a questionnaire b.) secondary data analysis c.) a focus group d.) an experiment
The correct option is a.) a questionnaire, used as observing the relationship between independent variable as well as a dependent variable is the goal of a quantitative research technique known as employed as.
Define the term quantitative research method?Quantitative methods place an emphasis on accurate measurements or the statistical, quantitative, or numerical evaluation of information gathered through surveys, polls, and other types of research, as well as the manipulation of statistical data that has already been obtained using computing methods.
Quantitative research involves gathering numerical information and using it to understand a specific event or generalise it across groups of individuals.
Its primary attributes are:
Typically, organised research tools are used to acquire the data.Given its high reliability, the research study can typically be replicated or redone.The researcher has a specific study question to which unbiased solutions are sought.Before data is collected, the study's various components are all carefully designed.Numbers and statistics make up data, which are frequently displayed in tables, charts, and other non-textual formats.To know more about the quantitative research method, here
https://brainly.com/question/7705888
#SPJ4
I need help with number 7.
With the help of the given trendline equation, the length of the flight will be 3,613.34 miles.
What are equations?A mathematical statement known as an equation is made up of two expressions joined together by the equal sign. A mathematical statement that has an "equal to" symbol between two expressions with equal values is called an equation. As in 3x + 5 Equals 15, for instance. Equations come in a variety of forms, including linear, quadratic, cubic, and others.So, the length of the flight will be:
The trendline equation is: T = 458 + 0.15DT is the cost which is given as $1000 and D is the distance.Now, calculate for D as follows:
T = 458 + 0.15D1000 = 458 + 0.15D1000 - 458 = 0.15D0.15D = 542D = 542/0.15D = 3,613.33We can write as D = 3,613.34
Therefore, with the help of the given trendline equation, the length of the flight will be 3,613.34 miles.
Know more about equations here:
https://brainly.com/question/28937794
#SPJ13
Alan travels eight and two thirds kilometers to get to school. He ran one and ten elevenths kilometers and walked the rest. How many kilometers were left to walk? (4 points)
a
six and two thirty thirds kilometers
b
five and twenty five thirty thirds kilometers
c
six and twenty five thirty thirds kilometers
d
six and twenty thirty thirds kilometers
The Kilometer that Alan was left to walk is given as c six and twenty five thirty thirds kilometers
How to solve for the kilometerIn order to solve for the solution, we would have to write out the expressions in mathematical forms first
eight and two thirds kilometers = [tex]8\frac{2}{3}[/tex]
This is is the time that Alan is said to travel for him to get to school
The expression one and ten elevenths is written mathematically as [tex]1\frac{10}{11}[/tex]
This is the kilometer that he spent running.
We are to find the time that was used to walk to school.
To get this we have to subtract the kilometer that he ran from the total kilometer that he traveled.
[tex]8\frac{2}{3} - 1\frac{10}{11}[/tex]
we have to express as a mixed fraction then we would subtract
26/3 - 21/11
= 286 - 63 / 33
= 223/33
= 6.75
= 6 25/33
Hence the solution is C.
Read more on fractions here: https://brainly.com/question/78672
#SPJ1
Which statement is true? All decimals are rational. All rational numbers can be written as the quotient of Integers
The statement that is true is All rational numbers can be written as the quotient of Integers
What are rational numbers ?Any number that can be written as a fraction and has an integer as both the numerator and the denominator is referred to as rational number.
In a rational number, the denominator cannot be zero.
Integer refers to whole numbers. They are generally of two types the positive integers and the negative integers
Quotients refers to the end product of division example 2 ÷ 1 = 2/1
2/1 is the quotient, both 2 and 1 are integers
All decimals are rational - A counter example to this is √2
It has decimal and not a rational number because it cannot be represented as a fraction
Learn more about rational numbers here:
https://brainly.com/question/29242683
#SPJ1
The statement that is true is All rational numbers can be written as the quotient of Integers
What are rational numbers ?
Any number that can be written as a fraction and has an integer as both the numerator and the denominator is referred to as rational number.
In a rational number, the denominator cannot be zero.
Integer refers to whole numbers. They are generally of two types the positive integers and the negative integers
Quotients refers to the end product of division example 2 ÷ 1 = 2/1
2/1 is the quotient, both 2 and 1 are integers
All decimals are rational - A counter example to this is √2
It has decimal and not a rational number because it cannot be represented as a fraction
The area of the rectangle ABCD is 28[tex]cm^{2}[/tex]
a) What is the length of side AB in terms of x?
length of AB = (Answer here) (1)
b) If the area of rectangle ABCD is 28[tex]cm^{2}[/tex], we can show that [tex]x^{2}[/tex] + ax = b where a and b are integer values.
Work out the values of a and b.
a = (Answer here) (1) b = (Answer here) (1)
Answer:
see explanation
Step-by-step explanation:
(a)
AB = 4 + x
(b)
the area (A) of rectangle ABCD is calculated as
A = length × breadth
= AB × AD
= (4 + x)(6 + x) ← expand using FOIL
= 24 + 10x + x²
given A = 28 , then
x² + 10x + 24 = 28 ( subtract 24 from both sides )
x² + 10x = 4 ← in the form x² + ax = b
with a = 10 and b = 4