The range of the relation whose graph is shown include the following: C. -1 ≤ y ≤ 1.
What is a domain?In Mathematics and Geometry, a domain is the set of all real numbers for which a particular function is defined.
Additionally, the vertical extent of any graph of a function represents all range values and they are always read and written from smaller to larger numerical values, and from the bottom of the graph to the top.
By critically observing the graph shown in the image attached above, we can reasonably and logically deduce the following domain and range:
Domain = {-4, 4} or -4 ≤ x ≤ 4.
Range = {-1, 1} or -1 ≤ y ≤ 1.
Read more on domain here: brainly.com/question/17440903
#SPJ1
Find the volume of this sphere.
Use 3 for TT.
-d=6in
V ≈ [?] in ³
V = πr³
Enter
Answer: Spheres aren’t three-dimensional—they are two-dimensional. This is evident from the fact that in order to specify a point on a sphere, you only need two pieces of information, such as latitude and longitude.
If you include the interior of the sphere, this is instead called a closed ball, and that is three-dimensional. You can specify a point in the closed ball in all sorts of different ways; one of the most convenient would be latitude, longitude, and distance from the center. However, other than convenience, there is no reason to prefer one coordinate system over any other.
(This fact has nothing to do with spheres or closed balls—that is just a statement that is generally true. People who insist that “the three dimensions” are length, width, and height don’t know what they are talking about.)
Step-by-step explanation:
Over the last year, customers who have phoned their cable company for technical support have had to wait for a customer service representative an average of 28 minutes, with a standard deviation of 5.5 minutes. Company records have shown wait times to be normally distributed. What is the likelihood that a person phones the cable company and waits between 10 to 20 minutes for service?
The probability that a person phones the cable company and waits between 10 to 20 minutes for service is approximately 0.0729, or about 7.29%.
What is the mean and standard deviation?
The standard deviation is a summary measure of the differences of each observation from the mean. If the differences themselves were added up, the positive would exactly balance the negative and so their sum would be zero. Consequently, the squares of the differences are added.
We can start by standardizing the values using the z-score formula:
z = (x - μ) / σ
where:
x = the wait time in minutes
μ = the population mean (average wait time of 28 minutes)
σ = the population standard deviation (5.5 minutes)
For x = 10 minutes:
z = (10 - 28) / 5.5 = -3.27
For x = 20 minutes:
z = (20 - 28) / 5.5 = -1.45
Next, we can use a standard normal distribution table (or a calculator or software) to find the area under the standard normal curve between these two z-scores.
Using a standard normal distribution table, we can find that the area to the left of z = -1.45 is 0.0735, and the area to the left of z = -3.27 is 0.0006. Therefore, the area between z = -3.27 and z = -1.45 is:
0.0735 - 0.0006 = 0.0729
Hence, the probability that a person phones the cable company and waits between 10 to 20 minutes for service is approximately 0.0729, or about 7.29%.
To learn more about the mean and standard deviation visit:
brainly.com/question/475676
#SPJ1
Consider a circle whose equation is x2 + y2 – 2x – 8 = 0. Which statements are true? Select three options. The radius of the circle is 3 units. The center of the circle lies on the x-axis. The center of the circle lies on the y-axis. The standard form of the equation is (x – 1)² + y² = 3. The radius of this circle is the same as the radius of the circle whose equation is x² + y² = 9.
The true statements are:
1. The radius of the circle is 3 units
2. The standard form of the equation is (x-1)^2+y^2=3
3. The center of the circle lies on X-axis
4. The radius of this circle is the same as the radius of the circle whose equation is x^2+y^2=9
The given equation is: x^2+y^2-2x-8=0
The equation in the standard form of the circle can be written as (x-h)^2+(y-k)^2=r^2, where h= center of the circle and r= radius of the circle
The given equation in standard form can be written as
(x^2-2x+1)+y^2-9=0
(x-1)^2+y^2=3^2
Hence from the above equation, the center of the circle is at (1,0) and the radius is 3 units.
To learn more about problems on the equation of a circle refer to:
https://brainly.com/question/23799314?referrer=searchResults
Solve for X
Please show step by step
(X - 4)^2 = 25
Answer: x = -1 and x = 9
Step-by-step explanation:
Lets solve this equation step by step
1. Simplify both sides of the equation
x^2 - 8x + 16 = 25
2. Subtract 25 from both sides
x^2 - 8x + 16 - 25 = 25 - 25
3. Factor the left side of the equation
(x + 1) (x - 9) = 0
4. Set the factors equal to zero
x + 1 = 0 or x - 9 = 0
Thus your answers are x = -1 and x = 9
You can check by inputting the values into the original equation
(-1 - 4)^2 = 25 and (9 - 4)^2 = 25
The first three terms of a sequence are given. Round to the nearest thousandth (if necessary). 12 , 18 , 27 , . . . Find the 8th term.
Answer: 205.031(nearest thousandth)
or 205.03125
Step-by-step explanation:
A Bakery sold 382 cakes in one week. this was twice as the day so the previous week. write an equation that can be used to find the number of cakes and that were sold the previous week 
Answer:
164 Cakes
Step-by-step explanation:
382 Cakes are made in Week A. This was twice the amount of Week B. 328 divided by two equals 164.
Write the absolute value equation that has the following solutions.
One solution: x = 15
The absolute value equation is:
|x - 15| = 0
How to write the absolute value equation?We want an absolute value equation that only has the solution x = 15.
So we must have something equal to zero (so we avoid the problem with the signs that we can have with other numbers)
So the equation will be something like:
|x - a| = 0
And the solution is 15, so:
|15 - a | = 0
then a = 15
The equation is:
|x - 15| = 0
Learn more about absolute value:
https://brainly.com/question/1782403
#SPJ1
C. The table below shows the ages in years of 42 children at a birthday party. AGE(YEARS) NO OF CHIDREN 7 2x 8 3x 9 4x-1 10 X 11 X-2 (i). Find the value of x. (ii). Calculate, correct to the nearest whole number the mean age. (iii). Find the probability of selecting at random a child whose age is less than 9 years. 12 x-3 CURT
(1) The value of X is equal to 4 (2) The mean age is 3. (3) The probability of randomly selecting a child under the age of 9 is approximately 0.83.
How to calculate the average?
The formula for calculating the average of given numbers is equal to the sum of all values divided by the total number of values. There are three main types of averages: mean, median, and mode. All of these techniques work slightly differently and often give slightly different typical values.
(i). Given that there are a total of 42 children on the birthday, finding the value of x:
2x + 3x (4x-1) + x + (x-2) + (x-3) = 42
11x - 6 = 42
11x = 48
x = 4
Therefore, the value of x is equal to 4.
(ii). To find the average age, we need to calculate the sum of all the ages and divide by the total number of children:
Average age = (7 x 2 + 8 x 3 + 9 x (4-1) +10 x 4 +11 x (4-2) 12 x (4-3)) / 42
= (14 + 24 + 27 + 40 + 22 +12) / 42
= 139/42
= 3.31
Rounded to the nearest whole number, the average age is 3.
(iii). The probability of randomly selecting a child under 9 is obtained by adding the number of children aged 7, 8 or 9 (because we want children under 9) and dividing by the total number of children:
Number of children under 9 years = 2x + 3x + (4x-1)
Number of children under 9 years = 9x - 1
Number of children under 9 = 9(4)–1
Number of children under 9 years = 35
Probability of choosing a child under 9 = number of children under 9 / total number of children
Probability of choosing a child under 9 = 35/42
The probability of choosing a child under 9 years old is ≈ 0.83
Thus, the probability of randomly selecting a child under the age of 9 is approximately 0.83.
Learn more about mean, median, and mode here
https://brainly.com/question/30891252
#SPJ1
If f(x)={x+4 if x≤−2
-x if x>−2,
what is f(−4)?
A. -2
B. 4
C. -4
D. 0
Since -4 is less than or equal to -2, we use the first part of the definition of f(x) which is f(x) = x + 4 if x ≤ -2. Therefore,
f(-4) = (-4) + 4 = 0.
So, the answer is D. 0.
In 1870, the French writer Jules Verne
In 1870, the French writer Jules Verne published his novel "Twenty Thousand Leagues Under the Sea", which tells the story of an underwater adventure aboard the submarine Nautilus.
Who is the French writer?The novel is considered one of Verne's most popular and well-known works, and it has been translated into many languages and adapted into numerous films, TV shows, and stage productions. "Twenty Thousand Leagues Under the Sea" is known for its imaginative portrayal of futuristic technology, such as the advanced submarine Nautilus, and its detailed descriptions of underwater life and exploration.
Therefore, The novel has also been praised for its themes of adventure, exploration, and the relationship between man and nature. It remains a classic in science fiction and adventure literature, and continues to be read and enjoyed by readers around the world.
To know more about French writer here:
https://brainly.com/question/17460800
#SPJ1
solve the equation x^2+4x-11=0 by completing the square
To solve the equation x^2 + 4x - 11 = 0 by completing the square, we can follow these steps:
Move the constant term to the right side of the equation:
x^2 + 4x = 11
Complete the square by adding the square of half the coefficient of x to both sides of the equation:
x^2 + 4x + (4/2)^2 = 11 + (4/2)^2
Simplifying the left side:
x^2 + 4x + 4 = 11 + 4
Factor the perfect square on the left side of the equation:
(x + 2)^2 = 15
Take the square root of both sides of the equation:
x + 2 = ±√15
Solve for x by subtracting 2 from both sides:
x = -2 ± √15
Therefore, the solutions to the equation x^2 + 4x - 11 = 0 by completing the square are x = -2 + √15 and x = -2 - √15.
a private student loan at 4.25%, but the rate for such a loan could be 12.59%. Under the same circumstances as Self Check 2 ($10,000 principal, no interest paid while in school) and a rate of 12.59%, what would the principal be when you make your first payment 51 months later? What are some recent examples of community change that involves a clash between different cultures that helped disadvantaged communities and the populations.?
The principal when making the first payment 51 months later on a private student loan with a principal of $10,000 and a rate of 12.59% would be $15,307.13.
What is the principal?To calculate the principal when making the first payment 51 months later on a private student loan with a principal of $10,000 and a rate of 12.59%, we first need to calculate the amount of interest that has accrued over the 51 months.
Using the formula:
Interest = Principal x Rate x Time
where Principal = $10,000,
Rate = 12.59% per year,
Time = 51/12 years (since the interest is compounded monthly):
Interest = $10,000 x 0.1259 x (51/12)
= $5,307.13
So the total amount owed after 51 months would be:
Total amount owed = Principal + Interest
= $10,000 + $5,307.13
= $15,307.13
Therefore, the principal when making the first payment 51 months later on a private student loan with a principal of $10,000 and a rate of 12.59% would be $15,307.13.
As for recent examples of community change that involves a clash between different cultures that helped disadvantaged communities and the populations, one example is the Black Lives Matter movement, which has brought attention to systemic racism and police brutality in the United States. Another example is the #MeToo movement, which has raised awareness about sexual harassment and assault and has led to changes in workplace policies and cultural attitudes toward these issues.
Learn more about principal from
https://brainly.com/question/30163719
#SPJ1
Bhavik bought 3 liters of milk and 5 loaves of bread for a total of $11. A month later, he bought 4 liters of milk and 4 44 loaves of bread at the same prices, for a total of $10. How much does a liter of milk cost, and how much does a loaf of bread cost?
The cost of a liter of milk is $2.50 and the cost of a loaf of bread is $2.50.
What is cost?Cost is the value of goods or services measured in money or other forms of exchange. It is the amount that must be given up in exchange for something else. Costs are typically incurred in the production of goods and services, and can include both tangible and intangible elements, such as labor, materials, overhead, and financing.
The total cost for 3 liters of milk and 5 loaves of bread was $11. Therefore, the cost for 1 liter of milk was ($11 / 3) = $3.67. The cost for 1 loaf of bread was ($11 / 5)
= $2.20.
The total cost for 4 liters of milk and 4 loaves of bread was $10. Therefore, the cost for 1 liter of milk was ($10 / 4) = $2.50. The cost for 1 loaf of bread was ($10 / 4)
= $2.50.
Therefore, the cost of a liter of milk is $2.50 and the cost of a loaf of bread is $2.50.
To learn more about cost
https://brainly.com/question/2292799
#SPJ1
Find the area? For this shape pleae
help with statistics
Statistics is a branch of mathematics that involves the collection, analysis, interpretation, presentation, and organization of data. It is used in a wide range of fields such as science, engineering, social sciences, business, economics, and more.
What is statistics?In statistics, data is collected through various methods such as surveys, experiments, and observations. This data is then analyzed using statistical methods to extract meaningful insights, identify patterns and relationships, and make informed decisions.
Some common statistical techniques include descriptive statistics, inferential statistics, hypothesis testing, regression analysis, and probability theory. These techniques are used to help researchers and analysts to understand and draw conclusions about data, and to test whether their conclusions are statistically significant.
Statistics has many practical applications, such as market research, medical research, quality control, risk assessment, and many others. It plays a critical role in modern society, helping individuals and organizations make informed decisions based on data-driven insights.
Learn more about statistic on;
https://brainly.com/question/15525560
#SPJ1
Question 6(Multiple Choice Worth 5 points) (Statistical Measurements LC) Which of the following is a statistical question that can result in numerical data? What is the name of your favorite pizza store? How many hours this week did you spend on homework? O How many times did you go swimming this year? How many pink erasers do the students in your class have?
The statistical question that can result in numerical data is "How many hours this week did you spend on homework?"
Identifying the statistical question that can result in numerical data?The statistical question that can result in numerical data is "How many hours this week did you spend on homework?"
This is because the question is asking for a numerical response that can be measured and counted. The other options are not statistical questions that can result in numerical data.
"What is the name of your favorite pizza store?" is a question that asks for a categorical response, "How many times did you go swimming this year?" is a question that asks for a countable response, And "How many pink erasers do the students in your class have?" is a question that asks for a discrete numerical response.Read more about statistical question at
https://brainly.com/question/22334957
#SPJ1
2À candy company claims that its jelly bean mix contains 15% blue jelly beans. Suppose that the candies are packaged at random in small bags containing about 200 jelly beans. What is the probability that a bag will contain more than 20% blue jelly beans?
We find that P(Z > 2.46) is roughly 0.007 using a calculator or a basic normal distribution table. The probability that a bag will contain more than 20% blue jellybeans is therefore approximately 0.007 or 0.7%.
Define probability?The probability of an event is the ratio of good outcomes to all other potential outcomes. The number of successful outcomes for an experiment with 'n' outcomes can be expressed using the symbol x.
Here in the question,
We can utilise the binomial distribution formula to resolve this issue. In a bag of 200 jelly beans, let X represent the proportion of blue jelly beans. Following that, X exhibits a binomial distribution with parameters of n = 200 and p = 0.15, where p is the likelihood of drawing a blue jellybean.
The formula for determining the likelihood of finding more than 20% blue jellybeans in a bag is:
P (X > 0.2 × 200) = P (X > 40)
Since n is large (200) and p is not too near to 0 or 1, we can utilise the usual approximation to the binomial distribution. We may determine the equivalent mean and standard deviation of the normal distribution by using the mean and variance of the binomial distribution:
μ = np = 200 × 0.15 = 30
σ = √ (np(1-p)) = √ (200 × 0.15 × (1-0.15)) = 4.07
Then, we can standardize the random variable X as:
Z = (X - μ) / σ
So, we have:
P(X > 40) = P((X - μ) / σ > (40 - μ) / σ)
= P(Z > (40 - 30) / 4.07)
= P(Z > 2.46)
We find that P(Z > 2.46) is roughly 0.007 using a calculator or a basic normal distribution table. The likelihood that a bag will contain more than 20% blue jellybeans is therefore approximately 0.007 or 0.7%.
To know more about probability, visit:
https://brainly.com/question/16484393
#SPJ1
Create a Truth Table for
(A ⋀ B) → C
The truth table is given above for (A ⋀ B) → C.
What is the logical statement?
A logical statement, also known as a proposition or a statement of fact, is a declarative sentence that is either true or false, but not both. It is a statement that can be evaluated based on the available information or evidence to determine its truth value. In other words, a logical statement is a statement that can be either true or false, but not both.
To create a truth table for the logical statement (A ⋀ B) → C, we need to consider all possible combinations of truth values for propositions A, B, and C.
There are 2 possible truth values (true or false) for each proposition, so there are 2³ = 8 possible combinations.
We can organize these combinations into a table as follows:
| A | B | C | (A ⋀ B) | (A ⋀ B) → C |
|---|---|---|---------|-------------|
| T | T | T | T | T |
| T | T | F | T | F |
| T | F | T | F | T |
| T | F | F | F | T |
| F | T | T | F | T |
| F | T | F | F | T |
| F | F | T | F | T |
| F | F | F | F | T |
In this table, the column labeled (A ⋀ B) represents the truth value of the conjunction of A and B (i.e., A AND B), and the column labeled (A ⋀ B) → C represents the truth value of the conditional statement (A ⋀ B) → C.
The symbol "T" represents "true" and the symbol "F" represents "false".
Hence, The truth table is given above for (A ⋀ B) → C.
To learn more about the logical statement visit:
https://brainly.com/question/29021787
#SPJ1
The length of a side of an equilateral triangle is 14 centimeters.
What is the length of the altitude of the triangle?
2√ 7cm
3√ 7 cm
7√ 2 cm
7√ 3 cm
Answer: The altitude of the triangle is [tex]h = 7 \sqrt{3}.[/tex]
Step-by-step explanation:
Suppose that we separate the equilateral triangle with the altitude of the triangle, as shown in the diagram I attached.
Then the length of the altitude [tex]h[/tex] can be found through the Pythagorean theorem:
[tex]h = \sqrt{14^2-\left( \frac{14}{2} \right)^2} = \sqrt{147} = \boxed{7 \sqrt{3}}.[/tex]
Therefore, the altitude of the equilateral triangle is [tex]h = 7 \sqrt{3}.[/tex]
2. center (5, -6), radius 4
Answer:
(x - 5)² + (y + 6)² = 16
Step-by-step explanation:
assuming you require the equation of the circle
the equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k ) are the coordinates of the centre and r is the radius
here (h, k ) = (5, - 6 ) and r = 4 , then
(x - 5)² + (y - (- 6) )² = 4² , that is
(x - 5)² + (y + 6)² = 16
7.
Colin uses
cup of vegetable oil in each cake that he makes for his father's beker
If Colin made 8 cakes, how much oil did Colin use in all?
Mark only one oval.
I added 13:5
A. 51/3 cups
OB. 41/3 cups
OC. 51/2 cups
OD.41/2 cups
Spain
42°
The number of cups of vegetable oil used by Colin to make 8 cakes is given by A = 5 1/3 cups
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data,
Let the equation be represented as A
Now, the value of A is
Substituting the values in the equation, we get
Let the number of cups of vegetable oil used by Colin to make 8 cakes be represented as A
Now , the number of cups of vegetable oil used by Colin to make 1 cake is given by = ( 2/3 ) cups of oil
And , number of cups of vegetable oil used by Colin to make 8 cakes A =
A = 8 x number of cups of vegetable oil used by Colin to make 1 cake
On simplifying the equation, we get
[tex]\text{A} = 8 \times \huge \text{(} \dfrac{2}{3} \huge \text{)}= \dfrac{16}{3}[/tex]
[tex]\boxed{\bold{A = 5 \dfrac{1}{3} \ cups}}[/tex]
Therefore, the value of A is 5 1/3 cups
Hence, the number of cups of vegetable oil required is 5 1/3 cups
To learn more about equations click:
brainly.com/question/19297665
Complete question is-
Colin uses 2/3 cup of vegetable oil in each cake that he makes for his father's bakery.
If Colin made 8 cakes, how much oil did Colin use in all?
A. 5 1/3 cups
B. 7 1/3 cups
C. 8 2/3 cups
D. 16 1/3 cups
Melissa collected the data in the table.
When x = 4, what is the residual?
–3
–1
1
3
From the data in the table, we can conclude that when x = 4, then the residual will equal -1.
How to determine the residualTo determine the residual, we can begin by obtaining the difference between the given and the predicted values of y.
So, Residual = Gven value - Predicted value.
When x = 4 in the table, Given value is 9 and predicted value is 10. So, 9 - 10 = -1. So, we can say that the residual value is -1.
Learn more about residual values here:
https://brainly.com/question/30243740
#SPJ1
Answer:
The residual is the difference between the actual y-value and the predicted y-value on a regression line. Since no table or equation is provided, we cannot calculate the exact residual. However, I can explain the concept to you.
Step-by-step explanation:
In general, to calculate the residual, we would need a regression equation or a line of best fit. This equation allows us to predict the y-values for different x-values. Then, we can compare the predicted values to the actual values given in the table to find the residuals.
If you have the regression equation or the line of best fit, I can help you calculate the residual for a specific x-value.
Jackson had $104,292.12 in a savings account with simple interest. He had opened the
account with $80,040 exactly 3 years earlier. What was the interest rate?
Use the formula i = prt, where i is the interest earned, p is the principal (starting amount), r
is the interest rate expressed as a decimal, and t is the time in years.
Answer: Using the formula i = prt, we have:
i = (104292.12 - 80040) = 24252.12
p = 80040
t = 3
Substituting these values, we get:
24252.12 = 80040 * r * 3
Solving for r, we get:
r = 0.101 or 10.1%
Therefore, the interest rate is 10.1%.
Step-by-step explanation:
Please help with the answer!
Answer:
Step-by-step explanation:
2.1 so a
multiply (3+8i)(2-13i) and write in standard form
Answer:
the answer is 110-23i
Problem 3: Find the diameter of a semicircle with an area of 76.97 square yards.
The diameter of the semicircle is with an area of 76.97 square yards is 14 yards.
What is the diameter of a semicircle with an area of 76.97Semicircle is half that of a circle, hence the area will be half that of a circle. Area of semi circle = 1/2 × πr²
Where r radius and π is constant pi.
Since we are given the area of the semicircle as 76.97 square yards, we can set up the following equation:
76.97 = 1/2 × (πr²)
Multiplying both sides by 2, we get:
153.94 = πr²
Dividing both sides by π, we get:
r² = 49
Taking the square root of both sides, we get:
r = 7
Therefore, the diameter of the semicircle is: d = 2r = 2(7) = 14 yards
Learn more about area of circles here: brainly.com/question/11952845
#SPJ1
in row 2, write the standard form equation of a circle whose diameter endpoints are shown here (-3,4) (2,1)
The standard form equation of a circle whose diameter endpoints are (-3,4) (2,1) is [tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = 6.5
What is the general form of equation of a circle?The general form of the equation of a circle is (x - h)² + (y - k)² = r², where (h, k) represents the center of the circle and r represents the radius. This equation is derived using the Pythagorean theorem, which states that the sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse. By setting (x - h)² and (y - k)² equal to r² and then combining the two equations, we get the standard form equation of a circle.
The center of the circle lies in the middle of the diameter, so we find the midpoint of the end points:
[tex](\frac{-3+2}{2} , \frac{4+1}{2} )[/tex] = (-0.5, 2.5)
And radius of the circle is half of the diameter, which is:
[tex]\frac{\sqrt{( 2-(-3))^2 + (1-4)^2 )}}{2}[/tex] = [tex]\frac{\sqrt{26}}{2}[/tex]
Therefore, the circle equation is:
[tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = [tex](\frac{\sqrt{26} }{2} )^2[/tex] = 26/4 = 6.5
[tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = 6.5
To know more about circle equation visit:
brainly.com/question/29288238
#SPJ1
Show that by the uniqueness theorem the linear transformation,
Y = aX + b, is also a normal random variable.
We can show by the uniqueness theorem that the linear transformation, Y = aX + b, is also a normal random variable because the resultant probaility density fnction of Y equals: f(y) = (1/√(2πa^2σX^2)) * exp(-(y-aμX-b)^2/(2a^2σX^2)).
How to prove a normal random variableTo show that the linear transformation, Y = aX + b is a normal random variable, we need to demonstrate that it satisfies the properties of a normal distribution. This means that it should have a bell-shaped probability density function, mean, and variance.
We can prove that it meets the mean condition this way:
E(Y) = E(aX + b) = aE(X) + b = aμX + b
Next, we can prove that it meets the variance condition thus:
Var(Y) = Var(aX + b) = a^2Var(X) = a^2σX^2
Lastly, the probability density function is given as f(y) = (1/√(2πa^2σX^2)) * exp(-(y-aμX-b)^2/(2a^2σX^2)). This proves that the conditions for a normal random variable is met.
Learn more about a normal random variable here:
https://brainly.com/question/29360240
#SPJ1
Helppppppppppppppppppppp
Jackson has a loyalty card good for a 10% discount at his local hardware store. What would his total in dollars and cents be, after the discount and before tax, if the total cost of all the items he wants to buy is $27.40? Round to the nearest cent.
Jackson's total cost after the discount and before tax would be $24.67.
Calculating discounted price :When a store offers a discount, it reduces the price of the item by a certain percentage. In this case, Jackson has a loyalty card that gives him a 10% discount on his purchase.
To calculate the price after the discount, we multiply the original price by 1 minus the discount percentage (in decimal form).
Here we have
Jackson has a 10% discount at his local hardware store.
Let 'x' be the cost before tax
After a 10% discount,
The amount that Jackson could pay 90% of the cost
Given that he wants to buy $ 27.40
The cost of items after discount = 90% of 27.40
= [ 90/100 ] × 27.40
= [ 0.9 ] × 27.40
= 24.66
Therefore,
Jackson's total cost after the discount and before tax would be $24.67.
Learn more about Discounts at
https://brainly.com/question/30814332
#SPJ9