Answer:
x = -7/9; y = 4/3.
Step-by-step explanation:
I will assume that the top equation is 6x + 2y = -2, and the bottom one is 3x - 2y = -5.
If you add the two...
(6x + 3x) + (2y + (-2y)) = (-2 + (-5))
9x + 0 = -7
9x = -7
x = -7/9
6(-7/9) + 2y = -2
-42/9 + 2y = -18/9
2y = 24/9
y = 24/18
y = 12/9
y = 4/3
Hope this helps!
A circular table top has a radius of 24 inches.
What is the area of the table top, to the nearest square inch? Use 3.14 for n.
75 in.2
151 in.
1809 in.2
7235 in.2
Answer:
(C) 1809 in.2
Step-by-step explanation:
Took the test on edg :3
pleaz!!! some body help with number #4 at the bottom
Answer:
See my explanation
Step-by-step explanation:
-2x + (x - 4) = 18
-x - 4 = 18
-x = 22 <- this is wrong in question writing as x = 22
so, x = -22
I need help with this question! solve “k” -19=b-6
k = b + 13
Step-by-step explanation:k - 19 = b - 6
k = b + 19 - 6
k = b + 13
Answer:
[tex]\boxed{k=b+13}[/tex]
Step-by-step explanation:
[tex]k-19=b-6[/tex]
Add 19 on both sides.
[tex]k-19+19=b-6+19[/tex]
[tex]k=b+13[/tex]
Solve =14+3 l = 14 j + 3 k for k. Select one: a. =+143 k = l + 14 j 3 b. =−143 k = l − 14 j 3 c. =3+14 k = l 3 + 14 j d. =3−14
Answer:
k= l/3 - 14/3j
Step-by-step explanation:
l = 14j + 3k
Solve for k
l = 14j + 3k
Subtract 14j from both sides
l - 14j =14j + 3k - 14j
l - 14j = 3k
Divide both sides by 3
l - 14j / 3=3k / 3
k= l/3 - 14/3j
Or
1/3(l - 14j) = k
Answer:
Which expression is equivalent to ‐10
k
‐
10
?
Step-by-step explanation:
Determine how many litres of water will fit inside the following container. Round answer and all calculations to the nearest whole number.
Answer:
[tex]\approx[/tex] 11 litres of water will fit inside the container.
Step-by-step explanation:
As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.
Given:
Height of cylinder, [tex]h_1[/tex] = 15 cm
Diameter of cylinder/ cone, D = 26 cm
Slant height of cone, l = 20 cm
Here, we need to find the volume of container.[tex]\\Volume_{Container} = Volume_{Cylinder}+Volume_{Cone}\\\Rightarrow Volume_{Container} = \pi r_1^2 h_1+\dfrac{1}{3}\pi r_2^2 h_2[/tex]
Here,
[tex]r_1=r_2 = \dfrac{Diameter}{2} = \dfrac{26}{2} =13\ cm[/tex]
To find the Height of Cylinder, we can use the following formula:
[tex]l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm[/tex]
Now, putting the values to find the volume of container:
[tex]Volume_{Container} = \pi \times 13^2 \times 15+\dfrac{1}{3}\pi \times 13^2 \times 15\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 15+\pi \times 13^2 \times 5\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 20\\\Rightarrow Volume_{Container} = 10613.2 \approx 10613\ cm^3[/tex]
Converting [tex]cm^{3 }[/tex] to litres:
[tex]10613 cm^3 = 10.613\ litres \approx 11\ litres[/tex]
[tex]\approx[/tex] 11 litres of water will fit inside the container.
ASAP!!! Please help me with this question!!!!!
r = radius
h = r+12 = height, 12 more than the radius
[tex]V = \text{Volume of cone (oblique or not)}\\\\V = \frac{1}{3}\pi*r^2*h\\\\V = \frac{1}{3}\pi*r^2*(r+12)\\\\V = \frac{1}{3}\pi*r^2*r+\frac{1}{3}\pi*r^2*12\\\\V = \frac{1}{3}\pi*r^3+\frac{1}{3}*12\pi*r^2\\\\V = \frac{1}{3}\pi r^3+4\pi r^2\\\\[/tex]
Answer: Choice BANSWER: SECOND OPTION
A chemist is mixing two solutions, solution A and solution B Solution A is 15% water and solution Bis 20% water. She already has a
beaker with 10mL of solution A in it. How many mL of solution B must be added to the beaker in order to create a mixture that is 18%
water?
Answer:
15 mL of the solution with 20% water will be needed.
Step-by-step explanation:
Use the inverse relationship
10 mL * (18-15)% = x mL * (20-18)%
x = 10 mL * (3/2) = 15 mL
Answer: 15mL
Step-by-step explanation:
Create a table. Multiply across and add down. The bottom row (Mixture) creates the equation.
Qty × % = Total
Solution A 10 15% → 0.15 10(0.15) = 1.5
Solution B x 20% → 0.20 x(0.20) = 0.20x
Mixture 10 + x × 18% → 0.18 = 1.5 + 0.20x
(10 + x)(0.18) = 1.5 + 0.20x
1.8 + 0.18x = 1.5 + 0.20x
1.8 = 1.5 + 0.02x
0.3 = 0.02x
15 = x
1. The total area within any continuous probability distribution is equal to 1.00.
A. True
B. False
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
Answer:
1. True
2. False.
3. True.
Step-by-step explanation:
1. The total area within any continuous probability distribution is equal to 1.00: it is true because the maximum probability (value) is one (1), therefore, the total (maximum) area is also one (1).
Hence, for continuous probability distribution: probability = area.
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: False because it has an infinite number of possible values, which can not be counted or uncountable.
Hence, it cannot be computed.
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: True because it has a finite number of possible values, which are countable or can be counted.
Hence, it can be computed.
What is the slope of the line in the graph? A.2 B.1/2 C.-2 D.-1/2
Step-by-step explanation:
bhdjdjsjshhdfhfbtvyvyvjdjshdjfy
HELP ME ASAP! BRAINLIEST UP FOR GRABS
Answer:
-5 ≤ x≤ 3
Step-by-step explanation:
The domain is the values for x
x starts and -5 and includes -5 since the circle is closed
and goes to 3 and includes 3 since the circle is closed
-5 ≤ x≤ 3
Answer:
first option
Step-by-step explanation:
The domain are the values from the x- axis that can be input into the function.
The closed circles at the ends of the graph indicate that x can equal these values.
left side value of x = - 5 and right hand value of x = 3, thus
domain is - 5 ≤ x ≤ 3
The ratio of Ed's toy cars to Pete's toy cars was initially 5:2. After Ed gave 30 toy cars to Pete, they each had an equal number of cars. How many toy cars did they have altogether?
Answer:
140 toy cars
Step-by-step explanation:
The ratio of Ed's toy car to Pete's toy car is initially given as 5:2
Ed gave Pete a total number of 30 cars
Let x represent the greatest common factor that exists between both number
Number of Ed's car is represented as 5x
Number of Pete car is represented as 2x
Since they each have an equal number of cars which is 30 then we can solve for x as follows
5x-30=2x+30
Collect the like terms
5x-2x= 30+30
3x= 60
Divide both sides by the coefficient of x which is 3
3x/3=60/3
x=20
Ed's car is 5x, we substitute 20 for x
5(20)
= 100 cars
Pete car is 2x,we substitute 20 for x
2(20)
= 40 cars
Therefore, the total number of cars can be calculated as follows
= 100+40
= 140 toy cars
Hence they have 140 toy cars altogether
Answer:
140
Step-by-step explanation:
n Fill in the blank. The _______ for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further. The (1) for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further.
Answer: sample space
Step-by-step explanation: In determining the probability of a certain event occurring or obtaining a particular outcome from a set of different possible outcomes, such as in the toss of coin(s), rolling of fair die(s), the sample space comes in very handy as it provides a simple breakdown and segmentation of all possible events or outcomes such that in Calculating the probability of occurrence of a certain event, the event(s) is/are located in the sample space and the ratio taken over the total number of events.
i attached the question in the image below
Answer:
45°
Step-by-step explanation:
[tex]tan^{-1}(1)[/tex] = 45°
Answer:
[tex]\huge\boxed{\theta=45^o\ \vee\ \theta=225^o}[/tex]
Step-by-step explanation:
[tex]\tan\theta=1[/tex]
[tex]\bold{METHOD\ 1}\\\\\text{Use the table in the attachment}\\\\\tan45^o=1\to\theta=45^o\ \vee\ \theta=45^o+180^o=225^o\\\\\bold{METHOD\ 2}\\\\\tan\theta=1\to\tan^{-1}1=\theta\to\theta=45^o\ \vee\ \theta=225^o[/tex]
Tonia and trinny are twins. Their friends give them identical cakes for their birthday. Tonia eats 1/8 of her cake and trinny eats 1/6 of her cake. How much cake is left? please show working thank youu
Answer:
[tex]\frac{7}{12}[/tex] of the cake
Step-by-step explanation:
add [tex]\frac{1}{8}[/tex] and [tex]\frac{1}{6}[/tex] to see the total amount of cake eaten.
a. find the common denominator: 8 x 3 = 24 and 6 x 4 = 24
b. multiply accordingly to get the correct numerator: [tex]\frac{3}{24}[/tex] + [tex]\frac{4}{24}[/tex]
c. add: [tex]\frac{3}{24}[/tex] + [tex]\frac{4}{24}[/tex] = [tex]\frac{7}{24}[/tex]
subtract found value from total to find left over cake.
a. 24 - 7 = 14
simplify.
a. [tex]\frac{14}{24}[/tex] = [tex]\frac{7}{12}[/tex]
You are left with [tex]\frac{7}{12}[/tex] of the cake.
Someone please explain
Area of a triangle is 1/2 x base x height.
The graphed triangle has height of 2 and base of 2.
Area = /2 x 2 x 2 = 2 square units.
The triangle gets enlarged by a scale factor of 2, so the new height would be 2 x 2 = 4 and the new base would be 2 x 2 = 4
Area of enlarged triangle = 1/2 x 4 x 4 = 8 square units.
The answer is C) 8
What is the equation of a line, in general form, that passes through points (-1, 2) and (5, 2)? A. y - 2 = 0 B. y - x - 2 = 0 C. x - 2 = 0
Answer:
y=2 or y-2=0
Step-by-step explanation:
to find the equation first find the slope m points (-1,2) and (5,2)
m=y2-y1/x2-x1 =2-2/5-(-1)=0/6=0
y=mx+b the slope is zero then y=b=2
4/5 (x − 20) = 8 solve it
Answer:
30
Step-by-step explanation:
4/5 (x-20)=8
4/5x-4/5*20=8
4/5x-16=8
4/5x=24
x=(24*5)/4
x=30
hope it helps..
This table gives a few (x,y) pairs of a line in the coordinate plane.
Answer:
x-intercept → (-5, 0)
Step-by-step explanation:
Let the equation of the line having pairs given in the table is,
y - y' = m(x - x')
m = slope of the line
(x', y') is a point lying on the line.
From the given table,
Two points (33, -22) and (52, -33) lie on the line.
Slope of the line = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m = [tex]\frac{-33+22}{52-33}[/tex]
m = [tex]-\frac{11}{19}[/tex]
Equation of the line passing through (33, -22) and slope = [tex]-\frac{11}{19}[/tex] will be,
y + 22 = [tex]-\frac{11}{19}(x - 33)[/tex]
For x-intercept y = 0,
0 + 22 = [tex]-\frac{11}{19}(x-33)[/tex]
-38 = x - 33
x = -38 + 33
x = -5
Therefore, x-intercept of the line is (-5, 0).
Answer:
-5,0
Step-by-step explanation:
khan academy
Zero product property
x(2x+4)(x+5)=0
A) x=0, x=-2, X=-5
B) x=0, x=2, x=5
C) x greater than or equal to 0
D) x=-2, x=5
Answer:
A
Step-by-step explanation:
Using ZPP we get x = 0, 2x + 4 = 0, x + 5 = 0. Solving these, we get x = 0, x = -2, x = -5.
Which expression is equivalent to
-21/4over -2/3
Answer:
[tex]\frac{9}{4}/\frac{3}{2}[/tex]
Step-by-step explanation:
[tex]-2\frac{1}{4}[/tex] is equilavalent to [tex]-\frac{9}{4\\}[/tex].
[tex]-\frac{2}{3}[/tex] can stay put.
The equation is division so neither answers #2 and #3 are the correct ones because when dividing fractions the second fraction has to be flipped in order to continue multiplying instead.
In addition, when two negatives are put together the answer must always be positive.
Hence the answer is [tex]\frac{9}{4}/\frac{3}{2}[/tex].
Solve the equation using the zero-product property. (2x − 8)(7x + 5) = 0 x = –2 or x = 7 x = –4 or x = x = 4 or x = x = 4 or x =
Answer:
x = 4 or x = - [tex]\frac{5}{7}[/tex]
Step-by-step explanation:
Given
(2x - 8)(7x + 5) = 0
Equate each factor to zero and solve for x
2x - 8 = 0 ⇒ 2x = 8 ⇒ x = 4
7x + 5 = 0 ⇒ 7x = - 5 ⇒ x = - [tex]\frac{5}{7}[/tex]
If the blue radius below is perpendicular to the green chord and the segment
AB is 8.5 units long, what is the length of the chord?
A
A. 8.5 units
8.5
B
O B. 17 units
O C. 34 units
O D. 4.25 units
Answer:
O B. 17 units
Step-by-step explanation:
The chord is AC and the radius of the circle is perpendicular to the chord at B. AB = 8.5 units. According to the perpendicular bisector theorem, if the radius of a circle is perpendicular to a chord then the radius bisects the chord. This means that chord AC is bisected by the radius of the circle at point B. The length of the circle is calculated using:
[tex]AB=\frac{AC}{2}\\ AC=2*AB\\cross multiplying:\\AC = 2*8.5\ units\\AC = 17 \ units[/tex]
The length of the chord is 17 units.
Answer:
The answer is 17 units :D
Step-by-step explanation:
PLSSSS HELPPP. The price of a tennis racquet is inversely proportional to its weight. If a 20 oz. racquet cost $30.00, what would a 25 oz. racquet cost?
Answer:
$24 will be the cost of tennis racquet with weight 25 oz.
Step-by-step explanation:
Given that Price of racquet is inversely proportional to its weight.
i.e.
[tex]Price \propto \dfrac{1}{Weight}[/tex]
We can replace the proportional sign with a constant of proportionality.
[tex]Price = \dfrac{C}{Weight}[/tex]
Where C is a constant named as constant of proportionality.
Given that cost of 20 oz. racquet is $30.00
Putting both the values :
[tex]30 = \dfrac{C}{20}\\\Rightarrow C = 600[/tex]
So, the equation becomes:
[tex]Price = \dfrac{600}{Weight}[/tex]
Now, we have to find the price of 25 oz. racquet.
Putting Weight = 25 oz and finding Price:
[tex]Price = \dfrac{600}{25}\\\Rightarrow Price = \$24[/tex]
So, $24 will be the cost of tennis racquet with weight 25 oz.
Solve the equation by completing the square.
3x^2-12x=96
Answer:
x = 8
or
x = -4
Step-by-step explanation:
3x² - 12x = 96
Divide both sides by 3
x² - 4x = 32
Add 4 to both sides
x² - 4x + 4 = 32 + 4
(x - 2)² = 6²
Find the square root of both sides
√(x - 2)² = √6²
x - 2 = +/- 6
x - 2 = +6 or -6
x - 2=+6
x=6+2
x=8
x - 2=-6
x=-6+2
x=-4
x = 8
or
x = -4
On a coordinate plane, a graph shows Street on the x-axis and Avenue on the y-axis. A line is drawn from Tia to Lei. Tia is at (4, 8) and Lei is at (12, 20). Tia lives at the corner of 4th Street and 8th Avenue. Lei lives at the corner of 12th Street and 20th Avenue. The fruit market is Three-fourths the distance from Tia’s home to Lei's home.
Answer:
(10, 17)
Step-by-step explanation:
It might be easier to explain with a picture or drawing, but I am new to this, so I would try using words.
Assuming the fruit market is on that straight line from Tia's home to Lei's, So we look at both address (coordinates)
From Tia to Lei, x coordinate is from 4 to 12, that's increased by 8, divide by 4, one step is 2.
y coordinate is from 8 to 20, an increase of 12, divide by 4 again, one step is 3.
The fruit market is at 3/4 distance, so 3 steps, on both x and y coordinates.
x: 4+6 = 10
y: 8+9=17
The fruit market is at point (10,17)
What is graph?
A graph can be defined as a pictorial representation or a diagram that represents data or values.
The point (x,y) which divides the segment AB with endpoints at A(x₁,y₁) and B(x₂,y₂) in ratio m:n has cordinates
[tex]x= \dfrac{nx_1+nx_2}{m+n}[/tex]
[tex]y= \dfrac{ny_1+ny_2}{m+n}[/tex]
Tia is at P(4, 8) and Lei is at Q(12, 20).
The fruit market (F) is three-fourths the distance from Tia’s home to Lei's home, then PM : PQ = 3:4 or PM : MQ = 3:1
So,
[tex]x= \dfrac{1.4+3.12}{3+1} = \dfrac{4+36}{4} = \dfrac{40}{4} = 10 \\y= \dfrac{1.8+3.20}{3+1} = \dfrac{8+60}{4} = \dfrac{68}{4} = 17[/tex]
Hence, the fruit market is at point (10,17) which means it is placed at the corner of 10th Street and 17th Avenue.
Learn more about graph here:
brainly.com/question/16608196
#SPJ5
Find x ÷ y, if x = 3 5/6 and y = 3 3/4 .Express your answer in simplest form.
Answer:
23/30
Step-by-step explanation:
x/y
(3 5/6)/(3 3/4)
((3*6)+5/6)/((3*4)+ 3/4)
(18+5/6)/(12+3/4)
(23/6)/(15/4)
(23/6)*(4/15)
(23*3)/(6*15)
(69/90)
23/30
Answer:
1 1/45
Step-by-step explanation:
PLEASE HELP MEEEE
I need help finding x a b and c
Answer:
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
Step-by-step explanation:
b=7x
sum of straight angle :=180
isoceles traingle = 2 sides are equal, and two angles are equal
b+a=180
7x+a=180
sum of traingle =180
2a+c=180
2a+2x=180 first equation
7x+a=180 second equation
solve by elimination ( multiply second equation by 2)
2a+2x=180
2a+14x=360 ( subtract)
2a+2x-2a-14x=180-360
-12x=-180
x=-180/12=
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
How would 7/2 be written as a complex number
Answer:
We could rewrite 7/2 as 7a + 2
Step-by-step explanation:
Complex numbers is when real numbers [i.e: 1, 1/2, 200, 5/7, etc..) and an imaginary numbers [numbers that give a negative result when squared] are combine together.
Please answer this in two minutes
Answer:
60°
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relation between sides of a right triangle and angles.
Tan = Opposite/Adjacent
tan(T) = SU/ST
tan(T) = (5√51)/(5√17) = √3
Now, the arctangent function is used to find the angle whose tangent is √3.
T = arctan(√3) = 60°
Solve the inequality for y.
y - 9x > 6
please help!!!!!!!
Answer:
y>9x+6
Step-by-step explanation:
y-9x+(9x)>6+(9x)
y>9x+6