What is the total surface area of the figure below? Give your answer to the nearest tenth place.

What Is The Total Surface Area Of The Figure Below? Give Your Answer To The Nearest Tenth Place.

Answers

Answer 1

Answer:

193.2 cm^2

Step-by-step explanation:

Count the rectangles together so

(6 + 6 + 6)9 =

18 x 9 = 162 cm^2

then for the triangles

6 x 5.2 = 31.2 cm^2

since there's 2 with the same area there's no need to divide by 2

now add the areas

162 cm^2+ 31.2 cm^2= 193.2 cm^2


Related Questions

Let A and B be positive definite symmetric n n matrices and let c be a positive scalar. Show that the
following matrices are positive definite.
(a) CA
(6) A?
(c) A + B
(d) A-' (First show that A is necessarily invertible.)

Answers

if A and B are positive definite symmetric n × n matrices, then the following matrices are positive definite (a) CA (b) [tex]A^{-1[/tex] (c) A + B  (d) [tex]A^{-1[/tex].

The positive definiteness of the following matrices are shown below:

(a) CA: We know that if A is a positive definite symmetric n × n matrix and c is a positive scalar, then CA is positive definite. Since A is positive definite, then for all non-zero vectors x, xTAX > 0.

Then, if y is a non-zero vector, then (yT(CA)y) = (Cy)TA(Cy) = c(yTAY) > 0 because A is positive definite and c is positive. Thus, CA is positive definite.

(b)  [tex]A^{-1[/tex]: We know that if A is a positive definite symmetric n × n matrix, then [tex]A^{-1[/tex] is positive definite. Suppose that A is positive definite. Then for all non-zero vectors x, xTAx > 0. The inequality holds for all x except x = 0. Since A is positive definite, it is invertible. Thus,  [tex]A^{-1[/tex] exists.

Now let z be a non-zero vector. Then,

(zT [tex]A^{-1[/tex]z) = (zT [tex]A^{-1[/tex]z)(zT [tex]A^{-1[/tex]z)T = (zT [tex]A^{-1[/tex]zzT [tex]A^{-1[/tex]z)T = (zT [tex]A^{-1[/tex](AA^-1)z)T = ((zT)( [tex]A^{-1[/tex]z))2 > 0. Thus,  [tex]A^{-1[/tex] is positive definite.

(c) A + B: We know that if A and B are positive definite symmetric n × n matrices, then A + B is positive definite. Let x be an arbitrary non-zero vector.

Then, since A is positive definite, xTAx > 0 and since B is positive definite, xTBx > 0. Adding these two inequalities yields xT(A + B)x > 0. Therefore, A + B is positive definite.(d)  [tex]A^{-1[/tex]:
Let A be a positive definite symmetric n × n matrix. Since A is positive definite, then for all non-zero vectors x, xTAx > 0. The inequality holds for all x except x = 0. Since A is positive definite, it is invertible. Thus, A^-1 exists. Now let z be a non-zero vector. Then, (zT [tex]A^{-1[/tex]z) = (zT [tex]A^{-1[/tex]z)(zT [tex]A^{-1[/tex]z)T = (zT [tex]A^{-1[/tex](A [tex]A^{-1[/tex])z)T = ((zT)( [tex]A^{-1[/tex]z))2 > 0. Thus,  [tex]A^{-1[/tex] is positive definite. Therefore, we have shown that if A and B are positive definite symmetric n × n matrices, then the following matrices are positive definite.

Learn more about vector :

https://brainly.com/question/24256726

#SPJ11

Use the Ratio Test to determine whether the series is convergent or divergent. 8 (-7)" n² n=1 Identify an Evaluate the following limit. a lim n+ 1 n18 Since lim 318 n+1 an an ? 1, -Select---

Answers

The series 8 * (-7)^(n^2) n=1 is divergent according to the Ratio Test. The limit lim (n+1)/(n^18) as n approaches infinity is equal to 1.

To determine the convergence or divergence of the series 8 * (-7)^(n^2) n=1, we can use the Ratio Test. The Ratio Test states that if the limit of the absolute value of the ratio of consecutive terms in a series is less than 1, then the series is convergent.

If the limit is greater than 1 or equal to infinity, then the series is divergent.

Let's apply the Ratio Test to the given series:

a_n = 8 * (-7)^(n^2)

We calculate the ratio of consecutive terms:

|a_n+1 / a_n| = |8 * (-7)^((n+1)^2) / (8 * (-7)^(n^2))|

= |-7 * (-7)^(2n+1) / (-7)^(n^2)|

= 7 * |(-7)^(2n+1) / (-7)^(n^2)|

Simplifying the expression, we have:

|a_n+1 / a_n| = 7 * |(-7)^(2n+1 - n^2)| = 7 * |-7^(2n+1 - n^2)|

Now, let's evaluate the limit as n approaches infinity:

lim (n+1)/(n^18) = 1

Since the limit is equal to 1, according to the Ratio Test, the series 8 * (-7)^(n^2) n=1 is divergent.

Learn more about ratio test:

https://brainly.com/question/31700436

#SPJ11

The function below is even, odd, or neither even nor odd. Select the statement below which best describes which it is and how you know. f(x) = 7x² + x¹-4 This function is neither even nor odd becaus

Answers

Answer:

The function f(x) = 7x² + x - 4 is neither even nor odd.

Step-by-step explanation:

To determine if a function is even, odd, or neither, we examine its symmetry properties.

1. Even functions: An even function satisfies f(x) = f(-x) for all x in the domain. In other words, if you reflect the graph of an even function across the y-axis, it remains unchanged. Even functions are symmetric with respect to the y-axis.

2. Odd functions: An odd function satisfies f(x) = -f(-x) for all x in the domain. In other words, if you reflect the graph of an odd function across the origin (both x-axis and y-axis), it remains unchanged. Odd functions are symmetric with respect to the origin.

In the given function f(x) = 7x² + x - 4, when we substitute -x for x, we get f(-x) = 7(-x)² + (-x) - 4 = 7x² - x - 4. This is not equal to f(x) = 7x² + x - 4.

Since the function does not satisfy the criteria for even or odd functions, we conclude that it is neither even nor odd. The lack of symmetry properties indicates that the function does not exhibit any specific symmetry about the y-axis or origin.

To learn more about Even or odd

brainly.com/question/924646

#SPJ11

One vertical wall of a water trough is a semicircular plate of radius R meters with curved edge downward. If the trough is full, so that the water comes up to the top of the plate, find the total force (in Newton) of the water on the plate. Density of water: 997 kg/m³

Answers

The total force exerted by the water on the semicircular plate is zero Newtons.

To find the total force exerted by the water on the semicircular plate, we need to calculate the hydrostatic force acting on each infinitesimally small element of the plate and then integrate these forces over the entire surface.

The hydrostatic force exerted by a fluid on a submerged surface is given by the formula:

F = ∫∫P dA,

where F is the total force, P is the pressure at a given point on the surface, and dA is the differential area element.

In this case, since the water comes up to the top of the plate, the pressure at any point on the plate is equal to the pressure at the water surface. The pressure at a given depth in a fluid is given by the equation:

P = ρgh,

where ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth below the surface.

In the case of the semicircular plate, the depth h varies depending on the position on the plate. At any point (x, y) on the plate, the depth can be expressed as:

h = R - y,

where R is the radius of the semicircular plate and y is the distance from the top of the plate.

Substituting the expression for h into the pressure equation, we have:

P = ρg(R - y).

Now, we can calculate the force exerted on each infinitesimal element of the plate:

dF = P dA = ρg(R - y) dA.

Since the plate is symmetric about the x-axis, we can integrate the force over the entire plate by integrating with respect to x from -R to R and with respect to y from 0 to R:

F = ∫[-R,R] ∫[0,R] ρg(R - y) dA.

To set up the integral, we need to express dA in terms of x and y. Since the plate is a semicircle, we can use polar coordinates:

x = r cosθ,

y = R - r sinθ,

dA = r dr dθ.

Now, we can rewrite the integral:

F = ∫[0,R] ∫[0,π] ρg(R - (R - r sinθ)) r dr dθ.

Simplifying the expression:

F = ∫[0,R] ∫[0,π] ρg r² sinθ dr dθ.

Evaluating the inner integral:

F = ∫[0,R] [-ρg/3 r³ cosθ]₀ᴿ dθ.

Evaluating the outer integral:

F = [-ρg/3 R³ sinθ]₀ᴾ.

Since the sine of π is zero and the sine of 0 is zero, the total force simplifies to:

F = [-ρg/3 R³ (sin(π) - sin(0))].

F = [-ρg/3 R³ (0 - 0)].

F = 0.

Learn more about force at: brainly.com/question/30507236

#SPJ11

20. [-12 Points) DETAILS LARCALCET7 10.3.063. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Find the area of the surface generated by revolving the curve about each given axis. x = 2t, y = 6t, Ostse (a)

Answers

The area of the surface generated by revolving the curve about each given axis. x = 2t, y = 6t is 6π ∫ [a, b] x √(10) dx.

To find the area of the surface generated by revolving the curve about a given axis, we can use the formula for the surface area of revolution. The formula is given by: A = 2π ∫ [a, b] f(x) √(1 + (f'(x))^2) d.

In this case, the curve is defined by the parametric equations x = 2t and y = 6t. To find the area of the surface generated by revolving this curve, we need to eliminate the parameter t and express y in terms of x.

From the equation x = 2t, we can solve for t and get t = x/2. Substituting this into the equation y = 6t, we have y = 6(x/2), which simplifies to y = 3x. Now, we can find the derivative of y with respect to x: dy/dx = d(3x)/dx = 3

Using the formula for surface area, the area A is given by:

A = 2π ∫ [a, b] y √(1 + (dy/dx)^2) dx

= 2π ∫ [a, b] 3x √(1 + 3^2) dx

= 6π ∫ [a, b] x √(10) dx

To find the limits of integration [a, b], we need to determine the range of x. Since the parametric equation x = 2t, we can let t vary over its entire range to obtain the range of x. Therefore, the limits of integration are determined by the range of t.

To know more about derivatives, refer here :

https://brainly.com/question/29144258#

#SPJ11

Let f(x)=1ax+b=1 where and b are non zero constants. Find all solutions to f−1(x)=0−1. Express your answer in terms of a and/or b.

Answers

Therefore, the solution to f^(-1)(x) = 0^(-1) is x = 1/(b - a), expressed in terms of a and b.

To find the solutions to f^(-1)(x) = 0^(-1), we need to solve for x when the inverse of the function f(x) equals -1. First, let's find the inverse of the function f(x). To find the inverse, we interchange x and y in the equation and solve for y:

y = 1/(ax + b)

Interchanging x and y:

x = 1/(ay + b)

Now, we can solve this equation for y:

1/(ay + b) = x

Multiplying both sides by (ay + b):

1 = x(ay + b)

Expanding:

1 = axy + bx

Rearranging the terms:

axy = 1 - bx

Solving for y:

y = (1 - bx)/(ax)

Now, we can set y equal to -1 and solve for x:

-1 = (1 - bx)/(ax)

Cross-multiplying:

-ax = 1 - bx

Rearranging the terms:

bx - ax = 1

Factoring out x:

x(b - a) = 1

Dividing both sides by (b - a):

x = 1/(b - a)

To know more about solution,

https://brainly.com/question/12179046

#SPJ11

14. 7 For the vectors a = (1, -2,3), b = (5,4, -6) find the following: a) Are 3a and 2b orthogonal vectors? Justify your answer.

Answers

For the vectors a = (1, -2,3), b = (5,4, -6) 3a and 2b are not orthogonal.

To determine if 3a and 2b are orthogonal vectors, we need to check if their dot product is zero.

First, let's calculate 3a and 2b:

3a = 3(1, -2, 3) = (3, -6, 9)

2b = 2(5, 4, -6) = (10, 8, -12)

Now, let's calculate the dot product of 3a and 2b:

3a · 2b = (3, -6, 9) · (10, 8, -12) = 3(10) + (-6)(8) + 9(-12) = 30 - 48 - 108 = -126.

The dot product of 3a and 2b is -126, which is not equal to zero. Therefore, 3a and 2b are not orthogonal vectors.

In summary, 3a and 2b are not orthogonal because their dot product is not zero.

To know more about dot product click on below link:

https://brainly.com/question/23477017#

#SPJ11

Calculate the integral of f(x,y)=9xf(x,y)=9x over the region DD
bounded above by y=x(2−x)y=x(2−x) and below by
x=y(2−y)x=y(2−y).
Hint: Apply the quadratic formula to the lower boundary curve t
Entered Answer Preview Result Message 1 – x+1 V 9*[(1/2)*(x^2)*((2-x)^2]-[([1-sqrt(- x+1)]^2)/2]] •(=12 –.j? _ (1-772+0) 3 incorrect Your answer isn't a number (it looks like a formula that retu

Answers

The integral of f(x, y) = 9x over the region bounded by the curves y = x(2 - x) and x = y(2 - y) can be calculated using the quadratic formula.

To calculate the integral, we need to find the limits of integration for both x and y. The lower boundary curve x = y(2 - y) can be rewritten as y = 1 - sqrt(1 - x) using the quadratic formula. The upper boundary curve y = x(2 - x) remains as it is.

Integrating f(x, y) = 9x over the given region involves integrating with respect to both x and y. We can choose to integrate with respect to x first. The limits of integration for x are from the lower boundary curve to the upper boundary curve, which gives us the integral ∫[y=1-sqrt(1-x) to y=x(2-x)] 9x dx.

To evaluate this integral, we find the antiderivative of 9x with respect to x, which is (9/2)x^2. Then we substitute the limits of integration into the antiderivative and subtract the lower limit from the upper limit: [(9/2)(x^2)] [y=1-sqrt(1-x) to y=x(2-x)].

After simplifying the expression, we can calculate the integral by substituting the upper limit and subtracting the result from substituting the lower limit. The final answer will provide the value of the integral over the given region.

To learn more about quadratic click here: brainly.com/question/22364785

#SPJ11

Solve the given Cauchy-Euler equation by variation of parameters. x’y"-2xy'+2y = 4x’et

Answers

The general solution is given by y(x) = y_c(x) + y_p(x) = c_1 x^1 cos(ln|x|) + c_2 x^1 sin(ln|x|) + 2e^t x cos(ln|x|), where c_1 and c_2 are constants.

The Cauchy-Euler equation is a linear differential equation of the form x^n y" + px^k y' + qx^m y = 0. In this case, the equation is x'y" - 2xy' + 2y = 4x'e^t.

To solve the associated homogeneous equation, we assume the solution is of the form y = x^r. Substituting this into the homogeneous equation, we obtain the characteristic equation r(r-1) - 2r + 2 = 0. Solving this quadratic equation, we find the roots r = 1 ± i. Therefore, the complementary solution is y_c(x) = c_1 x^1 cos(ln|x|) + c_2 x^1 sin(ln|x|).

To find the particular solution, we use the variation of parameters method. We assume the particular solution is of the form y_p(x) = u(x) y_1(x), where y_1(x) is one solution of the homogeneous equation (in this case, y_1(x) = x cos(ln|x|)). We then solve for u(x) by substituting y_p(x) into the original differential equation and equating coefficients of like terms. After integrating, we find u(x) = 2e^t.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

help
12 10. Determine whether the series (-1)-1 n2+1 converges absolutely, conditionally, or not at all. nal

Answers

The series (-1)^n/(n^2+1) converges absolutely but not conditionally.

To determine whether the series (-1)^n/(n^2+1) converges absolutely, conditionally, or not at all, we need to test for both absolute and conditional convergence.

First, let's test for absolute convergence by taking the absolute value of each term in the series:

|(-1)^n/(n^2+1)| = 1/(n^2+1)

Now, we can use the p-series test to determine whether the series of absolute values converges or diverges.

The p-series test states that if the series Σ(1/n^p) converges, then the series Σ(1/n^q) converges for any q>p.

In this case, p=2, so the series Σ(1/n^2) converges (by the p-series test). Therefore, by the comparison test, the series Σ(1/(n^2+1)) also converges absolutely.

Next, let's test for conditional convergence. We can do this by examining the alternating series test, which states that if a series Σ(-1)^n*b_n satisfies three conditions (1) the absolute value of b_n is decreasing, (2) lim(n→∞) b_n = 0, and (3) b_n ≥ 0 for all n, then the series converges conditionally.

In this case, the series (-1)^n/(n^2+1) does satisfy conditions (1) and (2), but not condition (3), since the terms alternate between positive and negative. Therefore, the series does not converge conditionally.

In summary, the series (-1)^n/(n^2+1) converges absolutely but not conditionally.

To learn more about convergent series visit : https://brainly.com/question/15415793

#SPJ11








Question 3 Find the area bounded by the curves y= square root(x) and y=x^2 Round the answer to two decimal places.

Answers

The area bounded by the curves y = √(x) and y = x^2 is approximately 0.23 square units.

What is the rounded value of the area enclosed by the curves y = √(x) and y = x^2?

The area bounded by the curves y = √(x) and y = x^2 can be found by integrating both functions within the given range. To determine the points of intersection, we set the two equations equal to each other:

√(x) = x^2

Rearranging the equation, we get:

x^2 - √(x) = 0

Solving this equation will yield two points of intersection, x = 0 and x ≈ 0.59. To find the area, we integrate the difference between the two curves within this range:

A = ∫[0, 0.59] (x^2 - √(x)) dx

Evaluating this integral gives us the approximate area of 0.23 square units.

Learn more about integrals

brainly.com/question/31059545

#SPJ11

consider the list [4, 2, 7, 3]. how many comparisons between two array elements were done if the array was sorted by selection sort?

Answers

If the array [4, 2, 7, 3] was sorted using the selection sort algorithm, a total of 6 comparisons between array elements would be made.

Selection sort is a simple sorting algorithm that works by repeatedly finding the minimum element from the unsorted part of the array and swapping it with the element at the beginning of the unsorted part. In this case, the initial array is [4, 2, 7, 3].

In the first iteration, the minimum element is 2, and it is swapped with the first element (4). This results in the array [2, 4, 7, 3] and one comparison (between 4 and 2).

In the second iteration, the minimum element in the unsorted part (starting from index 1) is 3, and it is swapped with the second element (4). This gives us the array [2, 3, 7, 4] and one comparison (between 7 and 3).

In the third iteration, the minimum element in the unsorted part (starting from index 2) is 4, and it is swapped with the third element (7). This gives us the array [2, 3, 4, 7] and one comparison (between 7 and 4).

After three iterations, the array is fully sorted, and a total of 6 comparisons were made in the process. These comparisons occur when finding the minimum element in each iteration and involve comparing different elements of the array.

Learn more about array here:

https://brainly.com/question/30757831

#SPJ11

please help asap
D Question 11 1 pts Use implicit differentiation to find an expression for dy dx . where x y2 - y = x dy? - 2 dx 2xy - 1 0 dy dx 2x - y 2xy + 1 0 dy dx = x² - xy² -- O 2x - y 2xy-1 dx

Answers

The expression for dy/dx is: dy/dx = (y^2 - x * (d^2y/dx^2) + 1) / (2x - y) Differentiation is a fundamental concept in calculus that involves finding the rate at which a function changes with respect to its independent variable.

To find the expression for dy/dx using implicit differentiation, we'll differentiate both sides of the given equation with respect to x.

The equation is:

x * y^2 - y = x * dy/dx - 2 * dx/2 * (xy - 1)

Let's differentiate each term:

Differentiating x * y^2 - y with respect to x:

d/dx (x * y^2) - d/dx (y) = d/dx (x * dy/dx) - d/dx (2 * dx/2 * (xy - 1))

Using the product rule and chain rule, we get:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + (dy/dx) - 2 * (x * (dy/dx) - dx/dx * (xy - 1))

Simplifying the equation:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + (dy/dx) - 2 * (x * (dy/dx) - (xy - 1))

Now, we can collect like terms:

y^2 + 2xy * (dy/dx) - dy/dx = x * (d^2y/dx^2) + dy/dx - 2 * (x * (dy/dx) - xy + 1)

Rearranging the equation:

y^2 - 2xy * (dy/dx) + dy/dx - dy/dx - x * (d^2y/dx^2) + 2xy * (dy/dx) = -2x * (dy/dx) + xy - 1

Simplifying further:

y^2 - x * (d^2y/dx^2) = -2x * (dy/dx) + xy - 1

Finally, we can isolate dy/dx by moving all other terms to the other side of the equation:

2x * (dy/dx) - xy = y^2 - x * (d^2y/dx^2) + 1

Learn more about Differentiation here:

https://brainly.com/question/31581320

#SPJ11

Which of the following are properties of the​ Student's t-distribution?
Question content area bottom
Part 1
Select all that apply.
A.The​ t-distribution is centered at
μ.
B.
The area in the tails of the​ t-distribution is slightly greater than the area in the tails of the standard normal distribution.
C.
The area under the​ t-distribution curve is 1.
D.
At the sample size n​ increases, the density curve of t gets closer to the standard normal density curve.
E.
The​ t-distribution is the same for different degrees of freedom.

Answers

The correct properties of the Student's t-distribution are: B. The area in the tails of the t-distribution is slightly greater than the area in the tails of the standard normal distribution. D. As the sample size n increases, the density curve of t gets closer to the standard normal density curve.

A. This statement is incorrect. The t-distribution is not necessarily centered at μ (population mean). The center of the t-distribution depends on the degrees of freedom.

B. This statement is correct. The t-distribution has heavier tails compared to the standard normal distribution, which means that the area in the tails of the t-distribution is slightly greater than the area in the tails of the standard normal distribution.

C. This statement is incorrect. The area under the t-distribution curve is not necessarily 1. The area under any probability distribution curve is always equal to 1, but the t-distribution can have varying areas under its curve depending on the degrees of freedom.

D. This statement is correct. As the sample size (degrees of freedom) increases, the t-distribution becomes closer to the standard normal distribution.

E. This statement is incorrect. The t-distribution differs for different degrees of freedom. The degrees of freedom determine the shape and characteristics of the t-distribution, and changing the degrees of freedom results in different t-distributions.

To know more about standard normal distribution,

https://brainly.com/question/29631357

#SPJ11

Determine all the number(s) c which satisfy the conclusion of
Mean Value Theorem for on the interval [2, 5].

Answers

The conclusion of the Mean Value Theorem states that there exists at least one number c in the interval [2, 5] such that the instantaneous rate of change of a function f(x) is equal to the average rate of change of f(x) over the interval.

The Mean Value Theorem is a fundamental result in calculus that guarantees the existence of a specific point in an interval where the instantaneous rate of change of a function is equal to the average rate of change over the interval.

In this case, we consider the interval [2, 5]. To determine the numbers c that satisfy the conclusion of the theorem, we need to find a function f(x) that meets the necessary conditions.

According to the theorem, if a function is continuous on the interval [2, 5] and differentiable on (2, 5), then there exists at least one number c in (2, 5) such that the derivative of the function evaluated at c is equal to the average rate of change of the function over the interval. The specific value of c can be found by setting up an equation involving the derivative and the average rate of change and solving for c. The actual value of c depends on the specific function used in the theorem.

Learn more about Mean Value Theorem:

https://brainly.com/question/30403137

#SPJ11

Solve the boundary-value problem y'' – 8y' + 16y=0, y(0) = 2, y(1) = 0.

Answers

The solution for the boundary-value problem is y(x) = 2[tex]e^{(4x)}[/tex] × (1 - x).

How do we solve the boundary-value problem?

The given differential equation y'' – 8y' + 16y = 0 is a second-order homogeneous linear differential equation with constant coefficients.

The characteristic equation of this differential equation⇒r² - 8r + 16 = 0

This can be factored as (r - 4)² = 0 ∴⇒r = 4.

general solution ⇒ y(x) = (A(x) + B) × [tex]e^{(4x)}[/tex]

A and B are constants.

Now, we'll use the boundary conditions y(0) = 2 and y(1) = 0 to solve for A and B.

For the first boundary condition y(0) = 2:

2 = (A0 + B)× [tex]e^{(4*0)}[/tex]

2 = B

Substitute B = 2 into general solution:

y(x) = Ax × [tex]e^{(4x)}[/tex] + 2 × [tex]e^{(4x)}[/tex]

y(x) = [tex]e^{(4x)}[/tex] × (Ax + 2)

For the second boundary condition y(1) = 0:

0 =  [tex]e^{(4*1)}[/tex] × (A1 + 2)

0 = e⁴ × (A + 2)

As  e⁴ ≠ 0, we can solve for A:

A = -2

So the solution to the boundary value problem is:

y(x) =  [tex]e^{(4x)}[/tex]  × (-2x + 2) ⇒ y(x) = 2 [tex]e^{(4x)}[/tex] × (1 - x)

Find more exercises on boundary-value problem;

https://brainly.com/question/30899491

#SPJ1

big Ideas math 2 chapter 1.2

Answers

The answers to the questions based on the circle graph are given as follows.

a. The degrees for each part of the circle graph are approximately -

Monday -  37.895°Tuesday -  56.843°Wednesday -  90°Thursday -  113.685°Friday -  75.79°

b. The percentage of people who chose each day is approximately -

Monday -  10.54%Tuesday -  15.79%Wednesday -  25%Thursday -  31.58%Friday -  21.08%

c. The number of people who chose each day is approximately -

Monday -  21 peopleTuesday -  32 peopleWednesday -  50 peopleThursday -  63 peopleFriday -  42 people

d. See the table attached.

The Calculations for the Circle Graph

To find the values for each part of the circle graph, we need to determine the value of x.

Given the information provided -

Monday = x°

Tuesday = 3/2x°

Wednesday = 90°

Thursday = 3x°

Friday = 2x°

a. To find the value of x, we can add up the angles of all the days in the circle graph -

x + (3/2)x + 90 + 3x + 2x = 360°

Simplify the equation -

x + (3/2 )x +90 + 3x + 2x =   3603x + (3/2)x + 5x = 360(19/2) x =   360x= (2/19)   * 360x ≈   37.895°

Now  calculate the valuesfor each   protionof the circle graph -

Monday -  x° ≈ 37.895°Tuesday -  (3/2)x ≈ (3/2) * 37.895 ≈ 56.843°Wednesday -  90°Thursday -  3x ≈ 3 * 37.895 ≈ 113.685°Friday -  2x ≈ 2 * 37.895 ≈ 75.79°

b. The percentage of people who chose each day

Monday -  (37.895° / 360°) * 100 ≈ 10.54 %Tuesday -  (56.843° / 360°) * 100 ≈ 15.79 %Wednesday -  (90° / 360°) * 100 = 25 %Thursday -  (113.685° / 360°) * 100 ≈ 31.58 %Friday -  (75.79° / 360°) * 100 ≈ 21.08 %

c. Calculate the number of   people who chose each day,we can use the percentage values andmultiply them   by the total number of people surveyed (200).

Monday -  10.54 % of 200 ≈ 21 peopleTuesday -  15.79 % of 200 ≈ 32 peopleWednesday -  25 % of 200 = 50 peopleThursday -  31.58 % of 200 ≈ 63 peopleFriday -  21.08 % of 200 ≈ 42 people

d. Organizing the results in a table - See attached table.

Learn more about Circle Graph at:

https://brainly.com/question/24461724

#SPJ1

Full Question:

Although part of your question is missing, you might be referring to this full question:

See attached Image.


First, without using Green's Theorem, simply algebraically carry
out the line integral by parametrizing your boundary C.
Hint: Consider C as the union of C_1 and C_2.

Answers

The value of given line integral is 9/2.

What is Green's Theorem?

Green's theorem in vector calculus connects a line integral centred on a straightforward closed curve C to a double integral over the plane region D enclosed by C. It is Stokes' theorem's two-dimensional particular instance.

As given integral is,

[tex]\int\limits^._c {(y-x)dx+(2x-y)dy} \,[/tex]

Where C being boundary of the region lying between the graphs of y = x and y = x² - 2x.

By Green's Theorem:

C∫ Mdx + N dy = R ∫∫(dN/dx - dM/dy) dA

Let M = y - x, and N = 2x - y

dM/dy = 1 and dN/dx = 2

Thus, substitute values in integral respectively,

C∫ (y - x) dx + (2x - y) dy = R ∫∫(2 - 1) dA

C∫ (y - x) dx + (2x - y) dy = R ∫∫1 dA

= ∫ from (0 to 3) ∫ from (x² - 2x to x) dy dx

Solve integral,

= ∫ from (0 to 3) [y]from (x² - 2x to x) dx

= ∫ from (0 to 3) [3x -x²] dx

= [(3x²/2) - (x³/3)] from (0 to 3)

= [(3³/2) - (3³/3)]

= 3³/6

=9/2

Hence, the value of given line integral is 9/2.

To learn more about Green's Theorem from the given link.

https://brainly.com/question/29672833

#SPJ4

                                     

Find the first derivative of the function g(x) = 6x³ - 63x² + 216x. g'(x) = 2. Find the second derivative of the function. g'(x) = 3. Evaluate g(3). g(3) = = 3? 4. Is the graph of g(x) concave up or concave down at x = At x = 3 the graph of g(x) is concave 5. Does the graph of g(x) have a local minimum or local maximum at x = 3? At = 3 there is a local

Answers

The first derivative of the function g(x) is 2, and the second derivative is 3. Evaluating g(3) yields 3. At x = 3, the graph of g(x) is concave up, and there is a local minimum at x = 3.

To find the first derivative of the function g(x), we differentiate each term with respect to x. Applying the power rule, we obtain g'(x) = 3(6x²) - 2(63x) + 216 = 18x² - 126x + 216. Given that g'(x) = 2, we can set this equal to 2 and solve for x to find the x-coordinate(s) of the critical point(s). However, in this case, g'(x) = 2 does not have real solutions.

To find the second derivative, we differentiate g'(x) = 18x² - 126x + 216 with respect to x. Again using the power rule, we get g''(x) = 36x - 126. Setting g''(x) equal to 3, we have 36x - 126 = 3, and solving for x gives x = 3. Therefore, the second derivative g''(x) = 3 has a real solution at x = 3.

To evaluate g(3), we substitute x = 3 into the original function g(x), resulting in g(3) = 6(3)³ - 63(3)² + 216(3) = 162 - 567 + 648 = 243. Thus, g(3) equals 243.

To determine the concavity of the graph at x = 3, we analyze the sign of the second derivative. Since g''(3) = 3 is positive, the graph of g(x) is concave up at x = 3.

Regarding the presence of local extrema, at x = 3, we have a local minimum. This conclusion is drawn based on the concavity of the graph, which changes from concave down to concave up at x = 3.

Learn more about first derivative here:

https://brainly.com/question/10023409

#SPJ11

Find the volume of an oblique cone with a height of 6 in. and a slant height of 10 in.
(Height is a right angle at the base.)

(A). 1206.4 in³

(B). 402.1 in³

(C). 301.6 in³

(D). 100.5 in³

Answers

The Volume of the oblique cone is approximately 402.12 cubic inches.

The volume of an oblique cone, we can use the formula:

V = (1/3) * π * r^2 * h,

where V is the volume, π is a mathematical constant approximately equal to 3.14159, r is the radius of the base, and h is the height of the cone.

In this case, the height of the cone is given as 6 inches. However, the slant height is provided, and we need to find the radius in order to calculate the volume.

Using the given information, we can apply the Pythagorean theorem to find the radius:

r^2 = slant height^2 - height^2,

r^2 = 10^2 - 6^2,

r^2 = 100 - 36,

r^2 = 64,

r = √64,

r = 8.

Now that we have the radius, we can calculate the volume:

V = (1/3) * π * (8)^2 * 6,

V = (1/3) * π * 64 * 6,

V = (1/3) * π * 384,

V = (384/3) * π,

V = 128 * π.

To find the decimal equivalent of the volume, we can multiply 128 by the value of π:

V ≈ 128 * 3.14159,

V ≈ 402.12.

Therefore, the volume of the oblique cone is approximately 402.12 cubic inches.

Among the given answer choices, the closest option is (B) 402.1 in³.

To know more about Volume .

https://brainly.com/question/30610113

#SPJ8

kevin had 4 more points than carl, tom had 2 fewer points than carl, how many more points did kevin have than tom

Answers

In  a case whereby kevin had 4 more points than carl, tom had 2 fewer points than carl, the number of more points  kevin have than tom is 6.

How can the point be calculated?

Based on the given information, Kevin Has 4 more tom has 2 fewer them, then the number will be 4+2= 6

It should be noted that the operation that is required from the question is addition operation this is because we were told that kevin had 4 more points than carl which implies that he was 4 point ahead of the formal point by Tom and that is why we need to perform the addition operation.

Learn more about Addition at;

https://brainly.com/question/25421984

#SPJ4

complete question;

Kevin, Carl, and Tom played a game.

• Kevin had 4 more points than Carl.

• Tom had 2 fewer points than Carl.

How many more points did Kevin have than Tom?

Please!!! Question 6
1 pts
Ratio of the number of times an event occurs divided by the total number of trials or times the activity is
performed.
O Theoretical Probability
O Experimental Probability



Answers


The correct answer is "Experimental Probability."

Experimental probability is the ratio of the number of times an event occurs to the total number of trials or times the activity is performed. It is based on observations and data collected from conducting actual experiments or observations.

On the other hand, theoretical probability refers to the expected probability of an event occurring based on mathematical calculations and assumptions. It is determined by considering all possible outcomes and their likelihoods without conducting actual experiments.

I hope this helps! :)

Which is the equation of the function?

f(x) = 3|x| + 1
f(x) = 3|x – 1|
f(x) = |x| + 1
f(x) = |x – 1|

.



The range of the function is
.

Answers

Answer:

sorry im in like 6th grade math so i don't really know either sry

Step-by-step explanation:

⇒\

A gallon of milk costs an unknown amount,Jason wishes to purchase Two gallons write an equation

Answers

The equation 2C is a simple algebraic expression that represents the relationship between the cost of one gallon and the cost of two gallons of milk.

Let's assume the unknown cost of a gallon of milk is represented by the variable "C" (for cost).

To write an equation representing the cost of purchasing two gallons of milk, we can multiply the cost of one gallon (C) by the quantity of gallons, which is 2:

2C

This equation states that the cost of purchasing two gallons of milk (2C) is equal to twice the cost of one gallon (C).

For example, if the cost of one gallon of milk is $3, the equation would be:

2 * $3 = $6

So, purchasing two gallons of milk would cost $6.

It is important to note that the equation assumes a linear relationship between the quantity of milk and its cost. In reality, the cost of two gallons of milk may not be exactly twice the cost of one gallon due to factors such as bulk discounts, promotions, or varying prices.

The equation provides a simplified representation and is based on the assumption that the cost per gallon remains constant.

By using this equation, Jason can determine the total cost of purchasing two gallons of milk based on the actual cost per gallon.

For more such question on cost. visit :

https://brainly.com/question/2292799

#SPJ8









What is the general form of a particular solution that should be used when using the method of undetermined coefficients to solve y" -- 4y' + 4y = et +1? You do not need to solve the DE

Answers

The general form of a particular solution for the given differential equation y" - 4y' + 4y = et + 1 can be expressed as A(t)e^(t) + B(t)e^(2t) + C, where A(t), B(t), and C are functions to be determined.

To determine the form of the particular solution, we consider the right-hand side of the equation, which is et + 1. Since et is already present in the homogeneous solution, we need to modify the form of the particular solution. As et is a solution to the homogeneous equation, a common approach is to multiply it by t and include a constant term to account for the constant 1 on the right-hand side. Hence, we introduce A(t)e^(t) as a term in the particular solution.

Since e^(2t) is also present in the homogeneous solution, we multiply it by t^2 to create B(t)e^(2t) in the particular solution. The constant term C accounts for the constant 1 on the right-hand side of the equation. By substituting these forms into the differential equation, we can determine the functions A(t), B(t), and the constant C using the method of undetermined coefficients.

Learn more about differential equation here: brainly.com/question/25731911

#SPJ11

Solve the equation. dx 4 = dt t + 3x Хе Begin by separating the variables. Choose the correct answer below. е OA. et 1 -dx = dt 4 3x Хе B. X dx = 4 dt t + 3x e 4 3x Хе dx = 6 t Edt The equation is already separated. An implicit solution in the form F(t,x) = C is =C, where C is an arbitrary constant. (Type an expression using t and x as the variables.)

Answers

After separating the variables, we have (t + 3x) dx = 4 dt as the correct equation. Thus, the correct option is :

B. (t + 3x) dx = 4 dt

The given equation is dx/4 = dt/(t + 3x).

To separate the variables, we want to isolate dx and dt on separate sides of the equation.

First, let's multiply both sides of the equation by 4 to eliminate the fraction:

dx = 4(dt/(t + 3x)).

Now, we can see that the denominator (t + 3x) is the coefficient of dt, while dx remains on its own.

Therefore, the equation becomes:

(t + 3x) dx = 4 dt.

This is the correct equation after separating the variables.

The equation (t + 3x) dx = 4 dt represents the relationship between the differentials dx and dt in terms of the variables t and x.

Hence, the answer is :

B. (t + 3x) dx = 4 dt

To learn more about differentiation visit : https://brainly.com/question/954654

#SPJ11

The population of a small city is 71,000. 1. Find the population in 25 years if the city grows at an annual rate of 2.5% per year. people. If necessary, round to the nearest whole number. 2 If the city grows at an annual rate of 2.5% per year, in how many years will the population reach 117,000 people? years. If necessary, round to two decimal places. In 3. Find the population in 25 years if the city grows at a continuous rate of 2.5% per year. people. If necessary, round to the nearest whole number. 4 If the city grows continuously by 2.5% each year, in how many years will the population reach 117,000 people? In years. If necessary, round to two decimal places. 5. Find the population in 25 years if the city grows at rate of 2710 people per year. people. If necessary, round to the nearest whole number. 6. If the city grows by 2710 people each year, in how many years will the population reach 117,000 people? In years. If necessary, round to two decimal places.

Answers

The population of a small city with an initial population of 71,000 will reach approximately 97,853 people in 25 years if it grows at an annual rate of 2.5%.

It will take approximately 14.33 years for the population to reach 117,000 people under the same growth rate.

To calculate the population in 25 years with an annual growth rate of 2.5%, we can use the formula:

Population in 25 years = Initial population * (1 + Growth rate)^Number of years.

Substituting the values, we have

[tex]71,000 * (1 + 0.025)^{25[/tex] ≈ 97,853 people.

To determine the number of years it takes for the population to reach 117,000 people with a 2.5% annual growth rate, we can use the formula:

Number of years = log(Population / Initial population) / log(1 + Growth rate).

Substituting the values, we have

log(117,000 / 71,000) / log(1 + 0.025) ≈ 14.33 years.

In the case of continuous growth at a rate of 2.5% per year, the population in 25 years can be calculated using the formula:

Population in 25 years = Initial population * e^(Growth rate * Number of years).

Substituting the values, we have

71,000 * [tex]e^{(0.025 * 25)[/tex] ≈ 98,758 people.

To determine the number of years it takes for the population to reach 117,000 people with continuous growth at a rate of 2.5% per year, we can use the formula:

Number of years = log(Population / Initial population) / (Growth rate).

Substituting the values, we have

log(117,000 / 71,000) / (0.025) ≈ 14.54 years.

If the city grows at a rate of 2,710 people per year, the population in 25 years can be calculated by adding the annual growth to the initial population:

Population in 25 years = Initial population + (Growth rate * Number of years).

Substituting the values, we have

71,000 + (2,710 * 25) = 141,750 people.

To determine the number of years it takes for the population to reach 117,000 people with an annual growth of 2,710 people, we can use the formula:

Number of years = (Population - Initial population) / Growth rate.

Substituting the values, we have

(117,000 - 71,000) / 2,710 ≈ 17.01 years

To learn more about population visit:

brainly.com/question/9887468

#SPJ11

The probability that a five-person jury will make a correct decision is given by the function below, where 0

Answers

The probability that a five-person jury will make a correct decision is given by the function: [tex]\[ P(k) = \binom{5}{k} p^k(1-p)^{5-k} \][/tex] .

Here [tex]\( P(k) \)[/tex] is the probability of making [tex]\( k \)[/tex] correct decisions, [tex]\( \binom{5}{k} \)[/tex] is the binomial coefficient representing the number of ways to choose k  correct decisions out of 5, p is the probability of making a correct decision, and 1-p)  is the probability of making an incorrect decision.

In the given function, k  can range from 0 to 5, representing the number of correct decisions made by the jury. The binomial coefficient accounts for all possible combinations of k  correct decisions out of 5. The probability of making k  correct decisions is multiplied by the probability of making 5-k  incorrect decisions to obtain the overall probability.

The function allows us to calculate the probabilities of different outcomes based on the probability p  of making a correct decision. By plugging in different values of p and evaluating the function for each value of k , we can determine the likelihood of the jury making different numbers of correct decisions.

To learn more about probability refer:

https://brainly.com/question/24756209

#SPJ11

Question 8(Multiple Choice Worth 10 points) 2. (07.01 MC) Select the general solution to x2 dx x2 dy 3+2y. ...31n|3+2y = In/x+|+0 11.11n|3 + 2y|=*+C II .+C = х O11 Both O Neither

Answers

The general solution to the given differential equation is (1/3) x³ + x²y - 3x - 2xy = C the correct answer is: C. Both

The given differential equation is:

x² dx + x² dy = 3 + 2y

To find the general solution integrate both sides of the equation with respect to their respective variables:

∫x² dx + ∫x² dy = ∫(3 + 2y) dx

Integrating each term:

(1/3) x³ + ∫x² dy = ∫(3 + 2y) dx

(1/3) x³ + x²y = 3x + 2xy + C

Simplifying the equation,

(1/3) x³ + x²y - 3x - 2xy = C

To know more about equation here

https://brainly.com/question/29657992

#SPJ4

Find z such that 62.1% of the standard normal curve lies to the left of z. a. –0.308 b. 0.494 c. 0.308 d. –1.167 e. 1.167

Answers

normal curve lies to the left of option c. 0.308.

To find the value of z such that 62.1% of the standard normal curve lies to the left of z, we need to use the standard normal distribution table or a statistical calculator.

Using a standard normal distribution table or a calculator, we can find the z-value associated with the cumulative probability of 62.1%. The closest value in the standard normal distribution table to 62.1% is 0.6116.

The z-value associated with a cumulative probability of 0.6116 is approximately 0.308.

to know more about probability visit:

brainly.com/question/32117953

#SPJ11

Other Questions
compare and contrast the function of tendons ligaments and bursae please print and show all workApproximate the sum of the following series by using the first 4 terms n n=1 Give three decimal digits of accuracy. True/false: religion continues to be a forceful influence on ethical systems. A quadratic f(x) = ax + bx+c has the following roots: Find values for a, b and c that make this statement true. a= b = C= x = -2-3i x = -2 + 3iA quadratic f(x) = ax + bx+c has the fo Consider the following function. f(x) = (x + 1)(2x + 4), (4,4) (a) Find the value of the derivative of the function at the given point. f'(4) = (b) Choose which differentiation rule(s) you used to find the derivative. (S power rule O product rule O quotient rule secondary amines add to aldehydes and ketones to give enamines. enamines are formed in a reversible, acid-catalyzed process that begins with nucleophilic addition of the secondary amine to the carbonyl group, followed by transfer of the proton to yield a neutral carbinolamine. protonation of the hydroxyl group converts it into a good leaving group, however there is no hydrogen left on the nitrogen to be lost to form a neutral imine product. instead, a proton is lost from the neighboring carbon to form an enamine. draw curved arrows to show the movement of electrons in this step of the mechanism. bert is extremely suspicious of other people and has trouble maintaining relationships with friends and family due to his inability to trust other people. he is very confrontational and does not accept that his suspicions might be inaccurate. bert would most likely be diagnosed with drought cuts the quantity of wheat grown by percent. if the price elasticity of demand for wheat is by how much will the price of wheat rise? during a session of psychodynamic therapy, a client becomes agitated and switches topics every time his relationship with his mother gets brought up by the therapist. this would an indicator of: in one sentence, identify the zone model that has been applied most frequently to cities in developing countries. a 2.1 speaker system contains two speakers and one subwoofer. T/F dt Canvas Golden West College MyGWC S * D Question 15 Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. dt &(a)= (5-5) 8(a)= (9-4) & (9) - (9-9")' (a)= Write the differential equation to describe the situation. a) The length of a blobfish, L = y(t), where t is measured in weeks, has a growth constant 14% per week and is limited to a maximum length of 148 mm. Currently the fish has a length of 14 mm. Select all correct descriptions for the situation. Check all that apply. The length is an exponential growth model and the initial condition is y(0) = 14 The length is a limited exponential growth model dy = 0.14y + 14 dt dt = 0.14(148 - y) and the initial condition is y(0) = 14 dy dt = 0.14y and the initial condition is y(0) = 14 Consider the line passing through the points (2,1) and (-2,3). Find the parametric equation for y if x = t+1. according to the text, there are five characteristics that distinguish emerging adulthood from other age periods. which characteristic does not describe emerging adulthood? If in the triangle GFGH,FGH, B and C are two points such that G-H-C and G-F-B, then" scienceobservationdatainferencehypothesis according to adler's concept of social interest an individual must When you use an aging schedule for estimating uncollectible accounts, bad debts expense is:Multiple Choicea. A plug that is determined by the difference between the pre-adjustment balance and the necessary post-adjustment balance in the allowance for uncollectible accounts, and the necessary post-adjustment balance in the allowance for uncollectible accounts balance is calculated using the aging schedule.b. A plug that is determined by the difference between the pre-adjustment balance and the necessary post-adjustment balance in accounts receivable.c. Calculated using the aging schedule to determine the amount of bad debts that will occur, with that amount recognized as bad debts expense.d. Calculated using the aging schedule as applied to the pre-adjustment and post-adjustment balances in the allowance for uncollectible accounts balance. Suppose that money is deposited daily into a savings account at an annual rate of $15,000. If the account pays 10% interest compounded continuously, estimate the balance in the account at the end of 2 Steam Workshop Downloader